Patents by Examiner Dennis M White
  • Patent number: 9500664
    Abstract: A system, including method and apparatus, for generating droplets suitable for droplet-based assays. The disclosed systems may include either one-piece or multi-piece droplet generation components configured to form sample-containing droplets by merging aqueous, sample-containing fluid with a background emulsion fluid such as oil, to form an emulsion of sample-containing droplets suspended in the background fluid. In some cases, the disclosed systems may include channels or other suitable mechanisms configured to transport the sample-containing droplets to an outlet region, so that subsequent assay steps may be performed.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: November 22, 2016
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kevin D. Ness, Christopher F. Kelly, Donald A. Masquelier
  • Patent number: 9480981
    Abstract: An integrated device for a sample collection and transfer is provided. The integrated device comprises a capillary channel disposed between a first layer and a second layer, wherein the first layer comprises a hydrophilic layer comprising a fluid inlet for receiving a sample fluid to the capillary channel, wherein the capillary channel comprises an inner surface and an outer surface and an outlet for driving out the sample fluid. The device further comprises an interface assembly comprising: a third layer, a fourth layer, a fifth layer, and a flow path. The interface assembly is disposed on the outer surface of the capillary, at a determining position relative to the outlet, such that the capillary is in contact with the third layer of the interface assembly and the outlet is in contact with the flow path of the interface assembly for driving out the sample fluid from the integrated device.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: November 1, 2016
    Assignee: General Electric Company
    Inventors: Ralf Lenigk, Erin Jean Finehout, Xuefeng Wang
  • Patent number: 9476862
    Abstract: A nanostructure sensing device comprises a semiconductor nanostructure having an outer surface, and at least one of metal or metal-oxide nanoparticle clusters functionalizing the outer surface of the nanostructure and forming a photoconductive nanostructure/nanocluster hybrid sensor enabling light-assisted sensing of a target analyte.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: October 25, 2016
    Assignees: University of Maryland, College Park, The United States of America, as Represented by the Secretary of Commerce, National Institute of Standards and Technology, George Mason University, The George Washington University
    Inventors: Abhishek Motayed, Geetha Aluri, Albert V. Davydov, Mulpuri V. Rao, Vladimir P. Oleshko, Ritu Bajpai, Mona E. Zaghloul
  • Patent number: 9469529
    Abstract: The present invention provides a fiber base sensor and the fabricating method thereof. More specifically, one of the main goals of the present invention is to solve the problem existing in the prior art of the failure of forming a plurality of nano-particles on the surface of the fiber base sensor evenly by utilizing self-assembly process with the nano-imprint process. Furthermore, the another goal of the present invention is to provide detail parameters required in the said nano-imprinting process for avoiding the efficiency drop caused by over-embedding the nano-particles into the fiber based sensor.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: October 18, 2016
    Assignee: National Tsing Hua University
    Inventors: De-Hui Wan, Shih-Yu Tseng, Chung-Yao Yang, Szu-Ting Lin, Chao-Min Cheng
  • Patent number: 9468867
    Abstract: A microfluidic device is provided for inducing the separation of constituent elements from a microfluidic sample by introducing phase changes in the microfluidic sample while contained in a microfluidic channel in the device. At least a portion of the microfluidic sample is frozen to cause fractional exclusion of the constituent element from the frozen portion of the microfluidic sample. Different portions of the microfluidic sample may be frozen in different sectors and at different times in order to cause movement in a desired direction of the separated constituent element. Portions of the microfluidic sample may be frozen in a sequential order of adjacent sectors within the microfluidic channel in order to cause sequential movement of the excluded constituent element toward one portion of the microfluidic channel. The frozen portion of the microfluidic sample is then thawed, wherein the separated constituent element remains substantially separated from the thawed, purified microfluidic sample.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: October 18, 2016
    Assignee: The Aerospace Corporation
    Inventor: Richard P. Welle
  • Patent number: 9452431
    Abstract: A chemical assay device includes a hydrophilic substrate and one or more hydrophobic structures that extend from a first side of the hydrophilic substrate to a second side of the hydrophilic substrate. A hydrophobic structure in the hydrophilic substrate forms a fluid barrier wall that extends from the first side of the hydrophilic substrate to the second side of the hydrophilic substrate with a deviation of less than 20° from a perpendicular axis between the first side and the second side. The hydrophobic structure is formed from a wax or a phase change ink.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: September 27, 2016
    Assignee: Xerox Corporation
    Inventors: Jing Zhou, Mandakini Kanungo, Nancy Y. Jia, Wei Hong
  • Patent number: 9453812
    Abstract: An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) and/or a characteristic of the bodily fluid sample (e.g., hematocrit) includes a sample-entry chamber with a sample-application opening disposed on an end edge of the electrochemical-based analytical test strip, and first and second sample-determination chambers, each in direct fluidic communication with the sample-entry chamber. The electrochemical-based analytical test strip also includes first and second electrodes (such as first and second hematocrit electrodes) disposed in the first sample-determination chamber, and a third and fourth electrodes (for example working and reference electrodes) disposed in the second sample-determination chamber.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: September 27, 2016
    Assignee: LifeScan Scotland Limited
    Inventors: Alexander Cooper, Antony Smith, Lynsey Whyte, Neil Whitehead, David McColl, Brian Guthrie, Timothy Lloyd, Rossano Massari, Christian Forlani
  • Patent number: 9448220
    Abstract: A system and method for analyzing contaminants such as hydrocarbons in soil and ground water utilizes a reaction device comprising a catalyst encapsulated in a permeable material and processes that device in contact with a contaminant in an analytical device in order to generate a spectrogram indicative of the contaminants in the soil and ground water.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 20, 2016
    Inventor: John David Hanby
  • Patent number: 9442102
    Abstract: A motor vehicle oil quality testing apparatus and system to assess the quality and viability of motor oil in a vehicle to determine if a change of oil is needed. An absorbent strip of chemically treated material is mounted on a self-contained single use display and test card on which a used oil sample is deposited and will change color based on the oil's determined alkalinity in a sealable color comparison chamber indicated to the user if the oil should be changed.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: September 13, 2016
    Inventor: Richard C. Harpman
  • Patent number: 9429507
    Abstract: All of bio-related substances, such as cells or bacteria, are placed at single and independent positions. A flow cell according to the present invention is used for analyzing a bio-related substance and includes a flow passageway and an injection opening and a discharge opening that are connected to the flow passageway. The flow passageway is provided with trapping structural members for trapping the bio-related substance. The trapping structural members include a structure forming a dead water region in which the bio-related substance is trapped.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 30, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takuya Matsui, Muneo Maeshima
  • Patent number: 9429578
    Abstract: An apparatus is provided for sensing an analyte in a fluid.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: August 30, 2016
    Assignee: Invoy Technologies, LLC
    Inventor: Lubna Ahmad
  • Patent number: 9417216
    Abstract: A surface acoustic wave (SAW) biofilm sensor includes a transmitting electric to acoustic wave transducer defining an upper surface and a lower surface, a receiving acoustic wave to electric transducer defining an upper surface and a lower surface, a piezoelectric film layer defining an upper surface and a lower surface, and a passivation film layer defining an upper surface and a lower surface. Portions of the lower surface of the piezoelectric film layer are disposed on the upper surface of the transmitting electric to acoustic wave transducer and on the upper surface of the receiving acoustic wave to electric transducer, and the lower surface of the passivation film layer is disposed on the upper surface of the piezoelectric film layer such that the upper surface of the passivation film layer is configured to enable contact with a biofilm.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: August 16, 2016
    Assignee: University of Maryland
    Inventors: Young Wook Kim, Reza Ghodssi, Agisilaos A. Iliadis, William E. Bentley, Mariana Tsacoumis Meyer
  • Patent number: 9412577
    Abstract: This invention relates to the field of mass spectrometry, and more specifically to a vacuum ultraviolet photoionization and chemical ionization combined ion source, which consists of a vacuum ultraviolet light source and an ion source chamber. An ion acceleration electrode, an ion repulsion electrode, an ion extraction electrode, and a differential interface electrode positioned inside the ion source chamber are arranged along the exit direction of the vacuum ultraviolet light beam in sequence and spaced, coaxial, and parallel from each other. The ion acceleration electrode, the ion repulsion electrode, the ion extraction electrode, and the differential interface electrode are all plate structures with central through holes. The vacuum ultraviolet light beam passes through the central through holes of the electrodes along the axial direction.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: August 9, 2016
    Inventors: Haiyang Li, Lei Hua, Qinghao Wu, Huapeng Cui, Keyong Hou
  • Patent number: 9410178
    Abstract: A biological particle analyzer is disclosed and includes a microchannel including an end coupled to a first drive electrode, another end coupled to a second drive electrode, a first detection area at an upstream location and an excitation area at a downstream location for containing particles flowing from the upstream location to the downstream location inside the microchannel, a first detection circuit coupled to the first detection area for outputting a first detection result when at least one particle has arrived at the first detection area, a light emission source, and a control module coupled to the first detection circuit and the light emission source for determining when to turn on or off the light emission source according to the first detection result.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 9, 2016
    Assignee: Wistron Corporation
    Inventors: Chun-Chih Lai, Ting-Wen Liu
  • Patent number: 9395331
    Abstract: A method and apparatus for microfluidic processing by programmably manipulating a packet. A material is introduced onto a reaction surface and compartmentalized to form a packet. A position of the packet is sensed with a position sensor. A programmable manipulation force is applied to the packet at the position. The programmable manipulation force is adjustable according to packet position by a controller. The packet is programmably moved according to the programmable manipulation force along arbitrarily chosen paths.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 19, 2016
    Inventors: Frederick F. Becker, Peter Gascoyne, Xiaobo Wang, Jody Valentine Vykoukal, Giovanni De Gasperis
  • Patent number: 9393563
    Abstract: The present application relates to: a strip for lateral flow assay, comprising a support, a medium for development, a sample pad comprising a subpad, and an absorption pad; and a cartridge for lateral flow assay, comprising the same. According to the present application, the strip adopts a novel sample loading method, thereby obtaining reproducible results irrespective of the volume of an injected sample, and it is possible to readily change the amount of a sample, as necessary, thereby improving the reproducibility of measured results and convenience.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 19, 2016
    Assignee: BODITECHMED. INC
    Inventors: Byeong Chul Kim, Ki Tae Park, Hyun Jeong Kim
  • Patent number: 9389211
    Abstract: The present invention relates to a device for investigating, measuring and/or detecting properties of chemical and/or biological fluids as well as to a device for performing these procedures and a system comprising a holder for holding at least one of said devices. A device for detecting properties of chemical and/or biological fluids may comprise a tubular structure with a cavity for accommodating the fluid, the tubular structure comprising a magnetizable and/or magnetic material, wherein the tubular structure comprises a segment that is transparent to light of wavelength 200 nm to 2000 nm.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: July 12, 2016
    Assignees: Nanotemper Technologies GmbH, Hirschmann Laborgerate GmbH & Co. KG
    Inventors: Stefan Duhr, Philipp Baaske, Hans-Jurgen Bigus
  • Patent number: 9383351
    Abstract: A test strip to assist in determining the concentration of an analyte in a fluid sample comprises a base, at least one tab and a break line. The base includes a capillary channel and a test element. The capillary channel is in fluid communication with the test element. The test element is adapted to receive the fluid sample. The at least one tab is removably attached to the base. The capillary channel extends from the base into a portion of the tab. The break line intersects the capillary channel in which an inlet to the capillary channel is exposed along the break line when the tab is separated from the base.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: July 5, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: Roger Fleming
  • Patent number: 9383294
    Abstract: Hydrophilic articles and methods of using such articles are described. The hydrophilic articles include a hydrophilic layer comprising sintered, acidified silica nanoparticles attached to a substrate. A spacer layer attached to a first portion of the hydrophilic layer defines at least one fluid transport channel bounded on one side by a second portion of the hydrophilic layer. The nanoparticles may include one or both of spherical and elongated nanoparticles.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 5, 2016
    Inventors: Raymond J. Kenney, Theresa J. Gerten, Daniel P. Decabooter, Naiyong Jing, Garry W. Lachmansingh
  • Patent number: 9377401
    Abstract: A biological sensing structure includes a mesa integrally connected a portion of a substrate, wherein the mesa has a top surface and a sidewall surface adjacent to the top surface. The biological sensing structure includes a first light reflecting layer over the top surface and the sidewall surface of the mesa. The biological sensing structure includes a filling material surrounding the mesa, wherein the mesa protrudes from the filling material. The biological sensing structure includes a stop layer over the filling material and a portion of the first light reflecting layer. The biological sensing structure includes a second light reflecting layer over a portion of the stop layer and a portion of the top surface of the mesa. The biological sensing structure includes an opening in the second light reflecting layer to partially expose the top surface of the mesa.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Hua Lin, Li-Cheng Chu, Ming-Tung Wu, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai