Patents by Inventor Trevor W. Barcelo

Trevor W. Barcelo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557981
    Abstract: An ideal diode circuit is described which uses an NMOS transistor as a low-loss ideal diode. The control circuit for the transistor is referenced to the anode voltage and not to ground, so the control circuitry may be low voltage circuitry, even if the input voltage is very high, referenced to earth ground. A capacitor is clamped to about 10-20 V, referenced to the anode voltage. The clamped voltage powers a differential amplifier for the detecting if the anode voltage is greater than the cathode voltage. The capacitor is charged to the clamped voltage during normal operation of the ideal diode by controlling the conductivity of a second transistor coupled between the cathode and the capacitor, enabling the circuit to be used with a wide range of frequencies and voltages. All voltages applied to the differential amplifier are equal to or less than the clamped voltage.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: January 17, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Jeffrey Lynn Heath, Trevor W. Barcelo
  • Patent number: 11469223
    Abstract: A current monitor circuit comprises a sense transistor disposed in a first voltage domain; a reference transistor disposed in a second voltage domain isolated from the first voltage domain; and sensing circuitry configured to determine if a current in the sense transistor is greater than or less than a specified current using a current in the reference transistor.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 11, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventors: David F. Schneider, Trevor W. Barcelo
  • Publication number: 20210111640
    Abstract: An ideal diode circuit is described which uses an NMOS transistor as a low-loss ideal diode. The control circuit for the transistor is referenced to the anode voltage and not to ground, so the control circuitry may be low voltage circuitry, even if the input voltage is very high, referenced to earth ground. A capacitor is clamped to about 10-20V, referenced to the anode voltage. The clamped voltage powers a differential amplifier for the detecting if the anode voltage is greater than the cathode voltage. The capacitor is charged to the clamped voltage during normal operation of the ideal diode by controlling the conductivity of a second transistor coupled between the cathode and the capacitor, enabling the circuit to be used with a wide range of frequencies and voltages. All voltages applied to the differential amplifier are equal to or less than the clamped voltage.
    Type: Application
    Filed: November 2, 2020
    Publication date: April 15, 2021
    Inventors: Jeffrey Lynn Heath, Trevor W. Barcelo
  • Publication number: 20200381418
    Abstract: A current monitor circuit comprises a sense transistor disposed in a first voltage domain; a reference transistor disposed in a second voltage domain isolated from the first voltage domain; and sensing circuitry configured to determine if a current in the sense transistor is greater than or less than a specified current using a current in the reference transistor.
    Type: Application
    Filed: April 28, 2020
    Publication date: December 3, 2020
    Inventors: David F. Schneider, Trevor W. Barcelo
  • Patent number: 8664920
    Abstract: An apparatus and method for charging a battery includes a battery to be charged, a power delivery path configured for delivering power to the battery, and an integrated switching battery charger configured for charging a battery by delivering output power to the battery via the power delivery path based on input power from an input power source. The integrated switching battery charger includes an output voltage regulation loop and an input voltage regulation loop, both of which are configured to control the output current flowing out of the integrated switching battery charger to the battery. The input or output voltage regulation loops are further enhanced by adding a current source which is proportional to absolute temperature from the regulated voltage to the control voltage for the purpose of either regulating peak power from the source or to maximize energy storage in the battery as a function of temperature.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 4, 2014
    Assignee: Linear Technology Corporation
    Inventors: Jonathan Wayde Celani, Brian James Shaffer, Trevor W. Barcelo
  • Publication number: 20130057225
    Abstract: An apparatus and method for charging a battery includes a battery to be charged, a power delivery path configured for delivering power to the battery, and an integrated switching battery charger configured for charging a battery by delivering output power to the battery via the power delivery path based on input power from an input power source. The integrated switching battery charger includes an output voltage regulation loop and an input voltage regulation loop, both of which are configured to control the output current flowing out of the integrated switching battery charger to the battery. The input or output voltage regulation loops are further enhanced by adding a current source which is proportional to absolute temperature from the regulated voltage to the control voltage for the purpose of either regulating peak power from the source or to maximize energy storage in the battery as a function of temperature.
    Type: Application
    Filed: August 24, 2012
    Publication date: March 7, 2013
    Inventors: Jonathan Wayde CELANI, Brian James SHAFFER, Trevor W. BARCELO
  • Patent number: 7710079
    Abstract: A power manager is configured to manage power for a battery-powered application. A power source, a load and a battery are interconnected through a circuit path. Power from the power source is provided to the load and battery by a switching regulator. Various implementations are presented.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: May 4, 2010
    Assignee: Linear Technology Corporation
    Inventors: Steven L. Martin, Trevor W. Barcelo, Samuel H. Nork, Roger A. Zemke, David J. Simmons
  • Patent number: 6819094
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 16, 2004
    Assignee: Linear Technology Corporation
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Publication number: 20040100243
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Application
    Filed: November 17, 2003
    Publication date: May 27, 2004
    Applicant: Linear Technology Corporation
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Patent number: 6700364
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 2, 2004
    Assignee: Linear Technology Corporation
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Publication number: 20030197497
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Application
    Filed: May 21, 2003
    Publication date: October 23, 2003
    Applicant: Linear Technology Corporation
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Patent number: 6570372
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: May 27, 2003
    Assignee: Linear Technology Corporation
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Patent number: 6522118
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: February 18, 2003
    Assignee: Linear Technology Corporation
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Publication number: 20020153871
    Abstract: Methods and circuits implementing a constant-current/constant-voltage circuit architecture are provided. The methods and circuits preferably provide a charging system that provides current to a load using a fixed current until the load is charged. When the load is charged, the methods and circuits preferably provide a variable current to the load in order to maintain the voltage level across the load. This variable current varies according to the voltage across the load. In one embodiment of the invention, a constant power current may also be used as one of the load charging currents. The constant power current may act as a limit on the charging circuit's power output.
    Type: Application
    Filed: March 27, 2002
    Publication date: October 24, 2002
    Applicant: Linear Technology
    Inventors: Trevor W. Barcelo, Robert L. Reay, David M. Dwelley
  • Patent number: 6404251
    Abstract: A linear pulse-width modulator system is provided. The pulse-width modulation system of the present invention provides a pulse-width modulated (PWM) signal from a control voltage. The PWM signal varies linearly with the control voltage over a full range of duty cycles. The pulse width modulation system of the present invention has as plurality of comparators, each having one input coupled to a control voltage and a second input coupled to a periodic waveform signal provide by a waveform generator. The periodic waveform signals are identical except that each waveform is time delayed with respect to the other waveform signals. The outputs the comparators are coupled to a multiplexer which selects the output of each comparator as the PWM signal for a time interval corresponding to when the output signal of the comparator has substantially constant propagation delays.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: June 11, 2002
    Assignee: Linear Technology Corporation
    Inventors: David M. Dwelley, Trevor W. Barcelo
  • Patent number: 6166527
    Abstract: A high efficiency control circuit for operating a buck-boost switching regulator is provided. The switching regulator can regulate an output voltage higher, lower, or the same as the input voltage. The switching regulator may be synchronous or non-synchronous. The control circuit can operate the switching regulator in buck mode, boost mode, or buck-boost mode. In buck mode, the switching regulator regulates an output voltage that is less than the input voltage. In boost mode, the switching regulator regulates an output voltage that is greater than the input voltage. In buck and boost modes, less than all of the switches are switched ON and OFF to regulate the output voltage to conserve power. In buck-boost mode, all of the switches switch ON and OFF to regulate the output voltage to a value that is greater than, less than, or equal to the input voltage.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: December 26, 2000
    Assignee: Linear Technology Corporation
    Inventors: David M. Dwelley, Trevor W. Barcelo