Patents by Inventor David F. Welch

David F. Welch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6345141
    Abstract: A double-clad optical fiber has an inner cladding that has a torsional stress induced within it during manufacture. By rotating the fiber preform before curing of the inner cladding layer, a physical stress may be permanently imparted to the inner cladding that interacts with pump energy within the inner cladding layer to encourage mode mixing. As the cladding modes are disturbed by the stresses in the fiber, they are redirected so that the light in them intersects the core.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: February 5, 2002
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, David F. Welch
  • Patent number: 6342405
    Abstract: Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: January 29, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Jo S. Major, David F. Welch, Donald R. Scifres
  • Patent number: 6335941
    Abstract: A high power laser optical amplifier system for material processing comprises multiple stage fiber amplifiers with rejection of propagating ASE buildup in and between the amplifier stages as well as elimination of SBS noise providing output powers in the range of about 10 &mgr;J to about 100 &mgr;J or more. The system is driven with a time varying drive signal from a modulated semiconductor laser signal source to produce an optical output allowing modification of the material while controlling its thermal sensitivity by varying pulse shapes or pulse widths supplied at a desire repetition rate via modulation of a semiconductor laser signal source to the system to precisely control the applied power application of the beam relative to the thermal sensitivity of the material to be processed. The high power fiber amplifier system has particular utility in high power applications requiring process treatment of surfaces, such as polymeric, organic, ceramic and metal surfaces, e.g.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: January 1, 2002
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, David F. Welch, Raymond Zanoni
  • Patent number: 6317443
    Abstract: A power system for a laser source comprises a plurality of semiconductor lasers or at least one laser array with plurality of independently, electrically addressable emitters. A power supply is independently connected to each of the laser emitters. A fuse device is associated with each of the laser emitters so that an electrical short of any one emitter of a laser will not cause a short to or change the power supplied to other emitters of the laser source.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: November 13, 2001
    Assignee: JDS Uniphase Corporation
    Inventors: Richard R. Craig, Robert LG. Waarts, David F. Welch, John G. Endriz, Dirk J. Kuizenga, Steven Sanders
  • Patent number: 6307873
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop required to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: October 23, 2001
    Assignee: JDS Uniphase Corporation
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6298187
    Abstract: Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: October 2, 2001
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Stephen G. Grubb, Jean-Luc Archambault, Donald R. Scifres
  • Patent number: 6275250
    Abstract: Double clad fiber gain medium systems particularly adapted for marking indicia on surfaces of articles are disclosed. These systems provide a modulated output from a pump or seed semiconductor laser source to a double clad fiber gain medium which provides an amplified marking output scanned over the article surface with an optical scanner forming a plurality of strokes, the completion of which results in the indicia.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: August 14, 2001
    Assignee: SDL, Inc.
    Inventors: Steven Sanders, David F. Welch, Stuart MacCormack, Ramon E. Alvarez
  • Patent number: 6275632
    Abstract: Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
    Type: Grant
    Filed: November 25, 2000
    Date of Patent: August 14, 2001
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Stephen G. Grubb, Jean-Luc Archambault, Steven Sanders, Raymond Zanoni, Donald R. Scifres
  • Patent number: 6272162
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: August 7, 2001
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6212310
    Abstract: Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: April 3, 2001
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Stephen G. Grubb, Jean-Luc Archambault, Steven Sanders, Raymond Zanoni, Donald R. Scifres
  • Patent number: 6181721
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: January 30, 2001
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6167075
    Abstract: An optical amplifier pumping system with built-in redundant reliability for lightwave communication system provides plural levels of redundancy. A first level of redundancy deals with redundancy in the form of plural primary laser diode sources in the lightwave communication system. A second level of redundancy deals with redundancy of multiple single mode laser emitters on the same chip or bar sufficiently segmented so as not to interfere with operation of or cause failure to adjacent or neighboring emitters on the same chip or bar. A third level of redundancy deals with redundancy of a plurality of fiber pump sources for pumping a plurality of serially connected injection signal fiber amplifiers.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: December 26, 2000
    Assignee: SDL, Inc.
    Inventors: Richard R. Craig, Robert LG. Waarts, David F. Welch, John G. Endriz, Dirk J. Kuizenga, Steven Sanders
  • Patent number: 6160568
    Abstract: A laser marking system comprises a high power fiber laser consisting of a double clad fiber having a doped core surrounded by an inner pump cladding and providing an optical output for marking; a high power laser diode source for pumping the double clad fiber laser via an input into the inner pump cladding; an optical scanner coupled to receive the marking output from the double clad fiber laser to scan the output over a surface of an article to be marked by sweeping the marking output in one, two or three dimensions to form strokes, the completion of which comprises indicia to be marked the article surface; and a controller to control the operation of the scanner in synchronism with the modulation of the laser diode pump source to initiate the marking output and sweep and modulate the marking optical output in one, two or three dimensions to form strokes comprising the indicia. A main advantage of the fiber laser marking system over CO.sub.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: December 12, 2000
    Assignee: SDL, Inc.
    Inventors: Mark A. Brodsky, David F. Welch, Yong Yim
  • Patent number: 6157763
    Abstract: A double-clad optical fiber has an inner cladding with a cross-sectional shape that is non-circular, but that maintains a good end-coupling profile. The cross-sectional shape of the inner cladding is such that two perpendicular distances across the shape, each of which passes through a geometric center of a core of the fiber, are equal for all angular positions. Thus, while mode mixing within the inner cladding is enhanced, the inner cladding does not suffer any oblong distortions of its shape, and is therefore more easily coupled to conventional fibers. The cross-sectional cladding shape may include various regions along its outer surface that do not conform to a circular geometry about a center of the core. These regions may include flat regions, or concave or convex regions. The overall cross-sectional shape of the inner cladding may also be octagonal or star-shaped.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: December 5, 2000
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, David F. Welch
  • Patent number: 6151338
    Abstract: A high power laser optical amplifier system for material processing comprises multiple stage fiber amplifiers with rejection of propagating ASE buildup in and between the amplifier stages as well as elimination of SBS noise providing output powers in the range of about 10 .mu.J to about 100 .mu.J or more. The system is driven with a time varying drive signal from a modulated semiconductor laser signal source to produce an optical output allowing modification of the material while controlling its thermal sensitivity by varying pulse shapes or pulse widths supplied at a desire repetition rate via modulation of a semiconductor laser signal source to the system to precisely control the applied power application of the beam relative to the thermal sensitivity of the material to be processed. The high power fiber amplifier system has particular utility in high power applications requiring process treatment of surfaces, such as polymeric, organic, ceramic and metal surfaces, e.g.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: November 21, 2000
    Assignee: SDL, Inc.
    Inventors: Stephen G. Grubb, David F. Welch, Raymond Zanoni
  • Patent number: 6148013
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: November 14, 2000
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6148014
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop required to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: November 14, 2000
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6130147
    Abstract: Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: October 10, 2000
    Assignee: SDL, Inc.
    Inventors: Jo S. Major, David F. Welch, Donald R. Scifres
  • Patent number: RE37051
    Abstract: A semiconductor gain medium has an optical cavity comprising a multimode region permitting propagation of light with a diverging phase front and a single mode region. An optical cavity is formed by optical feedback within the medium. Preferably, the feedback comprises a combination of a cleaved facet and a grating. The gain medium may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: February 13, 2001
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: RE37354
    Abstract: A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: September 4, 2001
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres