Utilizing Recovered Heat For Heating The Distillation Zone Patents (Class 203/25)
  • Patent number: 9205346
    Abstract: In a heat integrated distillation column (HIDiC), the product purity can be stably maintained against various disturbances. Provided is a method for controlling a distillation apparatus, which includes a high-pressure part including the whole or a part of a rectifying section and performing gas-liquid contact at a relatively high pressure; a low-pressure part including the whole or a part of a stripping section and performing gas-liquid contact at a relatively low pressure; a line for directing overhead vapor of the low-pressure part to a column bottom of the high-pressure part; a line for directing a column bottom liquid of the high-pressure part to a column top of the low-pressure part; and a heat exchange structure for transferring heat from the rectifying section to the stripping section, wherein the method includes controlling a flow rate of the column bottom liquid to be directed from the high-pressure part to the low-pressure part.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 8, 2015
    Assignee: TOYO ENGINEERING CORPORATION
    Inventors: Kouichi Tachikawa, Takato Nakao
  • Patent number: 8993825
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex through heat exchange in associated xylene recovery facilities.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Jason T. Corradi, Xin X. Zhu, David W. Ablin, Saadet Ulas Acikgoz, Phillip F. Daly
  • Patent number: 8974643
    Abstract: The present invention relates to a method for purifying a liquid comprising liquid particles and residual particles. It is hereby possible to generate substantially pure water from, for instance seawater.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: March 10, 2015
    Assignee: High Voltage Water B.V.
    Inventors: Sybrand Jacob Metz, Gerrit Oudakker, Johannes Cornelis Maria Marijnissen
  • Publication number: 20140374235
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In an embodiment of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product, and an electric motor with motor rotor and magnets hermetically sealed within the fluid pressure boundary of the distillation system.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Jason A. Demers, Scott A. Leonard, Kingston Owens
  • Patent number: 8916740
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Jason T. Corradi, David W. Ablin
  • Patent number: 8840762
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: September 23, 2014
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Jason T. Corradi, David W. Ablin
  • Patent number: 8771477
    Abstract: Embodiments of the invention provide systems and methods for water purification and desalination. The systems have a preheater, a degasser, multiple evaporation chambers with demisters, heat pipes, and a control system, wherein the control system permits continuous operation of the purification and desalination system without requiring user intervention or cleaning. The systems are capable of recovering hear from each distillation stage, while removing, from a contaminated water sample, a plurality of contaminants including: microbiological contaminants, radiological contaminants, metals, salts, and organics.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: July 8, 2014
    Assignee: Sylvan Source, Inc.
    Inventor: Eugene Thiers
  • Publication number: 20140183027
    Abstract: Systems and methods are described for improving energy requirements of a distillation column. The distillation column can include one or more heat exchange surfaces within a middle section of the column, through which a cooling fluid can be fed to allow heat exchange of vapor rising within the distillation column.
    Type: Application
    Filed: May 9, 2012
    Publication date: July 3, 2014
    Applicant: FLUOR TECHNOLOGIES CORPORATION
    Inventor: Mohamed Abouelhassan
  • Patent number: 8754281
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex through heat exchange in associated xylene recovery facilities.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Jason T. Corradi, Zin X. Zhu, David W. Ablin, Saadet Ulas Acikgoz
  • Patent number: 8709257
    Abstract: A method and system for purifying liquid using waste heat is provided. Initially, a liquid is mixed with an anti-sealant agent in a first filtering unit to form a liquid mixture. Thereafter, the liquid mixture is filtered in the first filtering unit to separate foreign objects from the liquid mixture. Subsequently, the liquid mixture is heated in a pipe arrangement connecting the first filtering unit and one or more second filtering units to generate steam. The steam obtained from the heated liquid mixture is then purified in the one or more second filtering units. Thereafter, the purified steam is condensed in the pipe arrangement to obtain the purified liquid.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: April 29, 2014
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Mazen Abdullah Ba-Abbad, Hany Abdulrahman Al-Ansary
  • Publication number: 20140083839
    Abstract: The present invention provides a method for operating a stripper that is provided for a separating process in an aromatic component processing apparatus in which the stripper separates a component that is lighter than an aromatic component from the aromatic component via a distillation operation. In the method, using a HIDiC as the stripper, the pressure of the column top of rectifying section (201) of the HIDiC is determined, and the pressure of the column top of stripping section (202) of the HIDiC is set to be lower than the pressure of the column top of rectifying section (201).
    Type: Application
    Filed: September 16, 2013
    Publication date: March 27, 2014
    Applicant: Toyo Engineering Corporation
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Patent number: 8617359
    Abstract: A method for distilling a starting material that includes a liquid Fd to be distilled, uses a gas-tight container system that is resistant to excess and/or negative pressure. The container system includes a condenser for condensing the liquid Fd, which has turned to vapor and whose temperature can be adjusted, to give the condensation product, and a vapor chamber connecting the evaporator and the condenser. The pressure and temperature in the vapor chamber are monitored and controlled so that distillation is always carried out in a range close to the saturation vapor pressure of the liquid Fd to be distilled. If the pressure is too high, it is reduced so that especially foreign gas is removed. An installation includes a container for distillation according to method.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: December 31, 2013
    Inventors: Markus Lehmann, Markus Braendli
  • Patent number: 8609922
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex through heat exchange in associated xylene recovery facilities.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Xin X. Zhu, Phillip F. Daly, Saadet Ulas Acikgoz, Jason T. Corradi, David W. Ablin
  • Patent number: 8486233
    Abstract: A fluid delivery apparatus is provided for supplying a fluid mixture to a distillation column or reactor. The apparatus can be used to enhance the heat duty, the flow and/or the flow stability of an existing thermosiphon reboiler which supplies a heated fluid to the column or reactor. The apparatus includes an integrated eductor which receives and increases the fluid velocity of a supplemental fluid into which the heated fluid is aspirated to form a fluid mixture then delivered to the column or reactor. A process and a system utilizing the apparatus are also disclosed, as well as a method of retrofitting an existing system with the apparatus.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 16, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alphonzo George Nelson, Les Jackowski
  • Publication number: 20130168226
    Abstract: The invention relates to a method and a device with the aid of which hydrogen halide and water are removed from biomass hydrolyzates containing halogen acid. The core of the invention is an evacuated container (B1), which is continuously supplied with a heat-transfer medium and which is completely filled with the heat-transfer medium in a part. In said evaporation chamber, the biomass hydrolyzate is likewise continuously introduced. In the container (B1), heat is transferred from the heat-transfer medium to the hydrolyzate, wherein hydrogen halide and water are continuously evaporated. The remaining hydrolyzate particles are continuously discharged with the cooled heat-transfer medium and continuously removed by means of the heat-transfer medium and continuously separated from said heat-transfer medium. The invention described can also be used to treat other mixtures or solutions for the purpose of evaporation.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 4, 2013
    Inventors: Frank Kose, Matthias Schmidt
  • Publication number: 20130153399
    Abstract: Systems and methods for heating a non-combustion chemical reactor with thermal energy from a geothermal heat source are described. A working fluid is directed from the geothermal heat source to the chemical reactor to transfer heat. The working fluid can be circulated in a closed system so that it does not contact material at the geothermal heat source, or in an open system that allows the working fluid to intermix with material at the geothermal heat source. When intermixing with material at the geothermal heat source, the working fluid can transport donor substances at the geothermal heat source to the chemical reactor.
    Type: Application
    Filed: February 11, 2013
    Publication date: June 20, 2013
    Applicant: MCALISTER TECHNOLOGIES, LLC
    Inventor: MCALISTER TECHNOLOGIES, LLC
  • Patent number: 8444829
    Abstract: Improved methods for carrier-gas humidification/dehumidification [HDH] or dewvaporization enable production of clean water, derived in part from models generated and tested with produced water from the oil and gas industries, which likewise address industrial waste water remediation and generally facilitate the time and cost efficient disposal of waste waters from a plurality of industries ranging from food, wine, and beverage production to novel enhanced efficiencies within the oil and gas industries themselves. High efficiency carrier gas HDH thermal distillation functions without membranes, at ambient or near ambient pressures with no required pre- or post-treatment, and economies of scale to leverage a plastics-based processing platform. Industrial waste water including that generated by the food, wine, and beverage industries, among others, is likewise ameliorated according to the instant teachings.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 21, 2013
    Assignee: Altela, Inc.
    Inventors: Ned Allen Godshall, Matthew Jason Bruff
  • Patent number: 8444830
    Abstract: A desalination process including heating brine in a preheating chamber and transferring the brine to a rotary kiln to be sprayed against the wall structure of the rotary kiln to boil to steam and a residue of salt/impurities, the exiting steam being pressurized in a compressor and passed to an externally powered heater to be heated and then fed to a hollow wall structure of the rotating kiln in which the steam condenses to pure water to be transferred to the preheating chamber to preheat the incoming brine, the rotating kiln being arranged to rotate past a scraper to remove salt/impurities from the wall structure for collection at the base of the kiln.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: May 21, 2013
    Inventor: Garth Davey
  • Patent number: 8425733
    Abstract: Method for dewatering a mixture of mostly ethanol and water which is split into a first partial feed flow (3) that is directed to a distillation column (32) as a reflux flow while a second partial feed flow (4) is directed to an evaporator unit (31) as an evaporator inlet flow and leaves the top of the evaporator unit as an evaporator outlet flow (6). A top discharge flow (7) from distillation column (32) is returned and combined with the evaporator outlet flow (6) to a combined flow (8) at an overpressure and which in a compressor unit (33) is compressed to a combined, compressed flow (10) which enters a dewatering unit (34) in which it is split into a water-rich permeate flow (14) and a retentate flow (11) in the form of substantially water free ethanol.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: April 23, 2013
    Assignee: Epcon Energy and Process Control AS
    Inventors: Geir Halvorsen, Kjetil Evenmo, Carl Ivar Gotaas
  • Patent number: 8372248
    Abstract: A water purification system having an oil and vapor separation subsystem for removing many heavy duty and toxic contaminants from the water. The subsystem removes volatile vapors from the feed water, heats the feed water, and by imparting a swirling vortex action to the heated water, the oils are separated from the water. The water separated from the oil is pumped by a high pressure pump through a helical coil that is heated to a high temperature by the burner. The high temperature, hot water is then fed to an expansion nozzle in an expansion chamber to flash the hot water into steam. The steam is passed through a condenser which converts the steam to purified water.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: February 12, 2013
    Inventor: Raymond C. Sherry
  • Patent number: 8337672
    Abstract: The invention relates to the oil processing industry and can be used for producing vacuum in a vacuum petroleum distillation column. The inventive method involves pumping out a vapor-gas medium from the column by of a gas-gas ejector in such a way that a vapor-gas mixture is formed at the entry thereof and supplying said mixture to a condenser for producing a gas mixture and a vapor phase condensate. The gas mixture is supplied from the condenser to a liquid-gas jet apparatus and the condensate is delivered to an additional separator. A hydrocarbon-containing condensate is removed from the additional separator for the intended use thereof and a water-containing condensate is fed to a steam generator for producing steam by supplying heat of a hot distillate evacuated from the vacuum column. The thus obtained steam is used in the gas-gas ejector as a high-pressure gas.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: December 25, 2012
    Inventor: Valery Grigorievich Tsegelsky
  • Publication number: 20120298499
    Abstract: A hybrid photovoltaic panel-interfaced solar-greenhouse distillation technology is disclosed that is capable of utilizing solar waste heat to perform liquid distillation while co-generating solar electricity. Solar waste heat co-generated at a photovoltaic panel is effectively utilized by in situ distillation liquid as an immediate heat sink in thermal contact with the photovoltaic panel, thus providing beneficial cooling of the photovoltaic panel and co-making of distillation products while generating electricity with significant improvement on total-process solar energy utilization efficiency. Use of this invention can provide a series of distillation-related products such as freshwater, distilled water, hot water, hot steam, sea salts, saline/brine products, and/or harvest biofuels and bioproducts such as ethanol from renewable resources while co-generating solar electricity.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Inventor: James Weifu Lee
  • Patent number: 8317982
    Abstract: The present invention discloses a process and apparatus for utilization of waste heat of flue gas liberated from different heat sources to provide high quality water from sea/brackish.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: November 27, 2012
    Inventor: Subrahmanyam Kumar
  • Patent number: 8287698
    Abstract: The present invention relates to a process and a system for producing alcohol by distillation with energy optimization using split-feed technology. The process of the present invention comprises the steps of: a) splitting a stream of wine to feed two depuration columns , the depuration column generating a stream of phlegma and the depuration column generating a stream of phlegma and a stream of vinasse; b) feeding the stream of phlegma into at least one rectification column generating a top flow and a stream of hydrated alcohol; c) effecting the heat exchange between the top flow from at least one rectification column and the stream of vinasse from the depuration column in at least one heat exchanger; and d) feeding the stream of phlegma into a rectification column generating a stream of hydrated alcohol. The present invention further relates to hydrated alcohol produced by the process described above and to a process for producing anhydrous alcohol.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: October 16, 2012
    Assignees: Siemens Ltda., Dedini S/A Industrias de Base
    Inventors: Flávio Martins De Queiroz Guimarães, Carlos Eduardo Fontes Da Costa E Silva, Adler Gomes Moura
  • Patent number: 8282791
    Abstract: This invention describes a low temperature, self-sustainable desalination process operated under natural vacuum conditions created and maintained by barometric pressure head.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 9, 2012
    Assignee: Arrowhead Center, Inc.
    Inventors: Nagamany Nirmalakhandan, Veera Gnaneswar Gude
  • Patent number: 8263815
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: September 11, 2012
    Assignees: Membrane Technology and Research, Inc., United States Environmental Protection Agency
    Inventors: Yu Huang, Richard W. Baker, Ramin Daniels, Tiem Aldajani, Jennifer H. Ly, Franklin R. Alvarez, Leland M. Vane
  • Patent number: 8246791
    Abstract: A method and apparatus for separating draw solution solutes and product solvent from a draw solution using a plurality of distillation columns is disclosed. In one embodiment, the draw solution is used in a Forward Osmosis (FO) water desalination process. In this embodiment, the draw solution is directed to the plurality of distillation columns in parallel while the energy stream (heat) is directed to the plurality of distillation columns in series such that the efficiency of heat use is improved and in turn the cost of the heat is reduced.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 21, 2012
    Assignee: Yale University
    Inventors: Robert L. McGinnis, Menachem Elimelech
  • Patent number: 8246793
    Abstract: Processes for the continuous fractional distillation of a mixture comprising morpholine (MO), monoaminodiglycol (ADG), ammonia and water from a reaction of diethylene glycol (DEG) with ammonia, the process comprising: (i) separating off ammonia from the mixture at a top of a first distillation column K10; (ii) feeding a bottom fraction from the first distillation column to a second distillation column K20, wherein water and an organic product are separated off at a top of the second distillation column at a top temperature of 45 to 198° C. and a pressure in the range from 0.1 to 15 bar; (iii) feeding a bottom fraction from the second distillation column to a third distillation column K30, wherein morpholine and an organic product having a boiling point of <140° C. (1.013 bar) are separated off at a point selected from a top and a side offtake of the third distillation column, and monoaminodiglycol and an organic product having a boiling point of >190° C. (1.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: August 21, 2012
    Assignee: BASF SE
    Inventors: Helmut Schmidtke, Oliver Buβmann, Ralph Versch, Udo Rheude, Uwe Leyk, Manfred Julius, Martin Rudloff, Erhard Henkes
  • Patent number: 8202402
    Abstract: The present invention relates to systems and related methods of water purification by distillation that will operate in a self-contained mode using a passive heat source, such as, without limitation, solar heat, air conditioning waste heat, or waste heat from the exhaust or cooling systems of an internal combustion engine, which may be used to desalinate sea water, saline water, or saline water containing contaminants. The present invention may also be used to distil sewage water, creek water, swamp water or water containing contaminants or used to cleanse or purify water contaminated with mud, chemicals, minerals, or bacteria in a local environment.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 19, 2012
    Assignee: Hse Hittt Solar Enerji Anonim Sirkerti
    Inventor: Rahmi Oguz Capan
  • Patent number: 8197646
    Abstract: Process for the continuous fractional distillation of mixtures including morpholine (MO), monoaminodiglycol (ADG), ammonia and water obtained by reaction of diethylene glycol (DEG) with ammonia, which includes separating off ammonia at the top of a first distillation column K10, feeding the bottoms from K10 to a second distillation column K20 in which water and organic products are separated off at the top at a temperature at the top in the range from 45 to 198° C. and a pressure in the range from 0.1 to 15 bar, feeding the bottoms from K20 to a third distillation column K30 in which MO and organic products having a boiling point of <140° C. (1.013 bar) are separated off at the top or at a side offtake and ADG and organic products having a boiling point of >190° C. (1.013 bar) are separated off at the bottom, feeding the MO including stream which is separated off at the top or at a side offtake of the column K30 to a fourth column K40 in which organic products having a boiling point of ?128° C. (1.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: June 12, 2012
    Assignee: BASF SE
    Inventors: Helmut Schmidtke, Oliver Buβmann, Ralph Versch, Udo Rheude, Uwe Leyk, Manfred Julius, Martin Rudloff, Erhard Henkes
  • Patent number: 8128826
    Abstract: A process for separating vapors, for example for separating water from ethanol, uses a gas separation membrane unit. Permeate from the membrane unit is compressed and may be used for example as heating steam for distillation. The membrane unit may have two or more stages. Permeate from a stage may be condensed and used for example as fermentation make up water, compressed and fed to the permeate from an upstream stage or heating steam, or fed to another membrane stage for further dewatering. The gas separation membrane unit may be used to remove water from a fermentation broth that has been partially dewatered, for example by one or more of a distillation column or molecular sieve.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Parker Filtration BV
    Inventors: Pierre Plante, Bruno de Caumia, Christian Roy, Gaétan Noël
  • Patent number: 8128787
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Nicholas P. Wynn, Yu Huang, Masakatsu Urairi, Richard W Baker
  • Patent number: 8114255
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 14, 2012
    Assignee: Membrane Technology & Research, Inc.
    Inventors: Leland M Vane, Franklin R Alvarez, Yu Huang, Richard W Baker
  • Publication number: 20120031747
    Abstract: Herein disclosed is a method of separating heavy and light components from a vapor mixture. The method comprises a. distilling the vapor mixture into a first vapor phase and a first liquid phase; and b. condensing at least a portion of the first vapor phase into a second liquid phase and a second vapor phase; wherein the distilling utilizes the internal energy of the vapor mixture. In an embodiment, the method further comprises c. utilizing at least a portion of the first liquid phase to absorb at least a portion of the second vapor phase. In some cases, the method further comprises cooling the at least a portion of the first liquid phase prior to utilizing it to absorb the at least a portion of the second vapor phase.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Applicant: TERRABON MIX-ALCO, LLC
    Inventors: Rae Lynn Spencer, Gary W. LUCE, John A. Spencer
  • Patent number: 8110073
    Abstract: Aromatic amines are produced by catalytic hydrogenation of aromatic nitro compounds. The reaction mixture generated by this hydrogenation is then worked up by distillation in a manner which makes it possible to substantially free the amine of water with increased energy efficiency. Water free of amine and low boilers and the low boiling materials are also obtained.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: February 7, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Bernd Pennemann, Bill Brady, Rainer Buse
  • Patent number: 8080138
    Abstract: This invention describes a low temperature, self-sustainable desalination process operated under natural vacuum conditions created and maintained by barometric pressure head.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 20, 2011
    Assignee: Arrowhead Center, Inc.
    Inventors: Nagamany Nirmalakhandan, Veera Gnaneswar Gude
  • Patent number: 8021519
    Abstract: A system for distilling sea or brackish water includes a feed water arrangement for supplying feed water from a feed water source to one or more flashing stages. Each flashing stage has a water flash evaporator for vaporizing at least part of the water therein, and a condenser for receiving the vapour and converting at least a part of the vapour into distilled water. A heat storage arrangement provided with a heat generating source for storing heat energy is used to heat a fluid medium flowing through it. A heat exchange arrangement receives the hot fluid medium and transfers heat to a stream of vapour flowing under pressure from each flashing stage. The vapour leaving the heat exchange arrangement being at a raised temperature is arranged to be condensed into water at the condenser and to transfer some of its latent heat to the evaporator.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 20, 2011
    Inventor: Gregory Mark Paxton
  • Patent number: 7923591
    Abstract: Method and device for manufacturing at least one low olefin from an oxygenate-containing first reaction mixture (11) through conversion by a catalyst (20) to an olefin and paraffin-containing second reaction mixture (21) where the second reaction mixture (21) is flowed through a separation system (300), in which one at least one low olefin-containing first product stream (31) and at least one paraffin-enriched fraction (321) is extracted and where the remaining product stream (322) is at least partially recirculated to the catalyst (20).
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: April 12, 2011
    Assignee: Lurgi AG
    Inventors: Gerhard Birke, Harald Koempel, Waldemar Liebner, Hermann Bach
  • Patent number: 7867365
    Abstract: The present invention relates to a system for producing ethanol from an organic source and that operates to purify and dry ethanol from a beer source. The system for producing substantially anhydrous ethanol comprises: (a) a first distillation stripping column; (b) a second distillation rectifying column having a higher operating temperature than said stripping column; (c) a molecular sieve dehydration means in fluid communication with said rectifying column. Heat from the overhead of the second distillation rectifying column and the molecular sieve dehydration are used to heat the first distillation stripping column.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: January 11, 2011
    Assignee: Thermal Kinetics Systems, LLC
    Inventor: Christopher J. Brown
  • Patent number: 7799178
    Abstract: An improved method for efficiently adding additional heat values into a distillation process to optimize the production of distillate from water.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: September 21, 2010
    Assignee: Black & Veatch Holding Company
    Inventor: Michael J. Eddington
  • Patent number: 7708865
    Abstract: According to one embodiment of the invention, a vapor-compression evaporation system includes a plurality of vessels in series each containing a feed having a nonvolatile component, a mechanical compressor coupled to the last vessel in the series and operable to receive a vapor from the last vessel in the series, a pump operable to deliver a cooling liquid to the mechanical compressor, a tank coupled to the mechanical compressor and operable to separate liquid and vapor received from the mechanical compressor, a plurality of heat exchangers coupled inside respective ones of the vessels, the heat exchanger in the first vessel in the series operable to receive the vapor from the tank, at least some of the vapor condensing therein, whereby the heat of condensation provides the heat of evaporation to the first vessel in the series, and wherein at least some of the vapor inside the first vessel in the series is delivered to the heat exchanger in the next vessel in the series, whereby the condensing, evaporating, a
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: May 4, 2010
    Assignees: Texas A&M University System, StarRotor Corporation
    Inventors: Mark T. Holtzapple, Gary P. Noyes, George A. Rabroker
  • Patent number: 7707830
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In some embodiments of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, and a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product. Other embodiments of the invention are directed toward heat management, and other process enhancements for making the system especially efficient.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 4, 2010
    Assignee: DEKA Products Limited Partnership
    Inventors: David F. Bednarek, Jason A. Demers, Timothy P. Duggan, James L. Jackson, Scott A. Leonard, David W. McGill, Kingston Owens
  • Patent number: 7699961
    Abstract: A water-soluble organic material condensation apparatus equipped with a distillation column for distilling an aqueous solution of a water-soluble organic material, wherein a vapor generated at the top of the distillation column or a condensed liquid from the vapor is introduced to a device other than the distillation column which has the function to separate water from the water-soluble organic material to thereby condense the water-soluble organic material through separating water and then the condensed water-soluble organic material is recycled to the distillation column. The device other than the distillation column is desirably a separating film such as a zeolite film. The apparatus is improved in the operation of the upper portion of the condensation section of the distillation column and allows energy savings during distillation.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: April 20, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shiro Ikeda, Takashi Nakane
  • Patent number: 7678237
    Abstract: A heat integrated distillation column including a cylindrical shell having an upper and a lower end and at least one first inner volume and at least one second inner volume in the shell, and being in heat exchanging contact with each other through a wall separating the volumes. The heat integrated distillation column having the capacity to exchange heat through the wall from the first volume into the second volume, whereby the inside of the heat exchanging means is in open connection with the first volume.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: March 16, 2010
    Assignee: Technische Universiteit Delft
    Inventors: Johannes de Graauw, Maarten Jan Steenbakker, Arie de Rijke, Zarko Olujic, Pieter Johannes Jansens
  • Publication number: 20100051549
    Abstract: A contactor module for separating a distillate from a feed solution includes an outer casing with an interior region, a distillate collection chamber, and pluralities of hollow fiber membranes and hollow tubes extending through the distillate collection chamber, where the hollow fiber membranes are configured to allow vapor transmission, and the hollow tubes are configured to substantially prevent vapor transmission, and further configured to allow transmission of thermal energy.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Applicant: Milton Roy Company
    Inventors: Zidu Ma, Xiaohong Liao, James R. Irish
  • Publication number: 20090314624
    Abstract: A new distillation process of simultaneous evaporation and condensation distillation that enables efficient transfer of heat energy and allows binary fluids to attain different concentrations and temperatures in the stripper and rectifier stages is disclosed. The process utilizes preferential evaporation of the more volatile component in the stripper while in the rectifier the less volatile component condenses first allowing for concentration of the more volatile component in subsequent stages. The rectifier operates at correspondingly hotter temperatures than the stripper allowing energy transfer from the rectifier to the stripper.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Inventor: WALTER F. ALBERS
  • Patent number: 7628893
    Abstract: A method and an apparatus is provided for the separation of liquid-liquid and liquid-solids compositions by flash evaporation in a heated vacuum chamber. The compositions are injected through an atomizing spray nozzle having a spray cone downward of about 30 to 150 degrees. The compositions are preheated and injected under pressure into the preheated vacuum evaporation chamber. The vaporized liquid that is formed is collected in a condenser which draws the vapors by vacuum or pressure differential. Any solids are collected at the bottom of the vacuum chamber as semi-dry or dry solids.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: December 8, 2009
    Assignees: Pure Energy Technology Co, PPT Research Inc.
    Inventors: David William Bonser, Irl E. Ward, Alan R. Duly
  • Publication number: 20090297431
    Abstract: A method and apparatus for separating draw solution solutes and product solvent from a draw solution using a plurality of distillation columns. In one embodiment, the draw solution is used in a Forward Osmosis (FO) water desalination process. In this embodiment, the draw solution is directed to the plurality of distillation columns in parallel while the energy stream (heat) is directed to the plurality of distillation columns in series such that the efficiency of heat use is improved and in turn the cost of the heat is reduced.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 3, 2009
    Applicant: YALE UNIVERSITY
    Inventors: Robert L. McGinnis, Elimelech Menachem
  • Patent number: 7594981
    Abstract: A method for concentrating a water-soluble organic material wherein a mixture of the water-soluble organic material with water is distilled in a distillation column (11), and the fraction from the top (11a) of the distillation column (11) is separated by the use of a membrane separator (14) into a permeated vapor (F2) and a non-permeated vapor (F3), which comprises once condensing the fraction to form a condensate, heating the condensate in an evaporator (13) to generate a vapor (F1) having a pressure higher than the operation pressure for the distillation column (11), and introducing the vapor (F1) to the membrane separator (14), thereby separating water from the mixture.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: September 29, 2009
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Shiro Ikeda
  • Patent number: 7575660
    Abstract: The invention relates to an energy efficient process for the distillative working-up of aqueous amine solutions that occur in the catalytic hydrogenation of nitroaromatic compounds. In this process, the amine is freed from water and also the water is obtained free from amine and low-boiling compounds and the concentrated low-boiling compounds are obtained.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: August 18, 2009
    Assignee: Bayer MaterialScience AG
    Inventors: Friedhelm Steffens, Rainer Buse, Bill Brady