Non-mineral Distilland With Catalyst Or Chemical Treatment Of Volatile Component Patents (Class 201/2.5)
  • Patent number: 11760939
    Abstract: Methods and systems for producing aromatics and light olefins from a mixed plastics stream are described. The method may include feeding a plastic feedstock to a dechlorination operation to melt the plastic feedstock to release HCl and generate a liquid plastic stream; feeding the liquid plastic stream to a pyrolysis reactor, the pyrolysis reactor to generate hydrocarbon vapors; feeding the hydrocarbon vapors to an acid gas removal reactor with a solid inorganic alkali salt disposed within the reaction vessel to remove residual HCl and sulfur-containing compounds from the hydrocarbon vapors to generate a plastic derived oil; and feeding the plastic derived oil to a steam enhanced catalytic cracking reactor to generate a product stream comprising light olefins having a carbon number of C2-C4 and aromatics. The associated system for processing mixed plastics into aromatics and light olefins is also described.
    Type: Grant
    Filed: January 11, 2023
    Date of Patent: September 19, 2023
    Assignee: Saudi Arabian Oil Company
    Inventor: Aaron Chi Akah
  • Patent number: 11746298
    Abstract: Process and apparatus for recovering a product stream from a waste plastic feedstock and reducing the endpoint of the product stream is provided. A polymer oil is produced as a product stream by pyrolyzing the waste plastic feedstock in a pyrolysis reactor to produce a pyrolysis reactor effluent and passing the reactor effluent stream to a contact condensing column. In the contact condensing column, the pyrolysis reactor effluent stream is separated into a vapor product stream and a liquid product stream. The vapor product stream is recovered from the condensing column and the liquid product stream is passed back to the pyrolysis reactor for further reduction.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: September 5, 2023
    Assignee: UOP LLC
    Inventors: Nickolas D. Kapaun, Joseph A. Montalbano, Jeffrey Tyska, Ping Sun, Andrew Pickens
  • Patent number: 11578272
    Abstract: Methods and systems for producing aromatics and light olefins from a mixed plastics stream are described. The method may include feeding a plastic feedstock to a dechlorination operation to melt the plastic feedstock to release HCl and generate a liquid plastic stream; feeding the liquid plastic stream to a pyrolysis reactor, the pyrolysis reactor to generate hydrocarbon vapors; feeding the hydrocarbon vapors to an acid gas removal reactor with a solid inorganic alkali salt disposed within the reaction vessel to remove residual HCl and sulfur-containing compounds from the hydrocarbon vapors to generate a plastic derived oil; and feeding the plastic derived oil to a steam enhanced catalytic cracking reactor to generate a product stream comprising light olefins having a carbon number of C2-C4 and aromatics. The associated system for processing mixed plastics into aromatics and light olefins is also described.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: February 14, 2023
    Assignee: Saudi Arabian Oil Company
    Inventor: Aaron Chi Akah
  • Patent number: 11542438
    Abstract: Methods for utilizing a supercritical water unit to convert waste plastics to product through hydrothermal treatment in a supercritical unit are provided. Waste plastic is treated in a pretreatment unit, melting the plastic into a liquid and prepares the plastic for the supercritical water unit. The pretreatment unit can dehalogenate the waste plastic. The molten plastic is introduced into a supercritical water unit with water, which generates a product. A flushing stream of product and steam or water from the supercritical water unit is recycled from the supercritical water unit into the pretreatment unit, preheating and pretreating the waste plastic, and acting as a catalyst in the dechlorination reaction. A purge stream removes the products of the dehalogentation reaction occurring in the melting section.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: January 3, 2023
    Inventor: Ki-Hyouk Choi
  • Patent number: 11518940
    Abstract: A plastic recycling system and method thereof is provided, wherein one or more plastic products are contained in a reaction unit and heated by an electric heating unit which converts electrical energy into thermal energy. The one or more plastic products in the reaction unit are decomposed to produce one or more decomposed product in gas phase through a decomposition reaction, such as pyrolysis reaction, to form one or more gaseous fuel products which are condensed into one or more liquid phase fuel products by a condensation unit.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 6, 2022
    Assignee: Viro Group Inc.
    Inventor: Soon Chia
  • Patent number: 11421162
    Abstract: The present invention relates to a process for converting the waste plastics along with the petroleum feedstock in a Catalytic Cracking Unit, in particular a Fluid Catalytic Cracking Unit employed in petroleum refineries. The invention also provides a method and hardware system to enable waste plastic to fuel conversion along with hydrocarbon catalytic cracking. The invented process aims to convert any type of waste plastic including polystyrene, polypropylene, polyethylene, metal containing Polyethylene-Polypropylene multilayer plastics & other metal containing plastics along with the petroleum derived feedstock such as vacuum gas oil, reduced crude oil, vacuum residue etc. in catalytic cracking unit.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 23, 2022
    Assignee: INDIAN OIL CORPORATION LIMITED
    Inventors: Ponoly Ramachandran Pradeep, Prantik Mondal, Shivam Ashok Dixit, Shikha Saluja, Shakti Singh, Terapalli Hari Venkata Devi Prasad, Satyen Kumar Das, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar
  • Patent number: 11261315
    Abstract: The presently disclosed subject matter generally relates to environmentally friendly asphalt binder additive.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 1, 2022
    Assignee: North Carolina Agricultural and Technical State University
    Inventors: Shahrzad Hosseinnezhad Mohtarami, SK Faisal Kabir, Mahour Mellat-Parast, Elham Fini
  • Patent number: 11242494
    Abstract: A method and system for continuous production of contaminant free and size specific biochar using downdraft gasification of variable quality feedstock. The system and process of the present invention includes the transfer of biochar from a gasifier after gasification to a temperature-controlled cooling screw conveyor, into a drum magnet for ferrous metal removal into multiple diverters to separate and remove ungasified materials and non-ferrous metal contaminants, then transferred into a granulator for grinding and screening the biochar to a pre-selected size. By directly attaching a novel and continuous product treatment process to the biochar stream as it exits the gasifier, the particle size, moisture content, carbon content and yield of a contaminant free biochar product can be narrowly controlled and improved to meet strict product quality specifications required by specialty applications.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 8, 2022
    Assignee: ARIES CLEAN TECHNOLOGIES LLC
    Inventors: Renus Kelfkens, Matthew Newman
  • Patent number: 11208604
    Abstract: Described herein is a method for isolating high carbon chipped wood charcoal fuel suitable for grilling food. According to one aspect, the method involves removing pyrolyzed wood charcoal from a kiln wherein the pyrolyzed wood charcoal comprises lumps, chips, smaller pieces, and dust particles. The pyrolyzed wood charcoal is passed over a first sieve that is configured to separate the lumps from the chips, smaller pieces and dust particles. The chips, smaller pieces and dust particles are then passed over a second sieve that is configured to separate the chips from the smaller pieces and dust particles. The resulting chipped wood charcoal is consistently sized to be small enough to pass through a food supporting grill grate and supportable by an underlying grid support, thereby allowing refueling while grilling without interruption.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 28, 2021
    Inventor: Leonard Kronman
  • Patent number: 11111439
    Abstract: An apparatus and method for reducing an organic-containing material into lower molecular weight gaseous hydrocarbons, liquid hydrocarbons and solid carbon constituents utilizing microwave radiation.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 7, 2021
    Assignee: MICROWAVE RENEWABLE TECHNOLOGIES
    Inventor: Kevin A. Adams
  • Patent number: 11059020
    Abstract: An electronic waste processing apparatus has a power supply device, a vacuum cracking device, a filter device, and a separation device. The vacuum device is electrically connected to the power supply device, and has a vacuum pump, a vacuum chamber, and a high-frequency furnace body. The vacuum chamber is connected to and communicates with the vacuum pump. The high-frequency furnace body is disposed in the vacuum chamber. The filter device is electrically connected to the power supply device, and is connected to and communicates with the high-frequency furnace body of the vacuum cracking device. The separation device is electrically connected to the power supply device, is connected to and communicates with the vacuum pump and the filter device, and has a condensation cylinder, a cooling cylinder, and an oil storage tank.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: July 13, 2021
    Assignees: JING LEEI ENTERPRISE CO., LTD.
    Inventor: Hsuan-Jung Chen
  • Patent number: 10933370
    Abstract: A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 2, 2021
    Assignee: Midwest Energy Emissions Corp
    Inventors: Edwin S. Olson, Michael J. Holmes, John H. Pavlish
  • Patent number: 10927315
    Abstract: A process for producing olefins and aromatics comprising converting plastics to a hydrocarbon product comprising a gas phase and a liquid phase in a pyrolysis unit; separating the hydrocarbon product into a hydrocarbon gas stream comprising the gas phase and a hydrocarbon liquid stream comprising the liquid phase; feeding the hydrocarbon gas stream to a gas steam cracker to produce a gas steam cracker product comprising olefins, wherein an olefins amount in the gas steam cracker product is greater than in the hydrocarbon gas stream; separating the hydrocarbon liquid stream into a first fraction (b.p.<300° C.) and a second fraction (b.p>300° C.); feeding the first fraction to a liquid steam cracker to produce a liquid steam cracker product comprising olefins and aromatics, wherein an olefins amount in the liquid steam cracker product is greater than in the first fraction; and recycling the second fraction to the pyrolysis unit.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 23, 2021
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Krishna Kumar Ramamurthy, Nicolas Goyheneix, Ravichander Narayanaswamy, Lara Galan-Sanchez
  • Patent number: 10926218
    Abstract: A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: February 23, 2021
    Assignee: Midwest Energy Emissions Corp
    Inventors: Edwin S. Olson, Michael J. Holmes, John H. Pavlish
  • Patent number: 10907102
    Abstract: A system for pyrolysis of a biomass including a furnace and a reactor. The furnace includes a combustion chamber. The furnace configured for generating thermal energy from combustion within the combustion chamber and supplying the thermal energy to at least one operation within a biomass facility. The reactor may include a pyrolysis chamber. The pyrolysis chamber configured to house a preprocessed biomass feedstock therein. The pyrolysis chamber may be positioned at least partially within the combustion chamber of the furnace such that the preprocessed biomass feedstock is pyrolyzed by the thermal energy within the combustion chamber of the furnace.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: February 2, 2021
    Assignee: Confluence Energy, LLC
    Inventor: Mark Joseph Mathis
  • Patent number: 10865353
    Abstract: A process for producing olefins and aromatics comprising converting plastics to a hydrocarbon product comprising a gas phase and a liquid phase in a pyrolysis unit; separating the hydrocarbon product into a hydrocarbon gas stream comprising the gas phase and a hydrocarbon liquid stream comprising the liquid phase; feeding the hydrocarbon gas stream to a gas steam cracker to produce a gas steam cracker product comprising olefins, wherein an olefins amount in the gas steam cracker product is greater than in the hydrocarbon gas stream; separating the hydrocarbon liquid stream into a first fraction (b.p.<300° C.) and a second fraction (b.p>300° C.); feeding the first fraction to a liquid steam cracker to produce a liquid steam cracker product comprising olefins and aromatics, wherein an olefins amount in the liquid steam cracker product is greater than in the first fraction; and recycling the second fraction to the pyrolysis unit.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: December 15, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Krishna Kumar Ramamurthy, Nicolas Goyheneix, Ravichander Narayanaswamy, Lara Galan-Sanchez
  • Patent number: 10822545
    Abstract: A process for producing liquid hydrocarbon products from a biomass feedstock is provided.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: November 3, 2020
    Assignee: Shell Oil Company
    Inventors: Vikrant Nanasaheb Urade, Laxmi Narasimhan Chilkoor Soundararajan, Madhusudhan Rao Panchagnula, Alan Anthony Del Paggio
  • Patent number: 10767114
    Abstract: A system is described that includes a pyrolyzer and a primary condenser. The primary condenser is coupled to the pyrolyzer and configured to receive pyrolytic vapors from the pyrolyzer. The primary condenser is further configured to condense the pyrolytic vapors by contacting the pyrolytic vapors with a condensing liquid, to form a bio-oil component mixture having multiple separated phases. At least a portion of the condensing liquid includes a component that is extracted as a separated stable phase from a second bio-oil component mixture resulting from a prior pyrolysis cycle.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 8, 2020
    Assignee: Tolero Energy, LLC
    Inventors: Raymond Bélanger, Christopher Churchill
  • Patent number: 10744472
    Abstract: A system of product gas collecting conduits for a steam reformer, containing a plurality of reaction tubes within a reformer housing, for the production of synthesis gas, comprising: a) a product gas collecting conduit arranged outside the reformer housing of the steam reformer, b) several port tubes arranged along the length of the conduit for connecting one reaction tube each to the product gas collecting conduit, c) at least one windshield for the protection of the product gas collecting conduit against wind and draft.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 18, 2020
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Antonio Coscia, Tobias Kaiser
  • Patent number: 10668430
    Abstract: A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: June 2, 2020
    Assignee: Midwest Energy Emissions Corp.
    Inventors: Edwin S. Olson, Michael J. Holmes, John H. Pavlish
  • Patent number: 10589187
    Abstract: A system is described that includes a pyrolyzer and a primary condenser. The primary condenser is coupled to the pyrolyzer and includes an input to receive pyrolytic vapors from the pyrolyzer and a solvent. The condenser is further configured to condense the pyrolytic vapors by contacting the pyrolytic vapors with the solvent to form a condensed liquid that exits the primary condenser via an output. A capture vessel receives the condensed liquid from the condenser output. A recirculator couples the capture vessel to the primary condenser input and is configured to receive the condensed liquid from the primary condenser, and to provide at least a portion of the condensed liquid as the solvent in the primary condenser. The solvent from the bio-oil component/solvent mixture is then extracted in a solvent extraction system and returned to the quenching system.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 17, 2020
    Assignee: Tolero Energy, LLC
    Inventors: Raymond Bélanger, Christopher Churchill
  • Patent number: 10550330
    Abstract: An apparatus and method are described for high-yield fast pyrolysis of biomass feedstock to produce a liquid bio-oil product. A bubbling fluidized bed reactor is provided having an integrated, rapid quench apparatus for minimizing secondary cracking reactions that can otherwise lower the yield of bio-oil. A quench stream is provided inside the reactor to minimize the residence time that the product vapors spend at high temperature where cracking can occur. The quench stream is introduced downstream of the fluidized bed but still internal to the reactor. The fluidized bed medium is constrained to the bottom of the reactor and is not cooled by the quench stream.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 4, 2020
    Assignee: Mainstream Engineering Corporation
    Inventors: Paul E. Yelvington, Dustin J. Zastrow, Nicholas R. Schwartz
  • Patent number: 10443004
    Abstract: Disclosed herein is an integrated plant including, in some embodiments, an interconnected set of two or more stages of reactors forming a bio-reforming reactor configured to generate syngas from wood-containing biomass. A first stage of the bio-reforming reactor is configured to cause a set of chemical reactions in the biomass to produce reaction products of constituent gases, tars, chars, and other components. The first stage includes a fluidized-bed gasifier, a fluidized-bed combustor, and a moving-bed filtration system, each of which includes media inputs and outputs to respectively receive and supply heat-absorbing media to another operation unit for recirculation in a media recirculation loop. The moving-bed filtration system includes a tar pre-reformer configured to capture and reform heavier tars into lighter tars for subsequent processing in one or more fuel-producing reactor trains. Fuel products produced by the one or more reactor trains have a biogenic content of between 50% and 100%.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: October 15, 2019
    Assignee: Sundrop IP Holdings, LLC
    Inventors: Douglas S. Jack, Andrew W. Broerman
  • Patent number: 10400176
    Abstract: Methods, processes, systems, or apparatus are provided to remove contaminants such as metals and chlorine present in a pyrolysis stream to form reduced-contaminant liquid biomass. In certain embodiments, for example, a metal chelating agent is dissolved into a metal-containing pyrolysis stream condensate to form metal chelate complex, followed by filtering to obtain the reduced-contaminant liquid biomass.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 3, 2019
    Assignee: Ensyn Renewables, Inc.
    Inventors: Barry A. Freel, Josh Normand, Timothy A. Brandvold, Stanley J. Frey, Doug Clarke
  • Patent number: 10364398
    Abstract: A feedstock delivery system transfers a carbonaceous material, such as municipal solid waste, into a product gas generation system. The feedstock delivery system includes a splitter for splitting bulk carbonaceous material into a plurality of carbonaceous material streams. Each stream is processed using a weighing system for gauging the quantity of carbonaceous material, a densification system for forming plugs of carbonaceous material, a de-densification system for breaking up the plugs of carbonaceous material, and a gas and carbonaceous material mixing system for forming a carbonaceous material and gas mixture. A pressure of the mixing gas is reduced prior to mixing with the carbonaceous material, and the carbonaceous material to gas weight ratio is monitored. A transport assembly conveys the carbonaceous material and gas mixture to a first reactor where at least the carbonaceous material within the mixture is subject to thermochemical reactions to form the product gas.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: July 30, 2019
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel A. Burciaga, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Justin Kevin Miller, Kaitlin Emily Harrington, Brian Christopher Attwood, Emily Jane Schultheis, Kelly Ann Kishton
  • Patent number: 10358610
    Abstract: A process is provided to partially upgrade heavy oil using two or more reaction zones connected in series, each reaction zone being a continuous stirred tank maintained at hydrocracking conditions. The heavy oil feedstock and a solid particulate catalyst are stirred to form pumpable slurry which is heated to a target hydrocracking temperature and then continuously fed to the first reaction zone. Hydrogen is continuously introduced to the reaction zone to achieve hydrocracking and to produce a volatile vapor stream carried upwardly by the hydrogen to produce an overhead vapor stream. The hydrocracked heavy oil slurry from one reaction zone is fed to a next reaction zone also maintained under hydrocracking conditions with a continuous hydrogen feed to produce a volatile vapor stream. The overhead vapor stream from each reactor zone is continuously removed, and the hydrocracked heavy oil slurry from the last of the reaction zones is removed.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: July 23, 2019
    Assignee: Sherritt International Corporation
    Inventors: Mohammad Reza Malek Abbaslou, Ali Abbaspour Gharamalek, Iftikhar Huq, John Henry Marsh
  • Patent number: 10301235
    Abstract: Systems and methods for recycling waste plastics are provided, including a system for recovering styrene monomer from waste polystyrene.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: May 28, 2019
  • Patent number: 10202497
    Abstract: Methods are described for microwave extraction of a component from a rubber-containing plant by providing a container holding a mixture of a sample of the rubber-containing plant and a solvent, placing the container holding the mixture in a vessel, irradiating the mixture in the vessel to increase the temperature of the mixture to extract the component from the sample of the rubber-containing plant into the solvent, and separating the extracted component from the solvent to quantify the amount of the component in the sample. Methods are also described for quantifying the amount of natural rubber in a sample from a rubber-containing plant and quantifying the amount of resin in a sample from a rubber-containing plant.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: February 12, 2019
    Assignee: Bridgestone Corporation
    Inventors: Waruna C. B. Kiridena, Yingyi Huang
  • Patent number: 10167428
    Abstract: An environmental friendly, continuous biomass torrefaction system is disclosed herein. This torrefaction system captures carbon dioxide (CO2) from the combustion gases generated in the process. A portion of the captured CO2 is recycled and used as the inert gas for torrefying biomass and cooling the torrefied biomass. The rest of the captured CO2 is stored.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: January 1, 2019
    Assignee: CENTRAL MICHIGAN UNIVERSITY
    Inventor: Yousef Haseli
  • Patent number: 10072227
    Abstract: There is described a processor for use in the microwave torrefaction of biomass material which comprises, a micronized biomass char material and a method of producing a biomass char material, and a method of producing L-glucosan.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: September 11, 2018
    Assignee: University of York
    Inventors: Vitaliy Lvovich Budarin, Krzysztof Jakub Milkowski, Peter Shuttleworth, Brigid Lanigan, James Hanley Clark, Duncan James Macquarrie, Ashley Wilson
  • Patent number: 10059886
    Abstract: A process and system for hydroprocessing biopyrolysis oils is provided and includes the rejuvenation of an at least partially flow constricted biopyrolysis oil hydroprocessing reactor(s) by flushing with a flushing agent at reduced temperatures.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 28, 2018
    Assignee: Inaeris Technologies, LLC
    Inventors: Lorenz Bauer, Dave Smith, Michael Lee, Changan Zhang
  • Patent number: 9963650
    Abstract: A method and process is described for producing negative carbon fuel. In its broadest form, a carbon-containing input is converted to combustible fuels, refinery feedstock, or chemicals and a carbonaceous solid concurrently in separate and substantially uncontaminated form. In an embodiment of the invention, biomass is converted via discrete increasing temperatures under pressure to blendable combustible fuels and a carbonaceous solid. The carbonaceous solid may be reacted to synthesis gas, sold as charcoal product, carbon credits, used for carbon offsets, or sequestered.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: May 8, 2018
    Assignee: COOL PLANET ENERGY SYSTEMS, INC.
    Inventors: Michael C. Cheiky, Ronald A. Sills
  • Patent number: 9902859
    Abstract: A system and method for preparing a pelletized carbon black product is provided. The system includes a source of a carbon black product from a pyrolysis process. A mixer is in communication with the source of the carbon black product. A binder oil storage tank is in fluid communication with the mixer. The binder oil storage tank is configured to inject a desired amount of a binder oil into the mixer to form the pelletized carbon black product.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: February 27, 2018
    Assignee: Tellus Technology, Inc.
    Inventors: Kenneth W. Hamby, Michael R. Beck
  • Patent number: 9790360
    Abstract: The present invention is an asphalt rejuvenator made from a specific styrenic block copolymer, bio-based oil or a bio-based oil blend, and an antioxidant system. The bio-based oil or a bio-based oil blend has a flash point of >230° C., and the asphalt rejuvenator has a maximum viscosity of <2000 cP at 180° C. when measured at 6.8/seconds shear rate. An alternate embodiment of the present invention is a pavement composition of RAP and/or RAS, asphalt rejuvenator, and virgin asphalt with and without a crosslinker. Lastly, the invention includes a method of making an asphalt rejuvenator composition referred to above, and blending it with RAP and fresh asphalt. An emulsion is also described and claimed comprising asphalt rejuvenator, water and an emulsifier.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: October 17, 2017
    Assignee: Kraton Polymers U.S. LLC
    Inventors: Sebastian Puchalski, Robert Q. Kluttz, Christopher M. Lubbers
  • Patent number: 9683737
    Abstract: A chemical looping combustion apparatus for solid fuels using different oxygen carriers is provided. The chemical looping combustion apparatus includes: a solid fuel chemical looping combustor configured to receive solid fuels and to produce carbon dioxide and steam by combustion of the solid fuels; a gaseous fuel chemical looping combustor configured to receive gaseous fuels and to produce carbon dioxide and steam by combustion of the gaseous fuels; and a devolatilization reactor configured to produce solids and gases by devolatilizing the solid fuels, and the solid fuels received by the solid fuel chemical looping combustor and the gaseous fuels received by the gaseous fuel chemical looping combustor are the solids and the gases produced by the devolatilization reactor, respectively. Accordingly, a reaction rate and an amount of oxygen transfer can increase, and necessity for low-priced oxygen carriers and a make-up cost of low-priced oxygen carriers can be reduced.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: June 20, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Gyoung-tae Jin, Chang-keun Yi, Do-won Shun, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Dong-ho Lee, Ji-bong Joo
  • Patent number: 9624439
    Abstract: Systems and methods achieve the conversion of polymer containing material into petroleum products such as hydrocarbon gas, wax, crude oil and diesel. The reactor and its system are designed to subject the polymer containing material to pyrolysis in a way that results in a higher petroleum product yield than conventional existing systems. The system has controls which allow for the heating temperature, rotation of the body, and throughput rate, to be adjusted depending on the reaction time required for the material inside the reactor. The condensing system is able to separate the products into the desired petroleum products by percentage output ranging from wax to crude-like oil to diesel-quality oil.
    Type: Grant
    Filed: August 10, 2014
    Date of Patent: April 18, 2017
    Assignee: PK Clean Technologies
    Inventors: Priyanka Bakaya, Benjamin Ralph Coates
  • Patent number: 9593282
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: March 14, 2017
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Patent number: 9579837
    Abstract: A method and apparatus for treating waste materials comprising, particulating the waste materials into discrete particles, heating and drying the particles in a non-oxidizing atmosphere in a drier at a temperature in the range of 800° to 860° C. for carbonizing the particles, crushing the carbonized particles and leaching the crushed carbonized particles in an acid solution for dissolution of heavy metals into the solution, separating the leach solution containing heavy metal from the carbonized particles, adding to the carbonized particles particulate sodium hydroxide, silica, feldspar and limestone in a ratio of 100:0.3-0.5:8-12:2-4, mixing said particles with 15 to 18% by weight water to form a wet mixture and continuously extruding the wet mixture to form an elongated continuous extrusion, severing the elongated extrusion into blocks or planks of predetermined length, drying the blocks or planks and heating the dried blocks or planks in a kiln at a temperature in the range of 1200° to 1300° C.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: February 28, 2017
    Assignee: GOOD MORNING ENTERPRISES INC.
    Inventors: Jay Kim, Wesley Tse
  • Patent number: 9556385
    Abstract: A refining apparatus and a refining method for recycling waste plastics. The refining apparatus includes a feeding device, a pyrolysis furnace, a chloride-decomposing device, a first condensation device, a temporary storage, a still, a sieve plate tower, a second condensation device, and a receiving tank. The waste plastics are cracked by the pyrolysis furnace to produce plastic gas by heating. The chlorides of the plastic gas are removed by the chloride-decomposing device having the ammonia to produce a first oil gas. The first oil gas is condensed by the first condensation device to produce raw oil. The raw oil is heated by the still to produce a second oil gas. The second oil gas is sieved by the sieve plate tower to produce a third oil gas. The third oil gas is condensed by the second condensation device to produce finished oil received by the receiving tank.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: January 31, 2017
    Assignee: GL Renewable Energy Company
    Inventor: Chao-Kao Chen
  • Patent number: 9464234
    Abstract: Efficient biomass conversion systems, methods and apparatus utilize a fast pyrolysis unit installed at locations having substantial quantities of biomass, with the biomass fed into the fast pyrolysis unit under pyrolytic reaction conditions, and with exhaust gases containing entrained matter resulting from the pyrolytic reactions being separated into char and bio-fuel constituents.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: October 11, 2016
    Inventor: John M. Tharpe, Jr.
  • Patent number: 9376632
    Abstract: An apparatus and method for thermolysis of waste plastic in which reaction residue and carbonization products are continuously removed is described. The apparatus includes a feeding system, an extruder, a reactor for thermolysis, a dual agitator housed within the reactor, a trigger system in operative connection with the reactor, a flux heater, and a collecting system in operative connection with the reactor. The reactor for thermolysis has a height at least 1.5 times bigger than a diameter. The trigger system includes a circulation pump and the collecting system has a three-way valve in an external circulation loop. The apparatus is arranged such that the extruder follows the feeding system, the reactor follows the extruder, the trigger system is at a bottom of the reactor, and the flux heater and collecting system follow the reactor.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: June 28, 2016
    Assignee: CLARITER IP S.A.
    Inventors: Daria Fraczak, Bartlomiej Karbowy, Bartlomiej Samardakiewicz
  • Patent number: 9193589
    Abstract: A method for removing tar from a gas by contacting a first gas containing tar with a second gas containing oxygen for time period sufficient to effect oxidation of at least a portion of the tar in the first gas, thus producing an oxidized product gas that contains less tar than the first gas.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: November 24, 2015
    Assignee: RES USA, LLC
    Inventor: Herman Feldmann
  • Patent number: 9127207
    Abstract: Described is a pyrolysis system including an entrained flow pyrolyzer having an opening through which biomass can be added. The pyrolyzer also has an inlet for hot exhaust gas, an outlet for pyrolyzed biomass and an outlet for syngas. The system has a burner for producing hot exhaust gas and a conduit between the burner and the hot exhaust gas inlet. A syngas extraction means for extracting syngas from the pyrolyzer. The syngas extraction means extracts syngas from the pyrolyzer at a rate such that the internal pressure within the pyrolyzer never exceeds the pressure external to the pyrolyzer.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: September 8, 2015
    Assignee: Process Limited
    Inventor: Robert D. Eden
  • Patent number: 9023181
    Abstract: A pyrolyzer apparatus (i.e. a “cracking pipe”) comprises a first screen, a second screen, and a catalyst material positioned between the first and second screens. The pyrolyzer is structured so that feedstock is pyrolyzed and pyrolyzer-generated gas is drawn through the first screen, through the catalyst material, and then through the second screen in series. The gas may then be directed to other processing equipment so that bio-oil is extracted from the gas.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 5, 2015
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Neil M. Goldberg, Michael F. Dallmer, Akswasi A. Boateng, Charles A. Mullen, David J. Milhalcik
  • Patent number: 9017521
    Abstract: A process for heat treatment of a solid, with a coolant solid, in which a stage for mixing the solid with the pre-heated coolant solid is carried out, with the coolant solid being a solid hydrocarbon. The solid hydrocarbon is ground, before the mixing stage with the solid, to obtain a solid hydrocarbon powder with a grain size of between 20 ?m and 300 ?m. The solid is ground, before the mixing stage with the coolant solid, to obtain solid pellets with a thickness of between 1 mm and 30 mm, a width of between 1 mm and 40 mm, and a length of between 1 mm and 100 mm. The mixing is carried out at a temperature of between 80° C. and 700° C.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: April 28, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Elena Garcia Sanz, Matthieu Rolland
  • Publication number: 20150027871
    Abstract: A process for making a catalytic system for converting solid biomass into fuel of specialty chemical products is disclosed. The process includes preparing a slurry precursor mixture by mixing an aluminosilicate clay material with a pore regulating agent and optionally a binder, shaping the mixture into shaped bodies; removing the pore regulating agent to form porous shaped bodies, preparing an aqueous reaction mixture comprising the porous shaped bodies in presence of a zeolite seeding material, and thermally treating the aqueous reaction mixture to form the catalyst system. The catalyst system can comprise, for example, a MFI-type zeolite.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 29, 2015
    Inventors: Dennis Stamires, Michael Brady
  • Publication number: 20140318944
    Abstract: Disclosed in one embodiment is a method for the catalytic pyrolysis of a carbonaceous material that includes contacting the carbonaceous material with a plurality of catalyst particles to produce a gas phase product and a solid phase product and separating the gas phase product from the solid phase product and the plurality of catalyst particles. The method further includes partially regenerating the plurality of catalyst particles by exposing the solid phase product and the catalyst particles to a first oxidizing condition to produce an oxidized solid phase and a partially-regenerated catalyst and cooling the partially-regenerated catalyst and a non-oxidized portion of the solid phase product. Still further, the method includes further regenerating the partially-regenerated catalyst by exposing the non-oxidized portion of the solid phase product and the partially-regenerated catalyst to a second oxidizing condition.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Applicant: UOP LLC
    Inventors: Lance A. Baird, Tom N. Kalnes, Douglas B. Galloway
  • Patent number: 8859831
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 14, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Patent number: 8841495
    Abstract: This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 23, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Patent number: 8835704
    Abstract: A biomass pyrolysis process is provided in which biomass feedstock is mixed with a heat carrier. The heat carrier at least partly comprises char. The ratio by weight of biomass to char is in the range 1:1 to 1:20. The process may be carried out by in a screw/auger pyrolysis reactor in which the solid feedstock components are conveyed along the reactor by a first screw. A second screw conveys at least a portion of the solid products of the biomass pyrolysis back to a heat transfer medium input port. Thus, the heat transfer medium includes char from the biomass pyrolysis.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 16, 2014
    Assignee: Aston University
    Inventors: Andreas Hornung, Andreas Apfelbacher