Critical Work Component, Temperature, Or Pressure Patents (Class 228/262.1)
  • Patent number: 11654498
    Abstract: A process for producing an amorphous ductile brazing foil is provided. According to one example embodiment, the method includes providing a molten mass, and rapidly solidifying the molten mass on a moving cooling surface with a cooling speed of more than approximately 105° C./sec to produce an amorphous ductile brazing foil. A process for joining two or more parts is also provided. The process includes inserting a brazing foil between two or more parts to be joined, wherein the parts to be joined have a higher melting temperature than that the brazing foil to form a solder joint and the brazing foil comprises an amorphous, ductile Ni-based brazing foil; heating the solder joint to a temperature above the liquidus temperature of the brazing foil to form a heated solder joint; and cooling the heated solder joint, thereby forming a brazed joint between the parts to be joined.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: May 23, 2023
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Patent number: 11612947
    Abstract: A method of diffusion bonding utilizing vapor deposition comprises depositing a coating from a vapor comprising a temperature suppressant element onto a surface of a first component comprising a metal alloy, thereby forming a vapor deposited coating comprising the temperature suppressant element; assembling the first component with a second component comprising a mating surface to form an assembly, the vapor deposited coating contacting the mating surface; and exposing the assembly to a bonding temperature and a compressive force, thereby diffusion bonding the first component to the second component and forming a monolithic third component.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 28, 2023
    Assignee: ROLLS-ROYCE CORPORATION
    Inventors: Joseph P. Henderkott, Timothy Fuesting
  • Patent number: 11377720
    Abstract: Nickel based alloys capable of forming bulk metallic glass are provided. The alloys include Ni—Cr—Si—B compositions, with additions of P and Mo, and are capable of forming a metallic glass rod having a diameter of at least 1 mm. In one example of the present disclosure, the Ni—Cr—Mo—Si—B—P composition includes about 4.5 to 5 atomic percent of Cr, about 0.5 to 1 atomic percent of Mo, about 5.75 atomic percent of Si, about 11.75 atomic percent of B, about 5 atomic percent of P, and the balance is Ni, and wherein the critical metallic glass rod diameter is between 2.5 and 3 mm and the notch toughness between 55 and 65 MPa m1/2.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: July 5, 2022
    Assignee: Glassimetal Technology Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Patent number: 8955554
    Abstract: Provided is a submerged arc welding method for a steel plate. In welding the steel plate from an internal surface or an external surface by a submerged arc welding, welding condition is set such that, a cross-sectional area of internal weld metal S1 and a cross-sectional area of external weld metal S2 satisfy the formula (1), the formula (2), and the formula (3), that is, 0.40?(S1+S2)/t2?0.80 . . . (1), S1/t2?0.35 . . . (2), and S2/t2?0.45 . . . (3), wherein t is a plate thickness of the steel plate (mm), S1 is a cross-sectional area of the internal weld metal (mm2) excluding the cross-sectional area of a portion of the internal weld metal overlapping with the external weld metal after external welding, and S2 is a cross-sectional area of the external weld metal (mm2).
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: February 17, 2015
    Assignee: JFE Steel Corporation
    Inventors: Atsushi Ishigami, Kenji Oi, Naoya Hayakawa
  • Publication number: 20150017052
    Abstract: A method for joining metal components by welding includes welding a first component to a second component. At least one of the components is a nitrogen-containing component, and titanium is added to at least one of the components before the welding step.
    Type: Application
    Filed: November 15, 2012
    Publication date: January 15, 2015
    Inventor: Mario Matic
  • Patent number: 8899470
    Abstract: A method is disclosed for mechanically bonding a metal component to a ceramic material, comprising providing a metal component comprising an anchor material attached to at least a first portion of one surface of the metal component; providing a ceramic material having a first surface and a second surface, wherein the ceramic material defines at least one conduit extending from the first surface to the second surface, wherein the at least one conduit has a first open end defined by the first surface, a second open end defined by the second surface, a continuous sidewall and a cross sectional area; positioning the ceramic material such that at least a portion of the at least one conduit is in overlying registration with at least a portion of the anchor material; and applying a bonding agent into at least a portion of the at least one conduit.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: December 2, 2014
    Assignee: Corning Incorporated
    Inventors: David M. Lineman, Wenchao Wang, Randy D. Ziegenhagen
  • Patent number: 8870053
    Abstract: A method of forming a brazed joint is provided in which a surface portion of a first metal part is placed in contact with a surface portion of a second metal part to form a contact area therebetween, and the first and second metal parts include copper, silver and/or gold as the primary base metal(s) and at least the surface portion of the first metal part is a modified alloy of the primary base metal(s) having 0.5-12 wt. % phosphorus as a modifier. The surface portion of the first metal part is heated to a temperature sufficient to cause the phosphorus to wet the surface portion of the second metal part and to flow a low melting portion of the first metal part into the contact area by capillary attraction to form the brazed joint between the first and second metal parts.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: October 28, 2014
    Inventor: Joseph W. Harris
  • Publication number: 20140277316
    Abstract: In some examples, the disclosure relates to a medical device comprising a lead including an electrically conductive lead wire; and an electrode electrically coupled to the lead wire, the electrode including a first portion and a second portion, wherein the first portion defines an exposed outer surface of the electrode and is electrically coupled to the second portion along a first interface, wherein the second portion is electrically coupled to the lead wire along a second interface different from the first interface via welding to couple the lead wire to the electrode, wherein an electrical signal may be transferred between the lead wire and exposed outer surface of the first portion via the second portion, and wherein the first portion is formed from a first material having a first composition, and the second portion is formed from a second material having a second composition different from the first composition.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xingfu Chen, Bernard Q. Li, Richard T. Stone, Dale F. Seeley, Alan Shi
  • Patent number: 8733620
    Abstract: A solder is deposited on a heat sink. The solder is first reflowed at a first temperature that is below about 120° C. The solder is second heat aged at a temperature that causes the first reflowed solder to have an increased second reflow temperature. The heat aging process results in less compressive stress in a die that uses the solder as a thermal interface material. The solder can have a composition that reflows and adheres to the die and the heat sink without the use of organic fluxes.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: May 27, 2014
    Assignee: Intel Corporation
    Inventors: Mukul Renavikar, Susheel G. Jadhav
  • Publication number: 20130333165
    Abstract: Embodiments relates to a fastener having a head portion and an interlock portion comprising a bulk solidifying amorphous alloy comprising a metal alloy. The fastener could further have a screw portion. Other embodiments relate to methods of making and using the fasteners.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: APPLE INC.
    Inventors: Christopher D. PREST, Matthew S. SCOTT, Stephen P. ZADESKY, Richard W. HELEY, Dermot J. STRATTON, Joseph C. POOLE
  • Patent number: 8608049
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 17, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
  • Patent number: 8602290
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Joel G. Scrafton, Casey Harmon
  • Publication number: 20130306197
    Abstract: Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Quoc Tran Pham, Theodore Andrew Waniuk
  • Publication number: 20130177467
    Abstract: A method for preparing an implant having a porous metal component. A loose powder mixture including a biocompatible metal powder and a spacing agent is prepared and compressed onto a metal base. After being compressed, the spacing agent is removed, thereby forming a compact including a porous metal structure pressed on the metal base. The compact is sintered, forming a subassembly, which is aligned with a metal substrate portion of an implant. A metallurgical bonding process, such as diffusion bonding, is performed at the interface of the subassembly and the metal substrate to form an implant having a porous metal component.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 11, 2013
    Applicant: BIOMET MANUFACTURING CORP.
    Inventor: Biomet Manufacturing Corp.
  • Publication number: 20130126589
    Abstract: A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.
    Type: Application
    Filed: February 13, 2012
    Publication date: May 23, 2013
    Inventors: Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law, Hsin-Hua Hu
  • Patent number: 8439252
    Abstract: A method for bonding two partially form-fitting surfaces of two metal bodies which contain the same metal is carried out by generating a first layer on the surface of a first one of the two bodies, the first layer containing a mixture of the metal and the oxide of the metal; generating a second layer on the first layer, the second layer containing the metal but less oxide of the metal than does the first layer; placing the partially form-fitting surfaces of the two metal bodies adjacent to each other; heating the bodies placed adjacent to each other to a temperature which lies in a target range below the melting point of the metal and above the eutectic temperature of the eutectic of the metal and the metal oxide; and holding the temperature within the target range over a predetermined or a controllable duration of time.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 14, 2013
    Assignee: Excelitas Technologies GmbH & Co KG
    Inventors: Ulrich Traupe, Stefan Weise, Pellegrino Ballacchino, Edgar Spandl
  • Patent number: 8393527
    Abstract: A solder apparatus includes a platform, an operating mechanism, a solder member, a heater, and a control box module. The control box module includes a temperature controller and a temperature sensor. The temperature controller defines a predetermined temperature. The temperature sensor is capable of measuring the temperature of the solder member. The temperature controller has the heater heat the solder member when the measured temperature of the solder member is lower than or equal to the predetermined temperature, and has the heater stop heating the solder member, when the measured temperature of the solder member is higher than the predetermined temperature.
    Type: Grant
    Filed: October 30, 2011
    Date of Patent: March 12, 2013
    Assignees: Hong Fu Jin Precision (WuHan) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiang-Biao Chen, Li-Ping Fan, Xiao-Li Liu, Yu-Lin Liu
  • Publication number: 20130026213
    Abstract: A one-part, storage-stable, air-dryable, latex-coatable waterborne film-forming coating composition has dispersed therein sufficient conductive material to provide an autoweldable hardened shop primer layer when applied to metal components. The thus-primed components may be welded together using automated arc welding equipment without having to remove the coating composition at the weld site. The conductive material desirably causes little or no airborne emission of unsafe quantities of heavy metals or other harmful substances when the primer is volatilized or combusted during welding.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 31, 2013
    Applicant: VALSPAR SOURCING, INC.
    Inventor: Valspar Sourcing, Inc.
  • Publication number: 20130010910
    Abstract: The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti—Sb, Al—Sb, Cu—Sb, or Ni—Sb in order to produce radionuclides (e.g., tin—117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Inventors: Boris L. Zhuikov, Nicolai A. Konyakhin, Vladimir M. Kokhanyuk, Suresh C. Srivastava
  • Patent number: 8338737
    Abstract: A visually seamless method of joining a first piece of metal and a second piece of metal is described. The first piece of metal is placed in contact with an edge of the second piece of metal. In some embodiments, the edge includes a sacrificial lip. The first piece of metal forming a junction area with the edge of the second piece of metal, applying a forging force to the first piece of metal, the forging force having an effect of creating an extremely tight fit up between the first and the second pieces of metal, welding the first and the second pieces to form an assembly and forming a cosmetically enhancing protective layer on the surface of the assembly, the protective layer obscuring any visible artifacts on the surface of the assembly, the obscured visible artifacts including any discoloration or discontinuity created by the laser welding.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 25, 2012
    Assignee: Apple Inc.
    Inventors: Carlo Catalano, Derrick Jue, Brian Miehm, Takahiro Oshima, Masashige Tatebe
  • Patent number: 8329314
    Abstract: A component assembly for use in living tissue comprises: a ceramic part; a metal part, e.g., a titanium metal; and a palladium (Pd) interlayer for bonding said ceramic part to the metal part. By applying sufficient heat to liquify a palladium-titanium interface, the Pd interlayer is used to braze the ceramic part to the titanium part to yield a hermetic seal.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 11, 2012
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tom Xiaohai, Michael S Colvin
  • Publication number: 20120301309
    Abstract: Dissimilar metal welds including a buttering portion with a small variation in strength distribution in a plate thickness direction are formed by welding two parent materials having at least one of different compositions and different refining conditions through a buttering for alleviating mismatch between one of the different compositions and the different refining conditions of the two members and through a welded metal for joining one of the parent materials and the buttering. The buttering is formed of welding metals laminated in a plate thickness direction, and a dilution ratio of the buttering with the parent materials is 50% or less. The manufacturing method includes performing butt welding on a dummy material formed by increasing a groove depth by providing a member on a bottom side of a welding groove and on parent materials by using the buttering; and processing a groove within a welding metal formed of the buttering.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Inventors: Eiji NISHIOKA, Jun SATO, Shinya IMANO, Takeshi KUDO, Kenichi MURATA, Kazutaka HOSOKAWA, Kazuhiko ENDO
  • Publication number: 20120288728
    Abstract: Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.
    Type: Application
    Filed: March 12, 2012
    Publication date: November 15, 2012
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Scott N. Roberts, Henry Kozachkov, Marios D. Demetriou, Joseph P. Schramm, William L. Johnson
  • Publication number: 20120262048
    Abstract: A spark plug comprises a shell having a substantially cylindrical threaded portion for threadable engagement in a cylinder head of an internal combustion engine, an insulator disposed coaxially in the shell, a center electrode disposed coaxially in the insulator, a side ground electrode having a first end coupled to the shell and a second end facing an end of the center electrode to define a spark discharge gap therebetween, and an electrode tip portion secured to either the side ground electrode or the center electrode proximate the spark discharge gap. The tip portion is formed from an alloy comprising from about 60 to about 70 percent by weight iridium, from about 30 to about 35 percent by weight rhodium, from 0 to about 10 percent by weight nickel, from about 3500 to about 4500 parts per million tantalum, and from about 100 to about 200 parts per million zirconium.
    Type: Application
    Filed: October 4, 2011
    Publication date: October 18, 2012
    Inventors: Eric P. Passman, Jeffrey T. Boehler, Edgar A. Leone
  • Patent number: 8232232
    Abstract: An oxide target for laser vapor deposition, which is used when an oxide film is formed in a laser vapor deposition system, including: a fixed plate, an Ag-soldering layer bonded onto the fixed plate, an oxide-Ag mixed layer bonded onto the Ag-soldering layer; and an oxide layer bonded onto the oxide-Ag mixed layer.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: July 31, 2012
    Assignee: Fujikura Ltd.
    Inventor: Kazuomi Kakimoto
  • Patent number: 8187725
    Abstract: A nickel, chromium, iron alloy and method for use in producing weld deposits and weldments formed therefrom. The alloy comprises, in weight percent, about 28.5 to 31.0% chromium; about 0 to 16% iron; less than about 1.0% manganese; about 2.1 to 4.0% niobium plus tantalum; 1.0 to 6.5% molybdenum; less than 0.50% silicon; 0.01 to 0.35% titanium; 0 to 0.25% aluminum; less than 1.0% copper; less than 1.0% tungsten; less than 0.5% cobalt; less than about 0.10% zirconium; less than about 0.01% sulfur; less than 0.01% boron; less than 0.03% carbon; less than about 0.02% phosphorous; 0.002 to 0.015% magnesium plus calcium; and balance nickel and incidental impurities. The method includes the steps of forming a welding electrode from the above alloy composition and melting the electrode to form a weld deposit. A preferred weldment may be in the form of a tubesheet of a nuclear reactor.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: May 29, 2012
    Assignees: Huntington Alloys Corporation, Areva NP Inc.
    Inventors: Samuel D. Kiser, Brian A. Baker, David E. Waskey
  • Patent number: 8002162
    Abstract: A friction-welding device for the integral joining of components, having an oscillator, which generates a periodic movement of a component and a welding surface provided thereon relative to another, static component and a welding surface provided thereon, with directions of movement parallel to the welding surfaces, having a compression device which presses the welding surfaces together, and a cartridge which accommodates the moved component. The oscillator includes two or a greater, even number of piezoactuators, which are arranged in pairs on a line of application and are able to be prestressed with respect to the cartridge from opposite sides under pressure generation and are able to be moved in a synchronous, oscillating manner together therewith and the component.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: August 23, 2011
    Assignee: MTU Aero Engines GmbH
    Inventors: Erwin Bayer, Boris Grohmann, Frank Hermle, Peter Jaenker
  • Patent number: 7900811
    Abstract: This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: March 8, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: David E. Alman, Rick D. Wilson, Daniel L. Davis
  • Patent number: 7896224
    Abstract: A method for raising a demagnetization temperature of a permanent magnet is disclosed. The method provides a ferromagnetic arrangement around the magnet to increase demagnetization thresholds for the duration of soldering, or any other process requiring high temperatures. Using the method disclosed, it is possible to apply high levels of heat directly to permanent magnets without demagnetization, and more particularly to create permanent magnetic assemblies fit for any environment.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: March 1, 2011
    Assignee: Cornell University
    Inventor: Alexander Temnykh
  • Patent number: 7807073
    Abstract: A conductor composition being able to easily secure the conductivity at the same level as an Ag bulk at low temperature process, a mounting substrate utilizing the conductor composition and a mounting structure utilizing the conductor composition are provided. In a mounting structure, wherein one or more electrodes (11) of a mounting substrate (10) and one or more surface mounting components (20) are connected through a conductor composition (30), and one or more surface wirings (14) of the mounting substrate (10), one or more inner-layer wirings (13) and one or more via conductors (12) are formed with the conductor composition, the conductor composition contains conductive particles with electrical conductivity, and the conductive particles are composed of low crystallized Ag fillers with the crystal size of 10 ?m or less.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 5, 2010
    Assignee: DENSO CORPORATION
    Inventors: Masashi Totokawa, Yuji Ootani, Hirokazu Imai, Akira Shintai
  • Patent number: 7798388
    Abstract: The present invention relates to a method of diffusion bonding of steel and steel alloys, to fabricate a fluid delivery system of the kind which would be useful in semiconductor processing and in other applications which require high purity fluid handling.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Patent number: 7784668
    Abstract: A repair method of propagating epitaxial crystalline structures is provided. The repair method broadly comprises the steps of providing a substrate to be repaired, placing an additive material as a preformed shape onto an area of the substrate to be repaired, utilizing a heat source to heat an entire volume of the additive material and an area adjacent to the additive material to within 0-100° F. of their solidus temperatures, holding at the fusion temperature for a time sufficient to allow grain growth and orientation to occur, and ramping down the heat source at a predetermined controlled rate until solidification is complete.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: August 31, 2010
    Assignee: United Technologies Corporation
    Inventor: Gary Charles Shubert
  • Publication number: 20090321651
    Abstract: A device includes (a) radiation detector including a semiconductor substrate having opposing front and rear surfaces, a cathode electrode located on the front surface of said semiconductor substrate, and a plurality of anode electrodes on the rear surface of said semiconductor substrate, (b) a printed circuit board, and (c) an electrically conductive polymeric film disposed between circuit board and the anode electrodes. The polymeric film contains electrically conductive wires. The film bonds and electrically connects the printed circuit board and anode electrodes.
    Type: Application
    Filed: April 29, 2008
    Publication date: December 31, 2009
    Inventors: Pinghe LU, Henry Chen, Glenn Bindley
  • Patent number: 7628871
    Abstract: High strength, reliable bulk metallic glass (BMG) solder materials formed from alloys possessing deep eutectics with asymmetric liquidous slopes. BMG solder materials are stronger and have a higher elastic modulus than, and therefore are less likely than crystalline solder materials to damage fragile low k interlayer dielectric (ILD) materials due to thermal stress in materials with different coefficients of thermal expansion (CTE). BMG solder materials may physically, electrically, or thermally couple a feature to another feature, or any combination thereof. For example, in an embodiment of the invention, a BMG solder material may physically and electrically couple an electronic component to a printed circuit board. In another embodiment of the invention, a BMG solder material may physically and thermally couple an integrated heat sink to a semiconductor device.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: December 8, 2009
    Assignee: Intel Corporation
    Inventor: Daewoong Suh
  • Patent number: 7604152
    Abstract: A soldering technology, particularly a lead-free soldering technology, that can secure the reliability of a whole electronic device is provided. In a method for manufacturing a printed circuit board for electronic devices with a substrate to which a plurality of electronic parts having connection terminals with different metal compositions are connected by soldering, a plurality of solder pastes comprising solder components with different compositions are used, and when the electronic parts are connected by soldering to the substrate, a solder paste having a solder component with a different composition is used for each of the metal compositions for the connection terminals of the electronic parts.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: October 20, 2009
    Assignee: Fujitsu Limited
    Inventors: Masayuki Ochiai, Hiroki Uchida, Toshiya Akamatsu
  • Patent number: 7541561
    Abstract: A process for heating powder materials by microwave radiation so that heating and sintering or melting progressively and directionally occurs within the powder materials. The process generally entails forming a structure from a powder by arranging the powder in a mass according to size of particles of the powder so that the particles are progressively arranged within at least a region of the mass from smallest to largest. The mass is then subjected to microwave radiation so that the particles within the mass progressively couple with the microwave radiation according to size, the smallest particles coupling first and heating faster than larger particles of the powder, and the largest particles coupling last and heating slower than smaller particles of the powder. As a result of the progressive arrangement of the particles, the mass is progressively and directionally heated by the microwave radiation.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 2, 2009
    Assignee: General Electric Company
    Inventors: Jeffrey Reid Thyssen, Laurent Cretegny, Daniel Joseph Lewis, Stephen Francis Rutkowski
  • Publication number: 20090091860
    Abstract: A method and apparatus for preventing solder bridging. The method includes providing a substrate layer upon which a solder pad is disposed. The method further includes providing a signal conductive layer within the substrate layer. The method also includes forming a solder pad upon the signal conductive layer. The solder pad has a base surface. The method additionally includes forming a barrier portion above the said base surface of the solder pad. The barrier portion is for controlling solder flow during a reflow process.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventors: Melvin J. Dela Pena, Edmar C. Escober, Sandy E. Joson, Teddy T. Tabarangao
  • Publication number: 20090065556
    Abstract: A welding method is disclosed in which a structural weld overlay is re-oriented from a circumferential orientation to an axial orientation during deposition. The axial welding orientation provides a more favorable condition to prevent weld cracking and shrinkage distortion. The axial welding orientation also allows two or more weld machines to be used simultaneously so that two or more welding arcs can simultaneously deposit filler material or the overlay, thereby reducing the time required to complete the structural weld overlay.
    Type: Application
    Filed: September 6, 2007
    Publication date: March 12, 2009
    Applicant: GE-Hitachi Nucleare Energy Americas LLC
    Inventors: Troy Lance Finton, Michael Peter Fisher, Merlln Wayne Goddard
  • Publication number: 20090050680
    Abstract: An interconnect for electrically connecting a first and second cell of a tubular fuel cell bundle having a body with an anode contact and a cathode contact extending therefrom. The anode contact is formed to follow a contour of an anode portion of the first cell. The cathode contact is formed to follow a contour of a cathode portion of the second cell. A contact aid may be applied to the anode contact and/or cathode contact for securing the contact to the respective portion of the fuel cell bundle. The interconnect preferably completes a series connection between the first and second cells.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Applicant: Protonex Technology Corporation
    Inventors: Christine Martin, Jerry L. Martin
  • Patent number: 7451906
    Abstract: A brazing product for low temperature fluxless brazing comprises a filler metal-forming composition which melts in the range from about 380-575° C. The filler metal-forming composition comprises zinc optionally in combination with aluminum and/or silicon, and further comprises at least one braze promoter selected from nickel, cobalt, iron and palladium. The filler metal-forming composition may comprise a single layer or may comprise a number of distinct layers. The brazing product may take the form of a brazing preform or a brazing sheet or casting in which the filler metal-forming composition is deposited on a non-consumable substrate. The substrate may preferably comprise aluminum or an aluminum alloy, but may instead be comprised of one or more metals other than aluminum.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: November 18, 2008
    Assignee: Dana Canada Corporation
    Inventors: Stefanija Kisielius, legal representative, Brian E. Cheadle, Robert H. Krueger, Feng Liang, Mark S. Kozdras, Kostas F. Dockus
  • Publication number: 20080171174
    Abstract: An electrically conductive interconnect system has a post, extending above a supporting surface, the post including a rigid material, a coating on the rigid material, wherein the post and has a first width at the supporting surface and a second width at a distance removed from the supporting surface, and the post narrows from the first width to the second width. A method of electrically connecting a portion of a first supporting surface to a portion of a second supporting surface involves bringing a post on the first supporting surface into contact with an electrically conductive material located on the second supporting surface, softening the electrically conductive material, causing a separation distance between the first supporting surface and the second supporting distance to decrease so that a portion of the post will be surrounded by the electrically conductive material, and allowing the temperature of the electrically conductive material to decrease.
    Type: Application
    Filed: July 16, 2007
    Publication date: July 17, 2008
    Inventor: John Trezza
  • Patent number: 7156285
    Abstract: Provided are a method and apparatus for bonding an element, which has a transparency with respect to UV light, to a substrate. The method includes forming an aluminum layer on a surface of the substrate, disposing the element on the aluminum layer, and bonding the element to the aluminum layer by applying pressure on the element toward the aluminum layer and irradiating UV light on a bonding area between the element and the aluminum layer. The apparatus includes a holder, a pressurizing plate installed at the bottom of the holder to apply pressure on the element toward the substrate and formed of a material having a transparency to UV light, a UV light lamp which is installed in the inner space of the holder, and a collimating lens which is positioned between the UV light lamp and the pressurizing plate and collimates UV light emitted from the UV light lamp.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: January 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Potapov Sergey, Ja-nam Ku
  • Patent number: 7114644
    Abstract: The present invention provides a method of joining members to be joined by use of an Au—Sn brazing material, in which joining is performed by adjusting the composition and thickness of the Au—Sn brazing material so that the Sn content of the joint after joining is from 20.65 to 23.5 wt %. The invention has been completed on the basis of the discovery that the true eutectic point of this alloy system corresponds to 20.65 wt % Sn. In the invention, as means for adjusting the composition of a resulting joint, it is necessary to appropriately adjust the composition and thickness of a brazing material according to the thickness of a gold plating. In the invention, the relationship between the brazing material thickness and the gold plating thickness is shown when the brazing material to be used has an Sn content of 21 wt % to 25 wt %.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: October 3, 2006
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Kenichi Miyazaki
  • Patent number: 7073703
    Abstract: An aluminum plate 12 having a purity of 99.5% or more, preferably 99.9% or more, is caused to contact at least one side of a ceramic substrate 10 of aluminum nitride or alumina to be heated at a temperature of 620 to 650° C. in an inert gas to bond the aluminum plate 12 directly to the ceramic substrate 10.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: July 11, 2006
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Takayuki Takahashi, Hideyo Osanai, Makoto Namioka
  • Patent number: 7047635
    Abstract: A connecting material can form a detachable connecting structure. According to the connecting material, a connecting portion between a certain object and another object can be more readily formed, and the certain object can be more readily detached from the another object after formation of the connecting portion. The connecting material comprises a solder material and a hydrogen storage metal material which is able to occlude hydrogen, and which is in the form of particles dispersed in the connecting material.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: May 23, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kenichiro Suetsugu, Takaharu Gamo, Shunji Hibino, Yoshio Morita, Mikiya Nakata
  • Patent number: 7032808
    Abstract: The invention relates to a method of manufacturing and coating heat transfer parts for a heat exchanger such as tubes in an automobile radiator. The tubes are coated with brazing material by thermal spraying, such as plasma deposition or wire-arc deposition. The coating is then melted by application of heat to braze the tubes to the fins and to the headers to complete the formation of the heat exchanger.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: April 25, 2006
    Assignee: Outokumu Oyj
    Inventor: Yoram Leon Shabtay
  • Patent number: 7025248
    Abstract: The invention relates to a roll-bonded titanium sheet (6), a shaped component manufactured therefrom (10) and a method for manufacturing the titanium sheet (6) and the shaped component (10). In order to achieve a high-temperature-resistant shaped component (10), a titanium sheet (2) is roll-bonded at least on one side with aluminium foil (4) whose thickness (d) is small compared with the thickness (D) of the titanium sheet (2). As a result of heat treatment of the roll-bonded titanium sheet (6), the aluminium and titanium from the adjoining region are converted to an aluminium-titanium alloy. The outer titanium-aluminium-alloy layer of the titanium sheet (6) thus formed is converted by contact with oxygen into a titanium-aluminium-mixed oxide layer which gives the titanium sheet (6) good corrosion protection. The forming of the shaped component (10) preferably takes place before the heat treatment for alloy formation because the roll-bonded titanium sheet (6) is then still slightly deformable.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: April 11, 2006
    Assignee: Deutsche Titan GmbH
    Inventor: Heinz Sibum
  • Patent number: 6989200
    Abstract: The invention is a method of bonding a ceramic part to a metal part by heating a component assembly comprised of the metal part, the ceramic part, and a compatible interlayer material such as titanium-nickel alloy placed between the two parts and heated at a temperature that is greater than the eutectic temperature of the interlayer material, where alloys, intermetallics or solid solution formed between the metal part and the metal interlayer material, but that is less than the melting point of either the ceramic part or the metal part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the ceramic part and the metal part. The bonded component assembly is optionally treated with acid to remove unwanted materials, to assure a biocompatible component assembly for implantation in living tissue.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: January 24, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Charles L. Byers, Guangqiang Jiang, Gary D. Schnittgrund
  • Patent number: 6962283
    Abstract: The present invention provides a welding method for materials to be welded which are subjected to fluoride passivation treatment, and a fluoride passivation retreatment method, wherein, when fluoride passivation retreatment was conducted after welding, there is no generation of particles or dust, and superior resistance is provided to fluorine system gases. In the present invention, when materials to be welded comprising stainless steel subjected to fluoride passivation treatment are welded, hydrogen is added to the gas (the back shield gas) flowing through the materials to be welded. Furthermore, in the welding method for materials to be welded which are subjected to fluoride passivation treatment in accordance with the present invention, the thickness of the fluoride passivated film in a predetermined range from the butt end surfaces of the materials to be welded, comprising stainless steel subjected to a fluoride passivation treatment, is set to 10 nm or less, and welding is conducted.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: November 8, 2005
    Assignees: Stella Chemifa Kabushiki
    Inventors: Tadahiro Ohmi, Takahisa Nitta, Yasuyuki Shirai, Osamu Nakamura
  • Patent number: 6832716
    Abstract: This invention relates to a method of fabricating a bonded product comprising at least two components that are bonded together, the method comprising the steps of: a) bringing the components together; and b) heating the components; wherein at least one of the components comprises a nanomaterial and wherein steps (a) and (b) are performed in such a manner that the components are bonded together by heating at least part of the nanomaterial. The method allows the components to be welded together at lower temperatures than for prior art methods. The method also provides a more reliable form of bonding and improves the strength of the bond formed.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: December 21, 2004
    Assignee: pSiMedica Limited
    Inventors: Leigh T Canham, Christopher L Reeves