Silver-containing Active Material Patents (Class 205/65)
  • Publication number: 20140284215
    Abstract: Disclosed is an anode for a lithium secondary battery. The anode includes a current collector in the form of a wire and a porous anode active material layer coated to surround the surface of the current collector. The three-dimensional porous structure of the active material layer increases the surface area of the anode. Accordingly, the mobility of lithium ions through the anode is improved, achieving superior battery performance. In addition, the porous structure allows the anode to relieve internal stress and pressure, such as swelling, occurring during charge and discharge of a battery, ensuring high stability of the battery while preventing deformation of the battery. These advantages make the anode suitable for use in a cable-type secondary battery. Further disclosed is a lithium secondary battery including the anode.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Yo-Han KWON, Je-Young KIM, Ki-Tae KIM, Heon-Cheol SHIN, Hyung-Man CHO, Hye-Ran JUNG
  • Publication number: 20140050979
    Abstract: The present invention relates to an anode active material for a lithium secondary battery, comprising a carbon material, and a coating layer formed on the surface of particles of the carbon material and having a plurality of Sn-based domains having an average diameter of 1 ?m or less. The inventive anode active material having a Sn-based domains coating layer on the surface of a carbon material can surprisingly prevent stress due to volume expansion which generates by an alloy of Sn and lithium. Also, the inventive method for preparing an anode active material can easily control the thickness of the coating layer.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 20, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sang-Wook Woo, Ki-Tae Kim, Yo-Han Kwon
  • Publication number: 20130206233
    Abstract: The invention relates to manufacturing a I-III-VI compound in the form of a thin film for use in photovoltaics, including the steps of: a) electrodepositing a thin-film structure, consisting of I and/or III elements, onto the surface of an electrode that forms a substrate (SUB); and b) incorporating at least one VI element into the structure so as to obtain the I-III-VI compound. According to the invention, the electrodeposition step comprises checking that the uniformity of the thickness of the thin film varies by no more than 3% over the entire surface of the substrate receiving the deposition.
    Type: Application
    Filed: October 10, 2011
    Publication date: August 15, 2013
    Applicant: NECIS
    Inventors: Pierre-Philippe Grand, Salvador Jaime, Philippe De Gasquet, Hariklia Deligianni, Lubomyr T. Romankiw, Raman Vaidyantahan, Qiang Huang, Shafaat Ahmed
  • Publication number: 20130168254
    Abstract: A process for the electrochemical deposition of nanoscale catalyst particles using a sacrificial hydrogen anode as counter electrode for the working electrode is disclosed, whereby a concurrent development of hydrogen at the working electrode is mostly or completely avoided.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 4, 2013
    Applicant: Universität des Saarlandes
    Inventor: Universität des Saarlandes
  • Publication number: 20100273085
    Abstract: The present invention describes a method and an apparatus for the electrochemical deposition of fine catalyst particles onto carbon fibre-containing substrates which have a compensating layer (“microlayer”). The method comprises the preparation of a precursor suspension containing ionomer, carbon black and metal ions. This suspension is applied to the substrate and then dried. The deposition of the catalyst particles onto the carbon fibre-containing substrate is effected by a pulsed electrochemical method in an aqueous electrolyte. The noble metal-containing catalyst particles produced by the method have particle sizes in the nanometer range. The catalyst-coated substrates are used for the production of electrodes, gas diffusion electrodes and membrane electrode units for electrochemical devices, such as fuel cells (membrane fuel cells, PEMFC, DMFC, etc.), electrolysers or electrochemical sensors.
    Type: Application
    Filed: February 15, 2008
    Publication date: October 28, 2010
    Applicant: SOLVICORE GMBH & CO. KG
    Inventors: Harald Natter, Vivien Keller, Rolf Hempelmann, Marco Lopez
  • Patent number: 5981793
    Abstract: The slightly water-soluble metal salts having the formula I ##STR1## wherein R.sub.1 and R.sub.2 are the same or different and represent hydrogen or a lower alkyl group of from 1 to 3 carbon atoms, M is the cation of a metal which forms slightly water-soluble sulfides, and n means 1 or 2, and mixtures thereof are prepared by reacting carbon disulfide with ketones having the formula II: ##STR2## optionally with the addition of non-aqueous inert solvents, in the presence of strong alkali, preferably potassium hydroxide, followed by precipitation of the slightly water-soluble metal salts of formula I by the addition of aqueous solutions of metal salts of the metals M. They are used as gloss additives to electrolytic baths.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: November 9, 1999
    Assignee: Blasberg Oberflachentechnik GmbH
    Inventors: Eberhard Knaak, Joachim Heyer, Marlies Kleinfeld, Christel Van Wijngaarden
  • Patent number: 5338596
    Abstract: A lead storage battery is filled with electrolyte in two steps. In a first step, the filling electrolyte is a sulfuric acid which does not contain a gelling agent, and the amount of electrolyte introduced into the battery casing is selected so that the electrolyte fills only the pores in the active compound of the electrodes and the pores of the separators (to the extent that they are capable of retaining the absorbed liquid by capillary action). In a second step, the filling electrolyte is a thixotropic mixture of sulfuric acid and silicic acid, which fills the remaining electrolyte space. The state of the electrode plates that are used (i.e., formed or unformed) determines the density of the sulfuric acid used in both portions of the filling process. In the case of formed plates, the density conforms to the normal final acid density for a charged storage battery.
    Type: Grant
    Filed: December 24, 1992
    Date of Patent: August 16, 1994
    Assignee: Varta Batterie Aktiengesellschaft
    Inventors: Dieter Bechtold, Jurgen Vollbert