Patents Examined by Kennedy Schaetzle
  • Patent number: 11951317
    Abstract: An operating room cable assembly for an electrical stimulation system that includes a lead connector having a housing, a lead lumen extending inwardly from a first opening in the housing and configured and arranged to receive a portion of a lead or lead extension, and a contact assembly disposed within the housing and configured and arranged to move relative to the housing. The contact assembly is configured and arranged to move to a load position and is biased to return to a lock position. The contact assembly includes of contacts that are configured and arranged to engage a portion of any lead or lead extension within the lead lumen when the contact assembly is in the lock position and to disengage from the portion of the lead or lead extension within the lead lumen when the contact assembly is in the load position.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: April 9, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ranjan Krishna Mukhari Nageri, Katie Hoose, Alexander Pruitt, Dennis Johnson, Maziyar Keshtgar, Brian Fang
  • Patent number: 11950930
    Abstract: Medical apparatus includes a probe with a basket assembly at its distal end, including a plurality of resilient spines with multiple electrodes arrayed along a length of each of the spines. Processing circuitry is configured to acquire a first bipolar electrical signal from the tissue between first and second electrodes at first and second locations along a first spine of the basket assembly, and to acquire a second bipolar electrical signal from the tissue between the first electrode and a third electrode in a third location on a second spine of the basket assembly, and to interpolate, based on the first and second bipolar electrical signals, a vectorial electrical property of the tissue along an axis that passes through the first location and between the second and third locations.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 9, 2024
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Vadim Gliner, Assaf Govari
  • Patent number: 11944829
    Abstract: A medical implant is in the form of an implantable pulse generator. The implantable pulse generator includes a housing and a socket arranged on the housing for receiving an end portion of a lead. The socket provides a strain relief for the lead. The strain relief forms a sleeve which surrounds a through-opening for receiving the lead. A seal protrudes from an inner side of the sleeve facing the through-opening and is designed to sealably close the through-opening when no lead is inserted into the through-opening.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: April 2, 2024
    Assignee: BIOTRONIK SE & Co. KG
    Inventor: Luis Genehr Alves
  • Patent number: 11938332
    Abstract: A method to provide feedback, coaching, and ECG analysis during a cardiac event. A rescuer would typically be attempting cardiopulmonary resuscitation (CPR) and/or administering an electrical shock from a defibrillator and/or collecting electrocardiogram (ECG) data. The method includes a step of providing a data-generation device (e.g., a camera) and computing components. The computer is used to calculate distances on the fly using data generated by the data-generation device, such as a camera, that may be in motion. The method uses the computer to calculate movement of the chest of a patient and to assess outcomes. When CPR contaminates an ECG, the computer removes the unwanted contamination so that proper guidance to the rescuer can be delivered during CPR.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: March 26, 2024
    Assignee: Altrix Medical, Inc.
    Inventors: Matthew Robert Shaker, Daniel Fleck
  • Patent number: 11918321
    Abstract: The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms/alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: March 5, 2024
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Matt Banet, Marshal Dhillon, Jim Moon
  • Patent number: 11911095
    Abstract: A method for generating a propagation and velocity maps for cardiac wavefront propagation including cardiac arrhythmia, sinus rhythm, and paced rhythm. Activation time information is generated in the absence of any time alignment reference, wherein an estimated activation time is a weighted summation of potentially nonlinear and nonorthogonal candidate functions (CFs) selected from a bank of CFs. Time alignments between sequential recordings may be done by including binary level functions among selected CFs. Embodiments are applicable to single catheter mapping and sequential mapping, and are robust as confirmed by the ability to generate propagation maps and conduction velocity in the presence of multiple colliding wavefronts. The propagation and conduction velocity maps may be used for one or more of diagnosing cardiac arrhythmia, localizing cardiac arrhythmia, guiding catheter ablation therapy of cardiac arrhythmia, and guiding cardiac pacing therapy.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: February 27, 2024
    Assignees: Queen's University at Kingston, Kingston Health Sciences Centre
    Inventors: Mohammad Hassan Shariat, Damian P. Redfearn
  • Patent number: 11911168
    Abstract: Systems and methods are described herein for determining whether cardiac conduction system pacing therapy may be beneficial and/or determining how proximal or distal a cardiac conduction system block may be using external cardiac signals. To do so, one or more left-sided metrics of electrical heterogeneity information may be generated based on left-sided surrogate cardiac electrical measured using a plurality of left external electrodes.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 11883659
    Abstract: A means for treating breathing disorders by stimulating respiratory muscles or nerves to entrain respiratory systems while leaving respiratory drive intact. Embodiments of the invention employ frequency analysis to determine if appropriate stimulation energy is being applied.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: January 30, 2024
    Assignee: ZOLL RESPICARDIA, INC.
    Inventors: Mark Gelfand, Kristofer J. James, Randy W. Westlund, Antonios Panteleon, Todd P. Goblish, Mark C. Lynn
  • Patent number: 11883178
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: January 30, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Patent number: 11872401
    Abstract: A stimulation device includes an adaptor component. The adaptor component couples a percutaneous lead to the stimulation device. The stimulation device may apply a stimulation signal to target tissue via the adaptor. A surgeon may place the stimulation device in a container and the adaptor component may be disposed outside of the container. Methods describe prolonged stimulation of target tissue via a stimulation device. The prolonged stimulation may be applied during and after a surgical procedure.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 16, 2024
    Assignee: CHECKPOINT SURGICAL, INC.
    Inventors: Kevin Scanlan, Eric R. Walker, Leonard M. Cosentino
  • Patent number: 11872399
    Abstract: Restless Leg Syndrome (RLS) or Periodic Limb Movement Disorder (PLMD) can be treated using high frequency (HF) electrostimulation. This can include selecting or receiving a subject presenting with RLS or PLMD. At least one electrostimulation electrode can be located at a location associated with at least one of, or at least one branch of, a sural nerve, a peroneal nerve, or a femoral nerve. HF electrostimulation can be delivered to the subject, which can include delivering subsensory, subthreshold, AC electrostimulation at a frequency that exceeds 500 Hz and is less than 15,000 Hz to the location to help reduce or alleviate the one or more symptoms associated with RLS or PLMD. A charge-balanced controlled-current HF electrostimulation waveform can be used.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: January 16, 2024
    Assignee: NOCTRIX HEALTH, INC.
    Inventor: Shriram Raghunathan
  • Patent number: 11872384
    Abstract: Methods of operating a blood pump having a magnetically levitated impeller. A method of operating a blood pump includes controlling supply of drive currents to drive coils of the blood pump to magnetically rotate an impeller around an impeller axis of rotation within a blood flow channel of a blood pump. Supply of a bearing current to a levitation coil of the blood pump is controlled to magnetically levitate the impeller in a direction transverse to the impeller axis of rotation so as to minimize power consumption of the blood pump during operation of the blood pump.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: January 16, 2024
    Assignee: TC1 LLC
    Inventor: Christopher J. Cotter
  • Patent number: 11844952
    Abstract: Implantable systems are described that include a stimulation device positionable in vivo and configured to communicatively couple to electrodes configured to stimulate or block body tissue and an auxiliary device positionable in vivo and including one or more coils configured to wirelessly couple, in vivo, to the stimulation device and to wirelessly couple to an ex vivo device. The auxiliary device may include a coil driver and a power source controlled by a processor and memory for storing data instructions for the coil driver and for storing data received from the stimulation device. The auxiliary device may also include a radio transceiver and an antenna. The stimulation device may include a housing, a coil, a power source and an integrated circuit for controlling the electrodes. The stimulation device may be coupled to a cuff via a lead and physically coupled to the auxiliary device.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: December 19, 2023
    Assignee: Galvani Bioelectronics Limited
    Inventor: Rizwan Bashirullah
  • Patent number: 11833350
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed in the context of esophageal ablation. An ablation device may include a first catheter defining a longitudinal axis and a lumen therethrough. A balloon may be coupled to the first catheter. The balloon may be configured to transition between a deflated configuration and an inflated configuration. A second catheter may extend from a distal end of the first catheter lumen. A set of splines including electrodes formed on a surface of each of the splines may couple to the distal end of the first catheter lumen and a distal portion of the second catheter. The second catheter may be configured for translation along the longitudinal axis to transition the set of splines between a first configuration and a second configuration.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: December 5, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Raju Viswanathan, Gary Long, Jean-Luc Pageard
  • Patent number: 11826151
    Abstract: A system and method for physiological data classification for use in facilitating diagnosis is provided. A physiological monitor includes a feedback button and physiological data obtained via the physiological monitor is stored in a database. The physiological data is divided into segments and one or more data segments are classified as noise. A determination is made that at least one of the data segments classified as noise includes a marker indicating a press of the feedback button on the physiological monitor. A set of the physiological data including and surrounding the physiological data occurring during the press of the feedback button is identified within the data segment classified as noise. The identified set of physiological data is provided with the data segments classified as valid for analysis.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: November 28, 2023
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Patent number: 11806153
    Abstract: A portable electrocardiograph includes: a recording section configured to record data corresponding to electrocardiogram of a subject; a detecting section configured to detect approach of a portable device having a function to perform short-range wireless communication; and a control section configured to start recording of the data in the recording section in a case where it is satisfied a start condition including a fact that the approach of the device is detected by the detecting section.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: November 7, 2023
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Satoshi Saitoh, Jun Motogi
  • Patent number: 11793446
    Abstract: Apparatus for use with an electroanatomical mapping system, an elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system, an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other. The apparatus includes a signal-interface assembly. The signal-interface assembly includes a signal-input section configured to be signal connectable to said at least one sensor of the energy-delivery assembly. A signal-output section is configured to be signal connectable to an input section of the electroanatomical mapping system.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: October 24, 2023
    Assignee: Boston Scientific Medical Device Limited
    Inventors: Matthew MacDonald, Charlene Leung, Bryan Gellner
  • Patent number: 11771360
    Abstract: In one example, a cardiac monitoring system, comprises a processor to receive a segment of an electrocardiogram (ECG) signal of a patient, and a memory to store the segment of the ECG. The processor is configured to identify QRS complexes in the segment of the ECG signal, compare the QRS complexes in the segment to the other QRS complexes in the segment to identify a main template QRS complex, identify the QRS complexes in the segment that are similar to the main template, determine RR intervals between consecutive similar QRS complexes to calculate RR variability in the RR intervals, and detect atrial fibrillation (AF) in the segment when RR variability is greater than a threshold value. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: October 3, 2023
    Assignee: West Affum Holdings DAC
    Inventor: Jaeho Kim
  • Patent number: 11766331
    Abstract: An assembly for reshaping a cardiac ventricle in a patient comprising an implantable device for reshaping a ventricle comprising a tether, a non-implantable tool which is detachably connectable to said implantable device and has a proximal portion and a distal portion opposite to said proximal portion; the implantable device further comprises an active anchor adapted to be detachably connected to the distal portion of the tool; the active anchor comprises an abutment portion adapted to abut against a structure of the ventricle; the active anchor of the implantable device comprises an adjustment device adapted to adjust the tensional state of the tether; the distal portion of the tool comprises an adjustment key adapted to cooperate with the adjustment device of the active anchor; the proximal portion of the tool comprises a maneuvering interface which is operatively connectable to said adjustment key for adjusting the tensional state of the tether by acting on the maneuvering interface of the proximal portion
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: September 26, 2023
    Assignee: Politecnico di Milano
    Inventors: Riccardo Vismara, Gianfranco Beniamino Fiore, Michal Jaworek, Edoardo Maroncelli, Federico Lucherini, Eleonora Salurso, Gianmarco Provaroni, Guido Gelpi, Claudia Romagnoni, Monica Contino
  • Patent number: 11751794
    Abstract: Electrical activation of tissue can be mapped from using electrophysiological data from a plurality of electrodes carried by a high density grid catheter. Each clique of three or more electrodes will define a pair of orthogonal bipoles as well as several unipoles. An electroanatomical mapping system can analyze the electrophysiological data such that, for each clique, an integral of an omnipolar electrogram the best morphologically matches a representative (e.g., average) unipolar electrogram for the clique is identified. The orientation of the best-fit omnipole is then defined as the activation direction for the clique. The conduction velocity magnitude can also be computed as a ratio of an amplitude of the unipolar electrogram for the clique to an amplitude of the integral of the omnipolar electrogram for the clique along the activation direction. The resulting activation map can also be output graphically.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: September 12, 2023
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Don Curtis Deno