Compressed Vapor As Heat Source Patents (Class 203/26)
  • Patent number: 11008737
    Abstract: A system and method for capturing water from an atmosphere including an air compressor configured to compress air captured from an atmosphere and to receive power from a power source and collecting moisture from the compressed air at an elevated pressure. A first chamber may be used to heat or concentrate the humidity of the air before the air is compressed. A valve assembly maintains the pressure at which the water is captured at an elevated pressure. The humidity of the air may be concentrated before the air is compressed and the moisture of the air is collected.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: May 18, 2021
    Inventor: Walber Q. Pinto
  • Patent number: 10626067
    Abstract: Processes and apparatuses for para-xylene separation. A stream of para-xylene is separated from a toluene stream in a fractionation column. An overhead stream of the fractionation column is compressed and then passed to a heat recovery zone to transfer heat from the overhead stream to another process stream in, for example, a heat exchanger. The fractionation column may be separating an effluent from a toluene methylation reactor.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 21, 2020
    Assignee: UOP LLC
    Inventors: Robert E. Tsai, Joseph Montalbano, Ellen Arnold
  • Patent number: 10126067
    Abstract: Configurations and related processing schemes of direct or indirect inter-plants heating systems (or both) synthesized for grassroots medium grade crude oil semi-conversion refineries to increase energy efficiency from specific portions of low grade waste heat sources are described. Configurations and related processing schemes of direct or indirect inter-plants heating systems (or both) synthesized for integrated medium grade crude oil semi-conversion refineries and aromatics complex for increasing energy efficiency from specific portions of low grade waste sources are also described.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 13, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Mahmoud Bahy Mahmoud Noureldin, Hani Mohammed Al Saed
  • Patent number: 9845995
    Abstract: Configurations and related processing schemes of direct or indirect (or both) intra-plants and thermally coupled heating systems synthesized for grassroots medium grade crude oil semi-conversion refineries to increase energy efficiency from specific portions of low grade waste heat sources are described. Configurations and related processing schemes of direct or indirect (or both) intra-plants and thermally coupled heating systems synthesized for integrated medium grade crude oil semi-conversion refineries and aromatics complex for increasing energy efficiency from specific portions of low grade waste sources are also described.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 19, 2017
    Assignee: Saudi Arabian Oil Company
    Inventors: Mahmoud Bahy Mahmoud Noureldin, Hani Mohammed Al Saed
  • Patent number: 9044711
    Abstract: The invention relates to osmotically driven membrane processes and systems and methods for recovering draw solutes in the osmotically driven membrane processes. Osmotically driven membrane processes involve the extraction of a solvent from a first solution to concentrate solute by using a second concentrated solution to draw the solvent from the first solution across a semi-permeable membrane. Draw solute recovery may be carried out by various means including with the use of a membrane device. The draw solute recovery may also include the use of multi-stage solute recovery using distillation columns and/or membranes, where the recovery may be assisted by a heat pump.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 2, 2015
    Assignee: OASYS WATER, INC.
    Inventor: Robert L. McGinnis
  • Publication number: 20150101921
    Abstract: A process for recovering heat from the separation of hydrocarbons. The overhead vapor stream from a fractionation column is passed to a two stage heat pump compressor. The first stage of compression is used to reboil the fractionation column. The second stage is compressed and cooled passed to a separation zone. The liquid in the separation zone may be passed back to the fractionation column as secondary reflux, and/or recovered as liquid product. Heat may also be removed from the second stage. A suction drum on the first stage may be used to protect the heat pump compressor from any droplets in the overhead stream.
    Type: Application
    Filed: July 29, 2014
    Publication date: April 16, 2015
    Inventors: Stephen T. King, Adam J. Kanyuh, Xin X. Zhu
  • Patent number: 9005404
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 14, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20150090581
    Abstract: A rectification column for multi-component mixture separation with internal heat and mass exchange, which ensures a heat and mass exchange in the film mode with internal reflux generation along the whole length of heat and mass exchange tubes and which allows for an increased efficiency, is proposed. The rectification column includes the rectifying/enriching section with the heat and mass exchange in its tubular and annular spaces being topped by a heat carrier distributor with a distributor chamber (17) on top of the heat carrier distributor in such a way that a higher pressure of fluid heat carrier in the distributor chamber (17) than in the annular space is allowed. The design of the distributor allows to separate an upper outlet for heat carrier vapors and a lower outlet for liquid heat carrier from the annular space completely from the fluid supply of fluid heat carrier in the distributor chamber. A feed-in device allows the multi-component mixture to enter the tubular spaces from below.
    Type: Application
    Filed: July 12, 2012
    Publication date: April 2, 2015
    Inventors: Albert Faritovich Saifutdinov, Oleg Yegorovich Beketov, Viktor Seliverstovich Ladoshkin, Guennadi Anatolievich Nesterov
  • Patent number: 8986509
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8951392
    Abstract: A modular portable evaporator system for use in a Steam Assisted Gravity Drainage (SAGD) systems having an evaporator, with a sump including an oil skimming weir, a short tube vertical falling film heat exchanger including an outer shell containing short tubes provided for lower water circulation rate. The system further having external to the evaporator, a compressor for compressing evaporated steam from the tube side of the heat exchanger and routing to the shell side of the same exchanger, a distillate tank to collect hot distilled water, a recirculation pump to introduce liquids from the sump into the heat exchanger and an external suction drum protecting the compressor from liquid impurities. The evaporator system receives produced water from the SAGD process into the sump and provides cleaned hot water to a boiler.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: February 10, 2015
    Assignee: 1nSite Technologies Ltd.
    Inventor: Kenneth James
  • Publication number: 20150008116
    Abstract: Process and plant for refining crude methanol, comprising at least three distillation stages operating in cascade at decreasing pressures, wherein a first stage (200) operates at a maximum distillation pressure (p2), a second stage (300) operates at a medium distillation pressure (p3), and a final distillation stage (400) operates at a minimum distillation pressure (p4), wherein the first stage and the distillation stage each produce a respective gaseous stream (204, 304) of distilled methanol, and a respective solution containing methanol that is fed to the next distillation stage, and wherein at least one first gaseous stream of distilled methanol (204), produced in the first distillation stage, and a second gaseous stream of distilled methanol (304), produced in the second distillation stage, are used as heat sources to heat the second distillation stage and the final distillation stage, respectively.
    Type: Application
    Filed: November 12, 2012
    Publication date: January 8, 2015
    Applicant: Casale SA
    Inventors: Ermanno Filippi, Raffaele Ostuni
  • Patent number: 8916740
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Gregory R. Werba, Jason T. Corradi, David W. Ablin
  • Patent number: 8845865
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 30, 2014
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8828192
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In an embodiment of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product, and an electric motor with motor rotor and magnets hermetically sealed within the fluid pressure boundary of the distillation system.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: September 9, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Scott A. Leonard, Kingston Owens
  • Publication number: 20140131191
    Abstract: In a heat integrated distillation column (HIDiC), the product purity can be stably maintained against various disturbances. Provided is a method for controlling a distillation apparatus, which includes a high-pressure part including the whole or a part of a rectifying section and performing gas-liquid contact at a relatively high pressure; a low-pressure part including the whole or a part of a stripping section and performing gas-liquid contact at a relatively low pressure; a line for directing overhead vapor of the low-pressure part to a column bottom of the high-pressure part; a line for directing a column bottom liquid of the high-pressure part to a column top of the low-pressure part; and a heat exchange structure for transferring heat from the rectifying section to the stripping section, wherein the method includes controlling a flow rate of the column bottom liquid to be directed from the high-pressure part to the low-pressure part.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Kouichi Tachikawa, Takato Nakao
  • Patent number: 8603301
    Abstract: A method and apparatus for producing high purity distillate in evaporators. is useful for evaporation of waters where volatile silica or organic compounds are encountered such as in production of hydrocarbons from geological formations. An evaporator having a contaminant reduction system is provided. The contaminant reduction system includes an upflow first mist eliminator portion to remove entrained liquid droplets and produce an intermediate purity water vapor stream. A continuous spray system provides a spray of dilute caustic solution in a selected spray configuration for mass transfer contact with the passing intermediate purity water vapor stream, to remove volatile silica compounds therefrom, and produce a partially decontaminated steam stream having mist particles therein. An upflow second mist eliminator portion is provided to remove the residual mist particles, and produce a high purity water vapor stream. The high purity water vapor stream is condensed to provide a high purity distillate stream.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: William F. Heins, Gregg L. Wilson
  • Publication number: 20130153400
    Abstract: An apparatus and method for the regeneration of absorbed gas rich capture medium such as an absorption solution and the recovery of absorbed gas therefrom, an apparatus and method for the removal and recovery of a target gas from a gas stream, and the use of the same for post combustion carbon capture on a thermal power plant are described. The apparatus and method make use of a regenerative heating process. The apparatus and method are distinctly characterized by the use of CRH steam as a source of thermal energy for the heating process.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 20, 2013
    Inventors: Scott Alexander Hume, Agnieszka Magdalena Kuczynska
  • Patent number: 8440056
    Abstract: Provided is a heat integrated distillation apparatus includes: rectifying column including a trayed section or a packed bed section; stripping column including a trayed section or a packed bed section located higher than rectifying column; first pipe for connecting top part of the stripping column with bottom part of the rectifying column; and compressor that compresses vapor from top part of the stripping column to feed the compressed vapor to bottom part of the rectifying column. The heat integrated distillation apparatus further includes: heat exchanger located either at the trayed section or a packed bed section of rectifying column or at the trayed section or a packed bed section of stripping column; second pipe; and third pipe for circulating fluids through the heat exchanger.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: May 14, 2013
    Assignees: National Institute of Advanced Industrial Science and Technology, Toyo Engineering Company
    Inventors: Masaru Nakaiwa, Toshihiro Wakabayashi, Akihiko Tamakoshi
  • Patent number: 8328995
    Abstract: A method and a system to produce a distillate stream from an aqueous stream containing at least one dissolved solid by a thermal distillation process using at least one of a heated aqueous stream from a turbine system intercooler and a stack heater as a heat source.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: December 11, 2012
    Assignee: Black & Veatch Holding Company
    Inventor: Michael J. Eddington
  • Patent number: 8323457
    Abstract: Systems and methods for separating a multi-component fluid are provided. The method can include introducing a multi-component fluid to a dividing wall column. The multi-component fluid can be heated to provide a first product, a second product, an intermediate distillate, and a process fluid. At least a portion of the first product can be compressed to provide a compressed first product. Heat can be indirectly transferred from the compressed first product to at least a portion of the intermediate distillate to provide a heated intermediate distillate. The heated intermediate distillate can be recycled to the dividing wall column. The compressed first product can be expanded.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: December 4, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventors: Derek William Townsend, Cyril Collins
  • Patent number: 8317982
    Abstract: The present invention discloses a process and apparatus for utilization of waste heat of flue gas liberated from different heat sources to provide high quality water from sea/brackish.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: November 27, 2012
    Inventor: Subrahmanyam Kumar
  • Patent number: 8273220
    Abstract: A distillation column is disclosed. The column includes a plurality of rectification zones and corresponding stripping zones. Each rectification zone is linked to a heat pump or a stage of a heat pump. Overhead material from the top rectification zone is compressed and used to heat bottoms liquid from the bottom stripping zone. Similarly, overhead material from a lower rectification zone is compressed and used to heat liquid taken from the uppermost or top stripping zone. Optionally, overhead material from a middle rectification zone is compressed and used to heat liquid from a middle stripping zone. A single multiple stage heat pump compressor may be utilized as opposed to a plurality of heat pumps. Because the heat exchanger from each rectification-stripping zone pair has a lower duty, economical stab-in heat exchangers may be utilized.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 25, 2012
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Publication number: 20120205235
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8206558
    Abstract: A processing apparatus (1) for the processing of process or industrial wastewaters is provided. The processing apparatus (1) has an evaporator (4) in which a tube bundle heat exchanger is provided, whose pure distillate side is connected to a separating apparatus for separating the distillate from floating organic phase or similar free liquid constituents. This separating apparatus is intended to collect the floating organic phase from the condensate, in order that this phase can be sucked back into the evaporator (4). In addition, the vapor mixture is conducted from the separating apparatus (8) to a recuperator (3) and cooled to such an extent that the water, the volatile solvents and the organic material dissolved in the vapor can be condensed and discharged separately or can be sucked back into the evaporator (4). This allows significantly better distillate qualities to be achieved.
    Type: Grant
    Filed: February 3, 2007
    Date of Patent: June 26, 2012
    Assignee: H20 GmbH
    Inventors: Matthias Fickenscher, Daniel Ladenberger
  • Patent number: 8182654
    Abstract: A process for reducing the energy consumption of a distillation column is disclosed. The process includes drawing off an intermediate vapor stream from the rectification section of the distillation column. The vapor stream is compressed and the heat in the vapor stream is exchanged with a portion of the liquid bottoms stream. The heat transfer condenses a portion of the vapor stream, while vaporizing the liquid bottoms stream.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 22, 2012
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, David A. Wegerer
  • Patent number: 8172988
    Abstract: The system contains a liquid-tight enclosure. An input source is connected to the liquid-tight enclosure for inputting water into the liquid-tight enclosure. A heating element is in thermal communication with at least a portion of the water within the liquid-tight enclosure. A plurality of substantially vertical plates are aligned along a substantially horizontal axis within the liquid-tight enclosure. Each of the substantially vertical plates has an opening. A groove is formed along each of the substantially vertical plates. A first end of the groove on each of the substantially vertical plates is proximate to the opening. At least one manifold extends through a plurality of the openings of the substantially vertical plates. The manifold is in fluid communication with a plurality of the first ends of the grooves. An output opening is formed in the liquid-tight enclosure. The output opening is arranged in fluid communication with the manifold.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: May 8, 2012
    Assignee: Distillation Technologies, LLC
    Inventor: Samuel T. Kjellman
  • Patent number: 8128787
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Nicholas P. Wynn, Yu Huang, Masakatsu Urairi, Richard W Baker
  • Publication number: 20120048719
    Abstract: The invention relates to a method for thermally separating silane mixtures, which contain silanes, selected from alkylchlorosilanes and hydrochlorosilanes, in a distillation apparatus, in which at least part of the heat for heating the distillation apparatus is transferred by vapors of another distillation apparatus, and in which a silane product is obtained having impurities of no more than 200 ppm.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 1, 2012
    Applicant: WACKER CHEMIE AG
    Inventors: Peter Nuernberg, Birgit Froebel, Michael Hallmann, Christian Kaltenmarkner, Benedikt Postberg
  • Publication number: 20120048718
    Abstract: An aromatics complex producing one or more xylene isomers offers a large number of opportunities to conserve energy by heat exchange within the complex. One previously unrecognized opportunity is through providing two parallel distillation columns operating at different pressures to separate C8 aromatics from C9+ aromatics. The parallel columns offer additional opportunities to conserve energy within the complex.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 1, 2012
    Applicant: UOP LLC
    Inventors: Gregory R. Werba, Jason T. Corradi, David W. Ablin
  • Patent number: 8114255
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 14, 2012
    Assignee: Membrane Technology & Research, Inc.
    Inventors: Leland M Vane, Franklin R Alvarez, Yu Huang, Richard W Baker
  • Patent number: 8075740
    Abstract: A system for treating feedwater includes a fluidized bed heat exchanger unit connected to receive feedwater and a flash concentrator column connected to receive feedwater discharged from the fluidized bed heat exchanger unit. A spray dryer is provided to receive a solids/liquid slurry discharged from the flash concentrator column. Feedwater can be treated by converting dissolved solids in the feedwater to suspended solids, vaporizing a portion of the feedwater to produce a solids/liquid slurry, and separating solids from the solids/liquid slurry.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 13, 2011
    Assignees: AHT Solutions, LLC, Watervap, LLC
    Inventors: Robert E. Bailie, Robert R. Wright
  • Publication number: 20110203915
    Abstract: A solar distillation apparatus utilizing a substantially vertical reactor assembly is disclosed. The reactor consists of a tubular outer shell, a base, a cap, and a central tension member. The annular space between the outer tube and the central tension member forms the reactor chamber. Seawater or other feed liquid enters the reactor chamber through the base plate. Reflected or direct solar energy heats the feed liquid, generating low pressure vapor. The vapor exits the reactor through the cap structure or the base. The concentrate left behind settles by gravity to the bottom region of the reactor's liquid column. Extension tubes on the feed openings allow feed liquid to enter the liquid column above the concentrate layer and avoid excessive mixing of the feed liquid and the concentrate. The concentrate exits the reactor through one or more openings in the base.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Inventor: Miles McClure
  • Patent number: 7981256
    Abstract: A splitter system is disclosed that produces a product stream from a mixed stream of two materials with similar boiling points. A multi-stage heat pump compressor is used in combination with a bottoms reboiler and an intermediate reboiler resulting in reduced utility consumption. The appropriately placed intermediate reboiler enables use of a lower temperature heat source relative to the bottoms reboiler heat source. As a result, a lower pressure overhead vapor stream can be used to deliver heat to both the intermediate and bottoms reboilers, thereby conserving energy. The first stage of the multi-stage heat pump compressor delivers pressurized overhead vapor to the intermediate reboiler and the second stage provides pressurized overhead vapor to the bottoms reboiler. The disclosed design and method lessens the heat pump compressor power consumption and trim condenser duty for a propylene/propane splitter system by over 20%.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Paul A. Sechrist
  • Patent number: 7967955
    Abstract: A process for treating produced water to generate high pressure steam. Produced water from heavy oil recovery operations is treated by de-oiling the produced water to provide a de-oiled evaporator feedwater that is fed to an evaporator. The pretreated produced water stream is evaporated to produce (1) a distillate having a trace amount of residual solutes therein, and (2) evaporator blowdown containing substantially all solutes from the de-oiled produced water feed. The distillate may be directly used, or polished to remove the residual solutes therein, before being fed to a steam generator. Steam generation in a once-through steam generator, or in a packaged boiler such as a water tube boiler having a steam drum and a mud drum with water cooled combustion chamber walls, produces high pressure steam for down-hole use.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: June 28, 2011
    Assignee: GE Ionics, Inc.
    Inventor: William F. Heins
  • Patent number: 7955476
    Abstract: A multiple application recycling and purification device has a coaxial core that is horizontally oriented, non-rotating, cylindrical distillation chamber. The enhanced, completely coaxial configuration continuously cleans the entire distillation chamber and spreads a thin film of liquid to enhance distillation and positively aid in the removal of remaining contaminants. Through a timed and positioned valve, the device removes and purges lower-temperature contaminants. Timed valves and sensors control all phases of the distillation to provide a coaxially integrated, stand-alone, adaptable, scalable and maintenance free distillation unit that self-monitors, self-cleans and economically functions to produce the pure distilled liquid, e.g., water. This device can be modified to purify any numerous array of liquids and can be scaled to produce any amount of purified liquids for either household, commercial, or industrial applications.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: June 7, 2011
    Assignee: Mansur Corporation
    Inventor: Pierre G. Mansur
  • Patent number: 7927464
    Abstract: A vapor compression distillation system (10) is provided and includes a fluid inlet (12) for receiving a fluid, a fluid outlet (14) for a distillate that has been distilled from the fluid, a heat exchanger (16) connected to the fluid inlet (12) and the fluid outlet (14) to transfer heat from the distillate to the fluid; and an integrated motor/compressor unit (18) connected to the heat exchanger (16) to receive vaporized distillate therefrom and to supply pressurized distillate thereto. The system 10 may further include a coolant system (20) connected to the integrated motor/compressor (18) to supply a coolant flow thereto. The system (10) may also include an air oil mist system (22) that is connected to the integrated motor/compressor unit (18) to supply an air oil mist thereto for bearing lubrication and cooling.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: April 19, 2011
    Assignee: Mechanical Equipment Company, Inc.
    Inventors: George V. Gsell, Kim C. Klein
  • Patent number: 7794564
    Abstract: A multistage evaporation system is proposed in which the first evaporator is heated via a jet wet washer with superheated, air-containing waste steam, for example of a drier. The product vapor of the first evaporator stage is fed via a mechanical compressor to a second evaporator stage for heating. The compressor ensures firstly a lowering of the dew point in the evaporator space of the first evaporator stage and secondly a temperature increase of the product vapor fed to the second evaporator stage for heating.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: September 14, 2010
    Assignee: GEA Wiegand GmbH
    Inventor: Herbert Praschak
  • Patent number: 7785448
    Abstract: A method of operating an evaporator is described. In evaporator feed water, a Taylor bubble is developed which has an outer surface including a thin film in contact with an inner surface of an outer wall of an evaporator tube. The Taylor bubble is heated as it rises within the evaporator tube so that liquid in the thin film transitions into vapor within the bubble.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: August 31, 2010
    Assignee: DEKA Products Limited Partnership
    Inventor: Kingston Owens
  • Publication number: 20100108487
    Abstract: Systems and methods for separating a multi-component fluid are provided. The method can include introducing a multi-component fluid to a dividing wall column. The multi-component fluid can be heated to provide a first product, a second product, an intermediate distillate, and a process fluid. At lest a portion of the first product can be compressed to provide a compressed first product. Heat can be indirectly transferred from the compressed first product to at least a portion of the intermediate distillate to provide a heated intermediate distillate. The heated intermediate distillate can be recycled to the dividing wall column. The compressed first product can be expanded.
    Type: Application
    Filed: October 28, 2009
    Publication date: May 6, 2010
    Applicant: Kellogg Brown & Root LLC
    Inventor: Derek William Townsend
  • Patent number: 7708865
    Abstract: According to one embodiment of the invention, a vapor-compression evaporation system includes a plurality of vessels in series each containing a feed having a nonvolatile component, a mechanical compressor coupled to the last vessel in the series and operable to receive a vapor from the last vessel in the series, a pump operable to deliver a cooling liquid to the mechanical compressor, a tank coupled to the mechanical compressor and operable to separate liquid and vapor received from the mechanical compressor, a plurality of heat exchangers coupled inside respective ones of the vessels, the heat exchanger in the first vessel in the series operable to receive the vapor from the tank, at least some of the vapor condensing therein, whereby the heat of condensation provides the heat of evaporation to the first vessel in the series, and wherein at least some of the vapor inside the first vessel in the series is delivered to the heat exchanger in the next vessel in the series, whereby the condensing, evaporating, a
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: May 4, 2010
    Assignees: Texas A&M University System, StarRotor Corporation
    Inventors: Mark T. Holtzapple, Gary P. Noyes, George A. Rabroker
  • Patent number: 7681643
    Abstract: A process for conditioning of wastewater treatment brines for deep well injection during recovery of heavy hydrocarbon oils in situ. High pressure steam is used to mobilize oil, which is recovered in a mixture of oil and produced water. The produced water is pre-treated by removing residual oil. The remaining water is acidified and steam stripped to remove non-hydroxide alkalinity and non-condensable gases, and is then fed to a crystallizing evaporator, where it is evaporated from a circulating brine slurry to produce (1) a distillate stream having a trace amount of residual solutes, and (2) evaporator blowdown stream containing, as dissolved or suspended solids, substantially all of the solutes from the produced water feed. The distillate stream is used as boiler feedwater, either directly or after polishing. The evaporator blowdown is conditioned to remove substantially all suspended solids and to produce a clear brine solution for deep well injection.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 23, 2010
    Assignee: GE Ionics, Inc.
    Inventor: William F. Heins
  • Publication number: 20100025218
    Abstract: An improved process for the production of olefins, and in particular for separation of olefins produced by a dehydrogenation process from paraffin feed stocks, is provided. A high pressure product splitter is used to separate olefins produced in a dehydrogenation plant from residual paraffin feed stocks. The use of a high pressure splitter to separate olefin products from paraffin feed stocks allows for recovery of a high purity olefin product with lower energy consumption compared to prior art processes. The process is particularly suited to separation of propylene from propane.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Inventor: Sunil Panditrao
  • Patent number: 7438129
    Abstract: A process for treating produced water to generate high pressure steam. Produced water from heavy oil recovery operations is treated by first removing oil and grease. Feedwater is then acidified and steam stripped to remove alkalinity and dissolved non-condensable gases. Pretreated produced water is then fed to an evaporator. Up to 95% or more of the pretreated produced water stream is evaporated to produce (1) a distillate having a trace amount of residual solutes therein, and (2) evaporator blowdown containing substantially all solutes from the produced water feed. The distillate may be directly used, or polished to remove the trace residual solutes before being fed to a steam generator. Steam generation in a packaged boiler, such as a water tube boiler having a steam drum and a mud drum with water cooled combustion chamber walls, produces 100% quality high pressure steam for down-hole use.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: October 21, 2008
    Assignee: GE Ionics, Inc.
    Inventor: William F. Heins
  • Patent number: 7428926
    Abstract: A process for treating produced water to generate high pressure steam. Produced water from heavy oil recovery operations is treated by first removing oil and grease. Pretreated produced water is then fed to an evaporator. Up to 95% or more of the pretreated produced water stream is evaporated to produce (1) a distillate having a trace amount of residual solutes therein, and (2) evaporator blowdown containing substantially all solutes from the produced water feed. The distillate may be directly used, or polished to remove the trace residual solutes before being fed to a steam generator. Steam generation in a packaged boiler, such as a water tube boiler having a steam drum and a mud drum with water cooled combustion chamber walls, produces 100% quality high pressure steam for down-hole use.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: September 30, 2008
    Assignee: GE Ionics, Inc.
    Inventor: William F. Heins
  • Patent number: 7384501
    Abstract: A method for the preparation of pulp by means of alkaline cooking, in which method spent liquor is transferred to pressurized tanks, and at least one liquor is expanded corresponding to a temperature difference of 1 to 5° C. The generated steam is led to turpentine recovery. Thus, the removal of turpentine and gases dissolved in said liquor is effective, the amount of recovered turpentine increases, and pulp of better washability and higher quality is obtained.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: June 10, 2008
    Assignee: Metso Paper Pori Oy
    Inventors: Päivi Uusitalo, Mikael Svedman, Jukka Vaistomaa, Hannu Haaslahti
  • Patent number: 7368039
    Abstract: A distillation unit (10) employs a rotary heat exchanger (32) forming a multiplicity of evaporation chambers (56) into which a liquid to be purified is sprayed for evaporation. Spray arms (58) spray at a steady rate into all of the evaporation chambers (56) simultaneously but not at a rate that is adequate to maintain the wetting required for efficient transfer of heat to the liquid. A scanning sprayer (140) supplements this steady spray with spray from nozzles (142 and 144) into only a few of the evaporation chambers at a time, visiting all of them cyclically. The overall rate of spray from the two sources thus combined to spray the chamber cyclically maintains proper wetting even though on average it is lower than the rate that would be required of a constant-rate spray into all of the evaporation chambers.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: May 6, 2008
    Assignee: Zanaqua Technologies, Inc.
    Inventor: William H. Zebuhr
  • Patent number: 7150320
    Abstract: A process for treating produced water to generate high pressure steam. Produced water from heavy oil recovery operations is treated by first removing oil and grease. If necessary, the pH is then adjusted, normally downward, releasing at least some carbonate alkalinity as free carbon dioxide. Pretreated produced water is then fed to an evaporator. Up to 95% or more of the pretreated produced water stream is evaporated to produce (1) a distillate having a trace amount of residual solutes therein, and (2) evaporator blowdown containing substantially all solutes from the produced water feed. The distillate may be directly used, or polished to remove the trace residual solutes before being fed to a steam generator. Steam generation in a packaged boiler, such as a water tube boiler having a steam drum and a mud drum with water cooled combustion chamber walls, produces 100% quality high pressure steam for down-hole use.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: December 19, 2006
    Inventor: William F. Heins
  • Patent number: 7077201
    Abstract: An evaporation based method of treating produced water from heavy oil production. A produced water from heavy oil recovery operations treated by first removing oil and grease to a desired level, preferably to about twenty parts per million, or less. If necessary, the pH is then adjusted, normally downward and by acid addition, to release at least some carbonate alkalinity as free carbon dioxide. Preferably, all non-hydroxide alkalinity is removed, or substantially so, by introducing the feedwater into a decarbonator. Feedwater is introduced into an evaporator, and the feedwater is evaporated to a selected concentration factor to produce (1) a distillate having a small amount of residual solutes, and (2) evaporator blowdown containing residual solids. Distillate may be directly used for steam generation in a once-through steam generator, or polished by ion exchange or electrodeionization prior to feed to a packaged boiler.
    Type: Grant
    Filed: November 30, 2002
    Date of Patent: July 18, 2006
    Assignee: GE Ionics, Inc.
    Inventor: William F. Heins
  • Patent number: 6966974
    Abstract: The invention relates to a method for evaporating a solution and an evaporator applied to it. The evaporator (1) has parallel plate heat exchanger elements (3) fitted inside a jacket (2), consisting of a flexible plastic film, for example, and a liquid distribution space (4) common to the elements, from where the solution to be evaporated can be spread, through supply channels (6), on the heat transmission surfaces (4) of the elements to run from the top downwards. The solution (10) that has not evaporated on the surfaces is recycled from the bottom of the evaporator back to the liquid distribution space, and from there to the heat transmission surfaces (4) of the elements for re-evaporation. In connection with evaporation, precipitate is separated from the solution as a result of over-saturation, ending up in the recirculation flow with the solution and being separated from the solution in the liquid distribution space (14) that works as a separator for the precipitate.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: November 22, 2005
    Assignee: Oy Casparado AB
    Inventors: Leif Ramm-Schmidt, Kari Myreen, Matti Laajaniemi
  • Patent number: 6906234
    Abstract: A continuous method and a heat pump device for enrichment of low-concentrated reaction mixtures resulting from the production of cycloalkanedienes by means of catalytic metathesis of cyclic aliphatic alkenes and cyclooligomers in organic reaction media with reduced energy consumption. Using the heat pump principle, liquid reaction mixtures with a content of at least 0.1 w/w % are enriched in an organic reaction medium to 30 to 50 w/w %. The organic reaction medium at temperature T1 is evaporated in an evaporator, the vapor is withdrawn and compressed to temperature T2 in a compressor, at a pressure difference of 0.25 to 1 bar. Compressed vapor of the reaction medium transfers heat energy obtained from electric energy in the heat exchanger of the evaporator to the organic reaction medium at temperature T1, and the temperature difference (T2?T1) does not exceed 12 K.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: June 14, 2005
    Assignee: Symrise GmbH & Co. KG
    Inventors: Jürgen Braband, Peter Müller, Rüdiger Bernhardt, Andreas Otto