Patents by Inventor Markus A. Giebel

Patent number: 6931193
Abstract: Methods are provided for validating the continuity of one or more optical fibers upon which a fiber optic connector is mounted. Typically, the fiber optic connector is mounted upon an optical field fiber by actuating a cam mechanism to secure the optical field fiber in position relative to an optical fiber stub. If subsequent testing indicates that the continuity of the optical field fiber and the optical fiber stub is unacceptable, the cam mechanism can be deactuated, the optical field fiber can be repositioned and the cam mechanism can be reactuated without having to remove and replace the fiber optic connector.
Type: Grant
Filed: September 13, 2004
Issued: August 16, 2005
Assignee: Corning Cable Systems LLC
Inventors: Brandon A. Barnes, Thomas A. Church, Michael de Jong, Markus A. Giebel, Sean M. Kerr
Application number: 20050031285
Abstract: Methods are provided for validating the continuity of one or more optical fibers upon which a fiber optic connector is mounted. Typically, the fiber optic connector is mounted upon an optical field fiber by actuating a cam mechanism to secure the optical field fiber in position relative to an optical fiber stub. If subsequent testing indicates that the continuity of the optical field fiber and the optical fiber stub is unacceptable, the cam mechanism can be deactuated, the optical field fiber can be repositioned and the cam mechanism can be reactuated without having to remove and replace the fiber optic connector.
Type: Application
Filed: September 13, 2004
Issued: February 10, 2005
Inventors: Brandon Barnes, Thomas Church, Michael Jong, Markus Giebel, Sean Kerr
Patent number: 6816661
Abstract: Methods are provided for validating the continuity of one or more optical fibers upon which a fiber optic connector is mounted. Typically, the fiber optic connector is mounted upon an optical field fiber by actuating a cam mechanism to secure the optical field fiber in position relative to an optical fiber stub. If subsequent testing indicates that the continuity of the optical field fiber and the optical fiber stub is unacceptable, the cam mechanism can be deactuated, the optical field fiber can be repositioned and the cam mechanism can be reactuated without having to remove and replace the fiber optic connector.
Type: Grant
Filed: March 22, 2000
Issued: November 9, 2004
Assignee: Corning Cable Systems LLC
Inventors: Brandon A. Barnes, Michael de Jong, Thomas A. Church, Markus A. Giebel, Sean M. Kerr
Patent number: 6634796
Abstract: Devices and methods are described that permit simple correction of a fiber optic polarity reversal problem. An adapter is described having receptacles to receive a connector on a first end, or user end, and on a second end, or contractor end. Both the receptacles provide keying arrangements so that the connectors can be received only when correctly oriented with respect to the adapter. The keying arrangement on the contractor end, however, is reversable so that the connector may be inserted in one of two predetermined orientations, at the behest of the contractor or installer. Adapters are also described that receive connectors only in a physically reversed orientation to counteract a reverse polarity condition. In addition, a jumper is described that can be interposed between a connector and adapter to correct a reverse polarity condition.
Type: Grant
Filed: June 30, 1999
Issued: October 21, 2003
Assignee: Corning Cable Systems LLC
Inventors: Michael de Jong, Markus A. Giebel, Thomas A. Church, Kevin L. Morgan, James P. Luther
Patent number: 6623172
Abstract: A connector is provided for use in fiber to the desk applications. The connector according to the present invention includes a main housing with a passageway therethrough, a ferrule assembly mountable to the main housing, and a splice member. The connector also includes a latch on at least one exterior surface of the main housing to engage a corresponding structure in an adapter sleeve.
Type: Grant
Filed: May 12, 1999
Issued: September 23, 2003
Assignee: Corning Cable Systems LLC
Inventors: Michael de Jong, Ronald L. Mudd, Markus A. Giebel, Scott E. Semmler
Patent number: 6547449
Abstract: A preassembled multifiber connector is provided that includes a connector housing and a windowless multifiber ferrule that is substantially rectangular in lateral cross-section. The windowless multifiber ferrule can be at least partially disposed within an internal cavity defined by the connector housing to thereby form a multifiber connector that is free of optical fibers. Thus, the multifiber connector is capable of being preassembled prior to inserting the plurality of optical fibers into the optical fiber bores defined by the windowless multifiber ferrule. A corresponding method of preassembling a multifiber connector is therefore also provided according to the present invention. A ferrule is also provided that is capable of being selectively converted from a windowless configuration to a windowed configuration. The ferrule of this embodiment includes a ferrule body that not only defines at least one optical fiber bore, but that also defines a well extending through a side surface of the ferrule body.
Type: Grant
Filed: December 17, 1999
Issued: April 15, 2003
Assignee: Corning Cable Systems LLC
Inventors: David L. Dean, Jr., James P. Luther, Joel C. Rosson, Markus A. Giebel, Karl M. Wagner, Thomas Theuerkorn, Dennis M. Knecht
Patent number: 6499887
Abstract: A preassembled multifiber connector is provided that includes a connector housing and a windowless multifiber ferrule that is substantially rectangular in lateral cross-section. The windowless multifiber ferrule can be at least partially disposed within an internal cavity defined by the connector housing to thereby form a multifiber connector that is free of optical fibers. Thus, the multifiber connector is capable of being preassembled prior to inserting the plurality of optical fibers into the optical fiber bores defined by the windowless multifiber ferrule. A corresponding method of preassembling a multifiber connector is therefore also provided according to the present invention. A ferrule is also provided that is capable of being selectively converted from a windowless configuration to a windowed configuration. The ferrule of this embodiment includes a ferrule body that not only defines at least one optical fiber bore, but that also defines a well extending through a side surface of the ferrule body.
Type: Grant
Filed: December 31, 2001
Issued: December 31, 2002
Assignee: Corning Cable Systems LLC
Inventors: David L. Dean, Jr., James P. Luther, Joel C. Rosson, Markus A. Giebel, Karl M. Wagner, Thomas Theuerkorn, Dennis M. Knecht
Patent number: 6457874
Abstract: A mixed media outlet is provided that is capable of being mounted upon a wall and that includes ports that are typically designed to provide separate access to an electrical network and to an optical network. The wall mounted outlet can therefore permit a telephone to be connected to the electrical network, and a computer to be connected to the optical network. Alternatively, the outlet can permit a telephone to also be connected to either the same or a different optical network than the computer. The mixed media outlet includes a housing adapted to be wall mounted and first and second ports that are disposed within openings defined by the housing, such as a data port and a voice port.
Type: Grant
Filed: August 31, 2000
Issued: October 1, 2002
Assignee: Corning Cable Systems LLC
Inventors: Donnie R. Clapp, Jr., Mark R. Dagley, Markus A. Giebel, Kevin L. Morgan, Mark D. Walters, Steven R. Baker
Patent number: 6439780
Abstract: A fiber optic cable connector for an optical ribbon comprises a multi-fiber ferrule having a plurality of stub fibers secured therein with ends of the fibers projecting beyond the end of the ferrule. The connector also includes first and second opposed splice members extending lengthwise from a first end proximate the end of the ferrule to an opposite second end, and the ends of the stub fibers extend between the opposed splice members at the first end thereof and are disposed in fiber-aligning grooves formed in the first splice member. The splice members are arranged with a fiber-receiving space therebetween to allow the optical fibers of the fiber optic ribbon to be inserted through the fiber-receiving space such that the optical fibers engage the grooves and are guided by the grooves into optically connected relation with the ends of the stub fibers.
Type: Grant
Filed: August 31, 2000
Issued: August 27, 2002
Assignee: Corning Cable Systems LLC
Inventors: Ronald L. Mudd, Markus A. Giebel, Michael de Jong
Patent number: 6396993
Abstract: The challenge of pulling an optical fiber having a connector at its terminal end without incurring damage to the fiber or connector due to excessive pulling or bending is met by introducing a breakaway feature that disconnects the connectorized fiber from the pulling mechanism upon detecting excessive force. The breakaway feature may be positioned at several locations along the pathway connecting the optical fiber and the pulling force. In one embodiment the breakaway feature is disposed on a cover over the connectorized front end of the optical fiber. In other embodiments the breakaway element is inserted along the cord connecting the connectorized optical fiber to the pulling force.
Type: Grant
Filed: December 30, 1999
Issued: May 28, 2002
Assignee: Corning Cable Systems LLC
Inventors: Markus A. Giebel, James P. Luther, Brian J. Gimbel, Otto I. Szentesi
Application number: 20020057870
Abstract: A preassembled multifiber connector is provided that includes a connector housing and a windowless multifiber ferrule that is substantially rectangular in lateral cross-section. The windowless multifiber ferrule can be at least partially disposed within an internal cavity defined by the connector housing to thereby form a multifiber connector that is free of optical fibers. Thus, the multifiber connector is capable of being preassembled prior to inserting the plurality of optical fibers into the optical fiber bores defined by the windowless multifiber ferrule. A corresponding method of preassembling a multifiber connector is therefore also provided according to the present invention. A ferrule is also provided that is capable of being selectively converted from a windowless configuration to a windowed configuration. The ferrule of this embodiment includes a ferrule body that not only defines at least one optical fiber bore, but that also defines a well extending through a side surface of the ferrule body.
Type: Application
Filed: December 31, 2001
Issued: May 16, 2002
Inventors: David L. Dean, James P. Luther, Joel C. Rosson, Markus A. Giebel, Karl M. Wagner, Thomas Theuerkorn, Dennis M. Knecht
Patent number: 6350062
Abstract: A multifiber ferrule is provided that includes a ferrule body that defines at least one elongate hole opening through the front face of the ferrule body that, in turn, includes a lead-in portion proximate the front face for guiding the respective alignment member into the elongate hole. The ferrule body at least partially defines one or more elongate holes, such as a guide pin hole or an alignment groove, each having a longitudinal axis extending therethrough. Each elongate hole includes the lead-in portion proximate the front face and an adjacent alignment portion. The lead-in portion expands radially outward from the longitudinal axis in a direction extending from the adjacent alignment portion to the front face of the ferrule body. As such, the opening of the lead-in portion through the front face of the ferrule body is larger in lateral cross-section than the opening of the lead-in portion into the adjacent alignment portion.
Type: Grant
Filed: May 7, 1999
Issued: February 26, 2002
Assignee: Corning Cable Systems LLC
Inventors: Dennis M. Knecht, Joel C. Rosson, Markus A. Giebel, James P. Luther, Karl M. Wagner, David L. Dean, Jr.
Application number: 20010036342
Abstract: A multifiber ferrule is provided that includes a ferrule body that defines at least one elongate hole opening through the front face of the ferrule body that, in turn, includes a lead-in portion proximate the front face for guiding the respective alignment member into the elongate hole. The ferrule body at least partially defines one or more elongate holes, such as a guide pin hole or an alignment groove, each having a longitudinal axis extending therethrough. Each elongate hole includes the lead-in portion proximate the front face and an adjacent alignment portion. The lead-in portion expands radially outward from the longitudinal axis in a direction extending from the adjacent alignment portion to the front face of the ferrule body. As such, the opening of the lead-in portion through the front face of the ferrule body is larger in lateral cross-section than the opening of the lead-in portion into the adjacent alignment portion.
Type: Application
Filed: May 7, 1999
Issued: November 1, 2001
Inventors: DENNIS M. KNECHT, JOEL C. ROSSON, MARKUS A. GIEBEL, JAMES P. LUTHER, KARL M. WAGNER, DAVID L. DEAN
Application number: 20010026661
Abstract: Devices and methods are described that permit simple correction of a fiber optic polarity reversal problem. An adapter is described having receptacles to receive a connector on a first end, or user end, and on a second end, or contractor end. Both the receptacles provide keying arrangements so that the connectors can be received only when correctly oriented with respect to the adapter. The keying arrangement on the contractor end, however, is reversable so that the connector may be inserted in one of two predetermined orientations, at the behest of the contractor or installer. Adapters are also described that receive connectors only in a physically reversed orientation to counteract a reverse polarity condition. In addition, a jumper is described that can be interposed between a connector and adapter to correct a reverse polarity condition.
Type: Application
Filed: June 30, 1999
Issued: October 4, 2001
Inventors: Michael de Jong , Markus Giebel , Thomas A Church , Kevin L Morgan , James P Luther
Patent number: 6149313
Abstract: A gender selectable fiber optic connector is provided which can be readily converted between male and female configurations following assembly and polishing of the connector. The gender selectable fiber optic connector includes a housing, a ferrule operably connected to the housing such that a forward portion of the ferrule extends beyond the housing, and a shroud adapted to be mounted upon the forward portion of the ferrule such that the forward portion of the ferrule extends through a passageway defined by the shroud. In order to alter the gender of the fiber optic connector, the shroud has both male and female configurations. In this regard, the male configuration of the shroud includes at least one guide pin extending lengthwise through the passageway defined by the shroud for engaging a lengthwise extending alignment groove defined by the ferrule in order to produce a male fiber optic connector.
Type: Grant
Filed: December 31, 1998
Issued: November 21, 2000
Assignee: Siecor Operations, LLC
Inventors: Markus A. Giebel, James P. Luther, Joel C. Rosson
Patent number: 6068410
Abstract: A splice housing assembly and an associated assembly method are provided in which the ferrule is mechanically decoupled from the splice body such that the ferrule has at least limited movement, typically in an off-axis direction, relative to the splice body. For example, the ferrule can be mechanically decoupled from the splice body by spacing the ferrule in a lengthwise direction from the splice body such that a medial portion of the first optical fiber extends between the ferrule and the splice body.
Type: Grant
Filed: December 22, 1997
Issued: May 30, 2000
Assignee: Siecor Corporation
Inventors: Markus A. Giebel, James P. Luther, Dennis M. Knecht, Thomas Theuerkorn
Patent number: 5971624
Abstract: A splicing connector and an associated splice mechanism are provided to splice first and second pluralities of optical fibers without buckling the optical fibers. The connector includes a housing and a retainer disposed of at least partially within the housing which defines a channel through which a plurality of optical fibers extend. The connector also includes a clip for securing the optical fibers within the retainer such that the end portions of the optical fibers are exposed through the forward end of the housing in preparation for splicing the optical fibers. Further, the connector includes a spring for urging the retainer and the optical fibers secured within the retainer toward the forward end of the housing, thereby permitting the optical fibers to be spliced without buckling the optical fibers.
Type: Grant
Filed: December 30, 1997
Issued: October 26, 1999
Assignee: Siecor Corporation
Inventors: Markus A. Giebel, Dennis M. Knecht, James P. Luther, Thomas Theuerkorn
Patent number: 5940561
Abstract: An adapter assembly is provided for removably receiving two optical fiber ferrules of the type with open grooves extending longitudinally rearward of the end face of the ferrule. The assembly comprises a sleeve with an interior surface that defines a passageway therethrough sized for receiving the ends of the ferrules therein. The interior surface also defines two longitudinal grooves opposite each other that open to the passageway. A guide pin is located in each groove such that an exposed portion of the outer surface of the guide pin along the entire length of the guide pin inside the sleeve is exposed to the passageway. The exposed portion are sized and located relative to each other to slide in the ferrule grooves and operatively align the end faces of the ferrules rotationally and laterally relative to each other when the two ferrules are inserted into the sleeve.
Type: Grant
Filed: April 23, 1997
Issued: August 17, 1999
Assignee: Siecor Corporation
Inventors: David L. Dean, Jr., Karl M. Wagner, James P. Luther, Markus A. Giebel
Patent number: RE42094
Abstract: Methods are provided for validating the continuity of one or more optical fibers upon which a fiber optic connector is mounted. Typically, the fiber optic connector is mounted upon an optical field fiber by actuating a cam mechanism to secure the optical field fiber in position relative to an optical fiber stub. If subsequent testing indicates that the continuity of the optical field fiber and the optical fiber stub is unacceptable, the cam mechanism can be deactuated, the optical field fiber can be repositioned and the cam mechanism can be reactuated without having to remove and replace the fiber optic connector.
Type: Grant
Filed: November 30, 2005
Issued: February 1, 2011
Assignee: Corning Cable Systems LLC
Inventors: Brandon A. Barnes, Michael de Jong, Sean M. Kerr, Thomas A. Church, Markus A. Giebel
Patent number: RE36592
Abstract: A cable assembly for attachment to an entry port of an optical enclosure. The assembly includes a plug for an end of an optical cable in a sealed housing having a single rigid tube and a single sealed nut. Connectorized optical fibers or an optical ribbon extend from the plug into the equipment enclosure.
Type: Grant
Filed: May 14, 1997
Issued: February 29, 2000
Assignee: Siecor Corporation
Inventors: Markus A. Giebel, Terry L. Cooke
1 2 next