Patents Assigned to The Invention Science Fund I, LLC
  • Patent number: 11750305
    Abstract: Empirically modulated antenna systems and related methods are disclosed herein. An empirically modulated antenna system includes an antenna and a controller programmed to control the antenna. The antenna includes a plurality of discrete scattering elements arranged in a one- or two-dimensional arrangement. A method includes modulating operational states of at least a portion of a plurality of discrete scattering elements of the antenna in a plurality of different modulation patterns. The plurality of different modulation patterns includes different permutations of the discrete scattering elements operating in different operational states. The method also includes evaluating a performance parameter of the antenna responsive to the plurality of different empirical one- or two-dimensional modulation patterns. The method further includes operating the antenna in one of the plurality of different one- or two-dimensional empirical modulation patterns selected based, at least in part, on the performance parameter.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 5, 2023
    Assignee: THE INVENTION SCIENCE FUND I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Alexander Remley Katko, Melroy Machado, Jay Howard Mccandless, Yaroslav A. Urzhumov
  • Patent number: 11367936
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: June 21, 2022
    Assignee: The Invention Science Fund I LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 11165287
    Abstract: According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: November 2, 2021
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Patent number: 11075702
    Abstract: Empirically modulated antenna systems and related methods are disclosed herein. An empirically modulated antenna system includes an antenna and a controller programmed to control the antenna. The antenna includes a plurality of discrete scattering elements arranged in a one- or two-dimensional arrangement. A method includes modulating operational states of at least a portion of a plurality of discrete scattering elements of the antenna in a plurality of different modulation patterns. The plurality of different modulation patterns includes different permutations of the discrete scattering elements operating in different operational states. The method also includes evaluating a performance parameter of the antenna responsive to the plurality of different empirical one- or two-dimensional modulation patterns. The method further includes operating the antenna in one of the plurality of different one- or two-dimensional empirical modulation patterns selected based, at least in part, on the performance parameter.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: July 27, 2021
    Assignee: The Invention Science Fund I LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10916974
    Abstract: According to various embodiments, a moving wireless power receiver is configured to receive power wirelessly based on a prescribed path of the wireless power receiver. A prescribed path that a moving wireless power receiver traverses is identified. Further, at least one element of the wireless power receiver is controlled based on the prescribed path to change an amount of power received at the wireless power receiver from incident power transmitted by one or more wireless power transmitters. Specifically, the at least one element can be controlled to change the amount of power received at the wireless power receiver as either or both a posture and a position of the wireless power receiver change with respect to the one or more wireless power transmitters as the wireless power receiver traverses the prescribed path.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: February 9, 2021
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Patent number: 10833381
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 10, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 10786626
    Abstract: Methods, computer program products, and systems are described that include measuring at least one effect of a combined bioactive agent and artificial sensory experience on an individual and/or modifying at least one of the bioactive agent or the artificial sensory experience at least partially based on the at least one effect.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: September 29, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Elizabeth A. Sweeney, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10770931
    Abstract: According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: September 8, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Patent number: 10763708
    Abstract: According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: September 1, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Patent number: 10741913
    Abstract: A determined object wave can be approximately formed by applying a modulation pattern to metamaterial elements receiving RF energy from a feed network. For example, a desired object wave at a surface of an antenna is selected to be propagated into a far-field pattern. A computing system can compute an approximation of the object wave by calculating a modulation pattern to apply to metamaterial elements receiving RF energy from a feed network. The approximation can be due to a grid size of the metamaterial elements. Once the modulation pattern is determined, it can be applied to the metamaterial elements and the RF energy can be provided in the feed network, causing emission of the approximated object wave from the antenna.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 11, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10727609
    Abstract: Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: July 28, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Jay Howard McCandless, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10686236
    Abstract: According to various embodiments, a quadrature hybrid coupler included as part of a phase shifter is used to provide variable phase shift to an input signal. The quadrature hybrid coupler includes an input port, an output port, and two terminated ports. The phase shifter includes one or more static lumped elements connected to the QHC to reduce at least one electrical dimension of the QHC to substantially less than a quarter wavelength. The phase shifter also include one or more variable lumped elements connected to the QHC to provide a variable phase shift to the input signal between the input port and the output port of the QHC.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 16, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, Matthew S. Reynolds, Yaroslav A. Urhumov
  • Patent number: 10602373
    Abstract: Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: March 24, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Russell J. Hannigan, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10595210
    Abstract: Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: March 17, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Russell J. Hannigan, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10572629
    Abstract: Methods, computer program products, and systems are described that include accepting at least one attribute of at least one individual, querying at least one database at least partly based on the at least one attribute, selecting from the at least one database at least one prescription medication and at least one artificial sensory experience to address the at least one attribute of at least one individual, and/or presenting an indication of the at least one prescription medication and the at least one artificial sensory experience at least partly based on the selecting from the at least one database at least one prescription medication and at least one artificial sensory experience to address the at least one attribute of at least one individual.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: February 25, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Elizabeth A. Sweeney, Lowell L. Wood, Victoria Y. H. Wood
  • Patent number: 10530194
    Abstract: According to various embodiments, a non-linear RF receiver including non-linear components is configured to receive RF energy. The non-linear RF receiver is coupled to an array of RF antennas having configuration parameters that vary across the array. The varied configuration parameters can be selected to reduce an amount of RF energy that is scatter, reflected, or re-radiated by the array in response to incident RF energy at the array of RF antennas. In various embodiments, the non-linear components of the non-linear RF receiver can have non-linear component configuration parameters that vary across the non-linear receiver. The varied non-linear component parameters can be selected to reduce an amount of RF energy that is re-radiated in response to incident RF energy.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: January 7, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Joseph Hagerty, Russell J. Hannigan, Guy S. Lipworth, Matthew S. Reynolds, Yaroslav A. Urzhumov
  • Patent number: 10446903
    Abstract: Surface scattering antennas on curved manifolds provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: October 15, 2019
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Pai-Yen Chen, Brian Mark Deutsch, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Alexander Remley Katko, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 10439299
    Abstract: Antenna systems and related methods are disclosed. An antenna system includes an antenna controller configured to operably couple to control inputs of an antenna including an array of electromagnetic (EM) scattering elements. A method includes controlling an array of EM scattering elements to operate according to holographic modulation patterns, and modulating at least one effective EM property of the antenna over space, time, or a combination thereof to, in the average and/or the aggregate, cause side lobes of an antenna gain of the antenna to be reduced.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 8, 2019
    Assignee: The Invention Science Fund I, LLC
    Inventors: Eric J. Black, Brian Mark Deutsch, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Patent number: 10425837
    Abstract: In one embodiment, a source device includes one or more tunable elements associated with an antenna. The source device is operable to modulate an impedance of one or more tunable elements based on a sequence of tuning vectors, measure a reference signal amplitude for each tuning vector, and determine field amplitudes for an array of reference points that circumscribe at least a portion of the source device based on the reference signal amplitude for each tuning vector. The source device is further operable to determine a target tuning vector that defines a target radiation pattern based on the field amplitudes, and transmit a target signal to a target device based on the target radiation pattern.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: September 24, 2019
    Assignee: The Invention Science Fund I, LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 10390770
    Abstract: Medical overlay mirror methods and related systems.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: August 27, 2019
    Assignee: Invention Science Fund I, LLC
    Inventors: Paul G. Allen, Edward K. Y. Jung, Royce A. Levien, Mark A. Malamud, John D. Rinaldo, Jr.