Using Ion Exchange Resin Patents (Class 205/792.5)
  • Publication number: 20140335425
    Abstract: A polymer that provides for effective proton/cation transfer within, through, across the polymer. The polymer may be used in an electrochemical sensor and may include a redox active species and a facilitator of proton transfer that may provide for the “shuttling”/transfer of a proton through the polymer. As such, the polymer may provide for protons to be transferred through the polymer from or to a conducting substrate. The polymer may also provide for separation of components, fluids, materials in an electrochemical system while still allowing for a transfer, shuttling of protons or cations between the components, fluids or material. The proton, cation transfer polymer may be used in a battery, an electrochemical sensor or a fuel cell.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Nathan Lawrence, Steven Antony Gahlings
  • Publication number: 20140065513
    Abstract: An ion-conducting composite electrolyte is provided comprising path-engineered ion-conducting ceramic electrolyte particles and a solid polymeric matrix. The path-engineered particles are characterized by an anisotropic crystalline structure and the ionic conductivity of the crystalline structure in a preferred conductivity direction H associated with one of the crystal planes of the path-engineered particle is larger than the ionic conductivity of the crystalline structure in a reduced conductivity direction L associated with another of the crystal planes of the path-engineered particle. The path-engineered particles are sized and positioned in the polymeric matrix such that a majority of the path-engineered particles breach both of the opposite major faces of the matrix body and are oriented in the polymeric matrix such that the preferred conductivity direction H is more closely aligned with a minimum path length spanning a thickness of the matrix body than is the reduced conductivity direction L.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Inventors: Michael Edward Badding, Jacqueline Leslie Brown, Katherine A. Fink, Atanas Valentinov Gagov, Cameron Wayne Tanner
  • Patent number: 8206567
    Abstract: A reference electrode traps silver ions and chloro complex ions leaching to an internal filling solution so that the blocking of the liquid junction can be prevented. A silver/silver chloride electrode can be provided as an internal electrode in an internal filling solution; and a tube which houses, in order from top to bottom, the internal electrode, an inorganic cation exchanger for trapping silver ions and/or chloro complex ions from leaching from the internal electrode, and a ceramic member for preventing the diffusion of the silver ions and/or the chloro complex ions to the internal filling solution.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 26, 2012
    Assignee: Horiba, Ltd.
    Inventors: Yasukazu Iwamoto, Naomi Kitaoka
  • Patent number: 8197666
    Abstract: A method serves the production of one or more gases, in particular of oxyhydrogen. A liquid, preferably water (9), is electrolytically treated in the method. To improve the efficiency of a method of this type, a substance is present in the liquid (9) to which the or one of the gases to be produced adheres, in particular an ion exchanger (10) (single FIGURE).
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: June 12, 2012
    Inventor: Franz Roiner
  • Patent number: 7811433
    Abstract: An electrochemical sensor is provided for the detection of carbon dioxide gas. The sensor includes a non-conductive solid substrate and at least one each of a metal oxide sensing electrode, a reference electrode and a counter electrode positioned on the substrate. A solid polymer electrolyte anion-exchange membrane is in intimate contact with the sensing electrode, reference electrode and counter electrode. The sensor is highly sensitive and selective to carbon dioxide and has very rapid response time.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: October 12, 2010
    Assignee: Giner, Inc.
    Inventors: Mourad Manoukian, Anthony B. LaConti, Linda A. Tempelman, John Forchione
  • Publication number: 20100176006
    Abstract: An electronic device includes a substrate and a plurality of sensors. Each sensor is disposed in a well over the substrate and includes a working electrode, an inner filling solution disposed thereover, and an ion-selective membrane. The working electrode is in contact with the substrate and the ion-selective membrane is disposed over the inner filling solution and substantially seals the well.
    Type: Application
    Filed: August 14, 2009
    Publication date: July 15, 2010
    Inventors: James A. Bickford, John R. Williams, Daniel I. Harjes, Andrew Reiter
  • Publication number: 20090075139
    Abstract: The present invention provides a catalytic system comprising a catalyst comprising nanoporous or mesoporous palladium and an ion-exchange electrolyte, processes for manufacturing the catalytic system and catalyst, and processes for oxidising or reducing organic and/or inorganic molecules using the catalyst or catalytic system.
    Type: Application
    Filed: January 5, 2005
    Publication date: March 19, 2009
    Applicant: IC INNOVATIONS LIMITED
    Inventors: Anthony Kucernak, Junhua Jiang
  • Publication number: 20040055901
    Abstract: The present invention relates to a substrate and a method for obtaining an electrophysiological measuring configuration in which a cell forms a high resistive seal (giga-seal) around a measuring electrode making it suitable for determining and monitoring a current flow through the cell membrane. The substrate is typically part of an apparatus for studying electrical events in cell membranes, such as an apparatus for carrying out patch clamp techniques utilised to study ion transfer channels in biological membranes. The substrate has a plurality or an array of measuring sites with integrated measuring and reference electrodes formed by wafer processing technology. The electrodes are adapted to conduct a current between them by delivery of ions by one electrode and receipt of ions by the other electrode and are typically silver/silver halide electrodes.
    Type: Application
    Filed: October 23, 2003
    Publication date: March 25, 2004
    Applicant: Sophion Bioscience A/S
    Inventors: Jon Wulff Petersen, Pieter Telleman, Ole Hansen, Palle Christophersen, Morten Bech, Soren Peter Olesen, Jorgen Due, Lars Thomsen
  • Publication number: 20030066763
    Abstract: This invention provides a gas sensor including a proton-conductive polymer electrolyte layer and a method for measuring gas concentration, that are capable of measuring gas concentration at high accuracy nothwithstanding the presence of water vapor.
    Type: Application
    Filed: May 15, 2002
    Publication date: April 10, 2003
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Masaya Watanabe, Norihiko Nadanami, Tomonori Kondo, Ryuji Inoue, Takafumi Oshima, Noboru Ishida
  • Patent number: 6265224
    Abstract: The present invention relates to methods in which ion exchange resins are used to reduce the amount of substances which interfere with nucleic acid hybridization in samples. The methods also stabilize the samples. Kits containing the ion exchange resins render the methods convenient to use.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: July 24, 2001
    Assignee: Becton, Dickinson and Company
    Inventors: Matthew P. Collis, Anne B. Brown, Oscar J. Llorin, Thomas L. Fort