Combined Permanent Magnet And Wound Field Structure Patents (Class 322/46)
  • Patent number: 11591977
    Abstract: A standby generator includes an internal combustion engine, an alternator, and a controller. The internal combustion engine includes an engine housing, an engine block, and a crankshaft. The engine housing at least partially covers the engine block. The engine block includes a cylinder. The crankshaft is configured to rotate about a vertical crankshaft axis in response to movement by the cylinder. The alternator includes a stator, as well as a rotor that is configured to rotate with the rotation of the crankshaft to produce electrical power. The controller includes an inverter that is configured to receive electrical power from the alternator and output alternating current electrical power. The controller extends at least partially above the engine housing.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: February 28, 2023
    Assignee: Briggs & Stratton, LLC
    Inventors: Joshua Thurnbauer Cirillo, Sie Teong Lim, Philip Helwig, Kenny Jalmas Stair, Svetlana Byaliy, Mark Thomas Molinski
  • Patent number: 11548132
    Abstract: A power tool includes a case, a motor, a plurality of Hall effect sensors, a first circuit board, and a second circuit board. The Hall effect sensors detect a position of a rotor of the motor and correspondingly generate position signals. A plurality of commutating switches and a first controller are disposed on the first circuit board. A second controller is disposed on the second circuit board, and could transmit a driving signal to the first controller according to the operating signal of an operator interface. The first controller regulates the commutating switches to commutate according to the driving signal and the position signals, thereby to activate the rotor to rotate. With such design, a commutation process and a user operating process are regulated by the two different controllers, which could efficiently simplify the program code installed in each of the controllers and facilitate the maintenance of the controllers.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: January 10, 2023
    Assignee: MOBILETRON ELECTRONICS CO., LTD.
    Inventors: Shih-Hao Wang, Jui-Chen Huang
  • Patent number: 11552519
    Abstract: Presented are segmented hairpin bar conductors for electric machines, methods for making/using such segmented bar conductors, electromagnetic motors using such segmented bar conductors, and vehicles equipped with an induction motor generator unit using segmented hairpin bar conductors. An electric machine includes a stator that defines multiple circumferentially spaced, radially elongated stator slots. A rotor is located adjacent and movable with respect to the stator. One or more permanent magnets are mounted to the rotor, and one or more U-shaped hairpin windings are mounted to the stator in juxtaposed spaced relation to the magnet(s). Each hairpin winding is formed from an array of collimated, electrically conductive wires that are bundled together into a unitary bar conductor. The segmented hairpin winding has a pair of hairpin legs, each of which adjoins and projects from a respective end of a hairpin crown. Each hairpin leg inserts into a respective one the stator slots.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: January 10, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas W. Nehl, Alireza Fatemi
  • Patent number: 11519465
    Abstract: A pump includes a stator and a rotor axially between a fluid inlet section and a fluid outlet section. The stator includes a plurality of radially inwardly extending legs; and a plurality of electrical windings disposed about the radially inwardly extending legs. The attenuating circuit includes a capacitor electrically wired in parallel with each winding and at least one switch electrically connected to the capacitor. During energization of the electrical winding, the switch electrically connects the capacitor to an electrical ground and the electrical power source creates a voltage in the capacitor. Following a de-energization of the plurality of electrical windings, the switch isolates the capacitor from the electrical ground and the capacitor discharges the voltage through the electrical winding, creating a decaying oscillating current that attenuates residual magnetization in the winding.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: December 6, 2022
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Kevin Rauh, Nicholas Hrusch
  • Patent number: 11365717
    Abstract: An arrangement for determining an operation parameter reference for controlling a generator side converter portion coupled to a generator is provided, including: at least one arithmetic element configured to derive at least one harmonic current error by subtracting a generator output current from at least one harmonic current reference; at least one harmonic current controller configured to determine at least one harmonic reference current deviation based on the harmonic current error; another arithmetic element configured to derive a fundamental current error by subtracting the generator output current from a sum of a fundamental current reference and the at least one harmonic current reference; still another arithmetic element configured to determine a modified fundamental current error as a sum of the fundamental current error and the harmonic reference current deviation; a fundamental current controller adapted to determine the operation parameter reference based on the modified fundamental current error.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: June 21, 2022
    Assignee: SIEMENS GAMESA RENEWABLE ENERGY A/S
    Inventors: Nuno Miguel Amaral Freire, Zhan-Yuan Wu
  • Patent number: 11329539
    Abstract: A system including a generator and a controller. The generator includes a permanent magnet generator (PMG), and an exciter. The controller manages operations of the generator. The controller includes an alternating current to direct current (AC-to-DC) converter that generates a direct current (DC) voltage, an exciter drive that provides a DC current to the exciter of the generator using the DC voltage created by the AC-to-DC converter in accordance with the control signal, and a regulator controller that drives the active AC-to-DC converter.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: May 10, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Adrian E. Vandergrift, Thomas P. Joyce, Jordan K. Vanevenhoven, Natalie Filipski
  • Patent number: 10411620
    Abstract: To provide a power tool capable of suppressing torque ripple and reducing power consumption without demagnetizing the permanent magnets in the rotor. The power tool includes a brushless motor, converting means, voltage detecting, and means conduction switching means. The brushless motor includes: a stator including a plurality of windings; and a rotor rotatable relative to the stator. The converting means is configured to convert an AC voltage supplied from an AC power supply into a varying DC voltage. The voltage detecting means is configured to detect the varying DC voltage. The conduction switching means includes an output line for applying the varying DC voltage to the plurality of windings.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: September 10, 2019
    Assignee: Koki Holdings Co., Ltd.
    Inventors: Kazutaka Iwata, Kazuhiko Funabashi
  • Patent number: 9018891
    Abstract: A motor includes a frame, a shaft rotatably mounted onto the frame, and at least one disc mounted onto the shaft. At least one permanent magnet is mounted on the disc, and at least one electromagnet and at least one coil are mounted to the frame in rotational magnetic proximity to the permanent magnet. A battery is connectable to the electromagnet and the coil for energizing the electromagnet and for receiving electrical current from the coil for charging the battery. A relay switch controls the transmission of electrical power from the battery to the electromagnet. A sensor generates a signal to the relay switch to activate electrical power to the electromagnet upon sensing that the permanent magnet is positioned with respect to the electromagnet such that a magnetic force generated by the electromagnet would be effective for inducing movement of the permanent magnet and consequent rotation of the disc.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 28, 2015
    Inventor: Clifford R. Rabal
  • Publication number: 20140354243
    Abstract: A generator is provided having a first array of magnets and a second array of magnets. The first array is typically disposed in a first elongated Halbach configuration and the second array of magnets is disposed in a second configuration. The first and second arrays are configured to manipulate a net flux field to form a figure eight flux field between the first and second arrays. At least one coil disposed between the first and second arrays, such that relative movement of the first and second arrays with respect to the first coil generates an electric current.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: ReVair Inc.
    Inventor: Rudolph Oelofse
  • Patent number: 8884590
    Abstract: An electricity generation device includes a permanent-magnet electric generator with three or more phase windings each having an output terminal and connected to a neutral point, and bidirectional semiconductor switching circuits capable of interrupting connections between the respective phase windings and the neutral point. Each switching circuit allows current to flow in both directions. A gate signal generation circuit outputs to one of the switching circuits during a period including the time at which the AC voltage excited in the corresponding phase winding turns from positive to negative and during a period including the time at which the AC voltage excited in the corresponding phase winding turns from negative to positive. A startup gate signal output circuit outputs a startup gate signal to all of the bidirectional semiconductor switching circuits when the permanent-magnet electric generator is to be started.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: November 11, 2014
    Assignees: IHI Aerospace Co., Ltd., Sinfonia Technology Co., Ltd.
    Inventors: Hitoshi Oyori, Yukio Shimomura
  • Patent number: 8866449
    Abstract: A new and useful electrical machine includes a stator including a stator winding and a primary transformer coil. A rotor is operatively connected to rotate relative to the stator, wherein the rotor includes a plurality of embedded permanent magnets. An excitation coil is wound on the rotor and is operatively connected to form a rotating transformer with the primary transformer coil. An inverter/active rectifier component is operatively connected to the stator winding and the primary transformer coil to control the stator winding based on excitation in the stator winding from the excitation coil and permanent magnets.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: October 21, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Jacek F. Gieras, Steven J. Moss
  • Patent number: 8854017
    Abstract: A method for controlling a generator having a rotor with a plurality of magnets and a first stator winding and a second stator winding, electrically separate from the first stator winding is provided. The rotor rotates around a rotation axis perpendicular to a radial direction relative to the stator windings. The method includes allowing flow of a first electric current through the first stator winding, thereby generating a first radial force having a first magnitude and acting between the first stator winding and the rotor, and allowing flow of a second electric current through the second stator winding, thereby generating a second radial force having a second magnitude and acting between the second stator winding and the rotor, wherein the first magnitude is different from the second magnitude resulting in a net generator generated radial force generated by the first stator winding and the second stator winding at the rotor.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: October 7, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Heng Deng, Thomas Esbensen, Gustav Hoegh
  • Patent number: 8823334
    Abstract: A method for starting an electric motor, the motor having a main machine, exciter, and permanent magnet generator (PMG), each having a stator and a rotor, with each rotor mounted to a common shaft, the method comprising starting the main machine in an asynchronous mode by applying a starting current to the stator of the main machine to induce a damper current in a damper winding of the main rotor to generate a starting torque that initiates the rotation of the common shaft, and then running the main machine in synchronous mode by supplying running current from the exciter rotor to the main machine rotor.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 2, 2014
    Assignee: GE Aviation Systems LLC
    Inventors: Hao Huang, Xiaochuan Jia
  • Patent number: 8823333
    Abstract: Solenoid coils not interlinked by magnet flux of a rotor, increase inductance of a control coil system for controlling generated voltage using little current flow to a switch so no increase in windings of a power coil is needed. A generator with rotor having magnets and stator outside the rotor, have winding coil of the stator connected in series to solenoid coil. A power terminal is between the power and control sides of the solenoid coil and a switch controls flow of current from the power coil to the solenoid coil. By controlling ON/OFF condition of the switch disposed on the DC terminal of a rectifier connected to the solenoid coil in series, the generated voltage is controlled to a voltage set in advance, in response to a detection signal from a sensor detecting the voltage.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 2, 2014
    Inventor: Hideo Kawamura
  • Patent number: 8541989
    Abstract: A power supply apparatus includes: an AC generator including an AC generating section, and a rectifier for rectifying an AC voltage generated in the AC generating section, and outputting a DC voltage; and a DC/DC converter for converting the output voltage of the rectifier into a DC voltage having a different voltage value, wherein the output voltage of the rectifier is set to be larger than the output voltage of the DC/DC converter in accordance with the rotation speed of the AC generating section and the amount of power supply to an electrical load connected to the DC/DC converter, and is stepped down and outputted by using the DC/DC converter. The power supply apparatus is capable of increasing an output power efficiently.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: September 24, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takahiro Urakabe, Tatsuya Okuda, Akihiko Iwata, Hirotoshi Maekawa, Masaru Kobayashi, Matahiko Ikeda, Yoshikazu Tsunoda, Kazutoshi Kaneyuki, Yuya Tanaka
  • Patent number: 8471407
    Abstract: An emergency power system for operation during loss of power on power mains comprises a spring-driven energy storage unit (ESU) and a generator. The ESU enters a generator mode responsive to a power outage state of a power sensor, during which mode unwinding of the spring drive powers the generator. After power is restored to the mains, a preferred embodiment automatically rewinds the spring using the generator as a motor.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: June 25, 2013
    Inventors: Thomas W. Gow, Edward L. Schwarz
  • Patent number: 8456138
    Abstract: A programmable system includes a first level protection circuit comprised of discharge tube CR1/ CR2 and piezoresistor MOV1/MOV2 in series; a second-level protection circuit comprised of the series arm of capacitor C1 and resistor R1 in parallel with a transient voltage suppression diode TVS1, and inductors L1/L2 connected to the ends of first level and second-level protection circuits respectively. A control circuit includes a PWM driver module and a SCM. The PWM driver module is connected to the PWM control port of the SCM and its output is connected to an IGBT module. The control circuit is also connected to a series communication module and to a user interface. The features of the invention are: strong-shock resistance; a wide range of load adaptability; and ability of accurately and steplessly regulating and adjusting with high frequency and high power load.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: June 4, 2013
    Assignees: MacMic Science & Technology Co., Ltd., Luxtech 360 LLC.
    Inventors: Xishe Lei, Xiao Bao Wang
  • Publication number: 20130113442
    Abstract: Solenoid coils not interlinked by magnet flux of a rotor, increase inductance of a control coil system for controlling generated voltage using little current flow to a switch so no increase in windings of a power coil is needed. A generator with rotor having magnets and stator outside the rotor, have winding coil of the stator connected in series to solenoid coil. A power terminal is between the power and control sides of the solenoid coil and a switch controls flow of current from the power coil to the solenoid coil. By controlling ON/OFF condition of the switch disposed on the DC terminal of a rectifier connected to the solenoid coil in series, the generated voltage is controlled to a voltage set in advance, in response to a detection signal from a sensor detecting the voltage.
    Type: Application
    Filed: July 11, 2011
    Publication date: May 9, 2013
    Inventor: Hideo Kawamura
  • Patent number: 8432137
    Abstract: A method for generating and controlling power by means of at least one controlled permanent magnet machine (PMM) with a permanent magnet (PM) rotor and a stator with a magnetic flux diverter circuit for controlling the output of the PMM, comprises the steps of: rotating the PM rotor at a velocity sufficient to develop a high frequency alternating current (HFAC) power output from the stator; transforming the HFAC output to produce a desired non-HFAC power output; sensing desired power output parameters; generating a control signal responsive to the sensed parameters; and applying the control signal to the magnetic flux diverter circuit to control the desired power output.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 30, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Vietson M. Nguyen, Jacek F. Gieras, Sastry V. Vedula
  • Patent number: 8358111
    Abstract: A dual source electric power generating system (EPGS) provides both a regulated AC output and a regulated DC output. The EPGS includes a rotating portion and a stationary portion. The stationary portion includes a plurality of windings (permanent magnet generator (PMG) armature windings, an exciter field winding, and high-voltage main generator armature windings), a voltage regulator, a rectifier, an inverter, a point of regulation (POR) sensor. The high-voltage main generator armature windings generate a high-voltage AC that is converted to a regulated, high-voltage AC by the rectifier and the inverter. The stationary portion is further characterized by circuitry for producing the regulated DC output from AC voltage produced by a winding other than the high-voltage main generator armature windings.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: January 22, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, David W. Chaudoir, Jacek F. Gieras
  • Patent number: 8350502
    Abstract: An electromagnetic motor having a frame, and at least one disc rotatably mounted to the frame. At least one permanent magnet is mounted on the disc, and at least one electromagnet is mounted to the frame in magnetic proximity to the at least one permanent magnet. A battery is electrically coupled to the motor for powering the at least one electromagnet. A switch controls electrical power between the battery and the at least one electromagnet, and a sensing means is provided for controlling the switch to activate the at least one electromagnet with respect to the at least one permanent magnet to cause the at least one disc to rotate. Preferably, a generator is mechanically coupled to the motor and electrically coupled to the battery for generating electrical power to the battery, and a renewable energy source such as a photovoltaic cell is electrically coupled to the motor to supplement any net electrical loss.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: January 8, 2013
    Inventor: Clifford R. Rabal
  • Patent number: 8193783
    Abstract: A permanent magnet generator assembly has a permanent magnet generator with magnetic flux control windings, a passive rectifier, and a passive control element. The passive control element electrically connects an output of the passive rectifier to the magnetic flux control windings.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: June 5, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Richard A. Himmelmann
  • Patent number: 8169197
    Abstract: A device for damping control of mechanical torsional oscillations of an electrical alternating current generator connected to a multi-phase power supply system, includes a controllable converter of an HVDC installation connected to the power supply system, a measurement and filter device for detection of a frequency-dependent signal in a frequency range of the torsional oscillations of the alternating current generator and a correction apparatus for correction of a control signal for the converter for the HVDC installation. The correction apparatus includes a single phase correction filter for correction of a phase frequency response of the frequency-dependent signal. The control signal is formed by a current nominal value of a current regulator of the converter or a triggering angle of the nominal valve and with the phase correction filter is configured to take a transfer function of the current regulator into account.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: May 1, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Jürgen Rittiger
  • Patent number: 8164296
    Abstract: A method and an apparatus are described for determining a field current through a field winding in an electrical machine with a stator and a rotor. The electrical machine includes a field-circuit transformer to produce, by induction of an electrical current on the rotor side, field current with which a field winding is energized in order to generate an excitation magnetic field. The method includes driving the primary side of the field-circuit transformer to produce a field current in the rotor, which is derived from the current induced on the secondary side in the field-circuit transformer; measuring one or more phase currents in one or more primary-side phases of the field-circuit transformer; determining a maximum value depending on the one or more measured phase currents; determining the field current through the field winding depending on the determined maximum value.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: April 24, 2012
    Assignee: ABB Schweiz AG
    Inventor: John Eckerle
  • Patent number: 8148866
    Abstract: A permanent magnet rotor for an electrical generator has pole pieces with permanent magnets. A control coil is associated with the pole pieces. A current flow through the coils is controlled to achieve a desired output voltage at an output for the generator.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 3, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Mahesh J. Shah
  • Patent number: 8111502
    Abstract: An arrangement related to subsea electric power distributing AC-system and adapted for a subsea application. The arrangement is enclosed in a watertight casing. The casing exposes a main power input connection, adapted for watertight co-ordination with a first subsea cable and a main power output connection, adapted for a watertight co-ordination with a second subsea cable. The second subsea cable is adapted for a power supply to an AC-current and AC-voltage adapted device. The arrangement includes interconnected: a voltage regulator connected to the first cable, and a NO-load switching unit connected to the second cable, and a control unit. The control unit is adapted, in a first operative mode, to regulate the output AC-voltage from the voltage regulator towards and to zero, or at least almost to zero, and in a second subsequent operative mode, to bring the NO-load switching unit from an ON-position to an OFF-position or vice versa.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: February 7, 2012
    Assignee: Vetco Gray Scandinavia AS
    Inventor: Svend Rocke
  • Patent number: 8093772
    Abstract: A control system that can accommodate the wide variations in the output of a generator, such as a permanent magnet alternator, while providing an output with relatively uniform phase ripple. The control system includes a zero crossing detector and variable ramp generator for generating control signals to a switching rectifier to generate a regulated DC signal.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: January 10, 2012
    Assignee: Magnetic Applications, Inc.
    Inventors: Harold C. Scott, Dave E. Williams, Charles Y Lafontaine
  • Patent number: 8063612
    Abstract: A diesel-electric drive system having a generator mechanically connected to a diesel motor on the rotor side and linked to a voltage source (intermediate) inverter on the stator side. The voltage source inverter is connected to a self-commuting pulse power converter on the generator and on the load side as well as to a brake resistor. The generator has two multiple-phase coil systems which are each electroconductively linked to a self-commuting pulse power converter on the generator side, wherein the second self-commuting pulse power converter on the generator side is switched electrically parallel to the voltage source (intermediate) circuit of the voltage source (intermediate) inverter on the generator side. At least one input phase of the first self-commuting pulse power converter on the generator side is electroconductively linked via a brake resistor to a input phase of the second self-commuting pulse power converter on the generator side.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventor: Gerald Amler
  • Patent number: 8035357
    Abstract: A permanent magnet machine (PMM) has a kinetic portion electrically coupled to a power conversion portion. Motive power is provided to the kinetic portion by a torque applied to a motive shaft coupled to a prime mover, such as an aircraft engine or an automobile engine. A sensor is effective to detect a fault condition in the kinetic portion. When a fault is detected, the sensor applies a voltage to a winding within the kinetic portion generating an opposing directional counter torque to the motive shaft. A combination of the torque and counter torque exceeds a fracture yield strength of the motive shaft. The fault condition is then rendered safe while the prime mover may continue normal operation.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: October 11, 2011
    Assignee: Astronics Advanced Electronic Systems Corp.
    Inventor: Stanley C. Patterson
  • Patent number: 8030905
    Abstract: An apparatus and method for allowing continuous operation of a generator control unit (GCU) despite a ground fault short circuit is disclosed. More specifically, a generator control unit (GCU) that maintains an isolated power pass domain in a completely floating set up with respect to the ground referenced control domain is used to allow continuous operation of a generator control unit (GCU) even when an internal wiring such as a permanent magnet generator wire or a generator field coil wire comes in contact with the chassis due to failure of the insulation. In addition, the apparatus and method also utilizes a high ohmic resistor as the only connection between the isolated power pass domain and the ground referenced control domain to control the voltage spike that occurs during a ground fault short circuit.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 4, 2011
    Assignee: Honeywell International Inc.
    Inventor: Plamen Petkov
  • Patent number: 7944187
    Abstract: Methods and apparatuses are disclosed for producing current with a desired output frequency from one or more fixed or variable speed alternators by varying a saturation level of a portion of the alternator(s) based on a output frequency desired, and preferably then rectifying the output to produce a desired electrical output which may be provided as direct current or alternating current to a suitable load.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: May 17, 2011
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Kevin Allan Dooley
  • Patent number: 7880448
    Abstract: A permanent magnet machine (PMM) has a kinetic portion electrically coupled to a power conversion portion. Motive power is provided to the kinetic portion by a torque applied to a motive shaft coupled to a prime mover, such as an aircraft engine or an automobile engine. A control circuit includes a switch disposed between the kinetic portion and output feeder cables of the power conversion portion. A first sensor is effective to detect a first fault condition in either the feeder cables or the power conversion portion and a second sensor is effective to detect a second fault condition in the kinetic energy portion. The first sensor is effective to open the switch when a first fault condition is detected and the second sensor is effective to apply a voltage to a winding within the kinetic portion generating an opposing counter torque on the motive shaft where a combination of torque and counter torque exceeds a fracture yield strength of said motive shaft causing it to fracture.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: February 1, 2011
    Assignee: Astronics Advanced Electronic Systems Corp.
    Inventor: Stanley C. Patterson
  • Patent number: 7859231
    Abstract: A permanent magnet (PM) electric generator with directly controllable field excitation control comprises: a drive shaft; a PM rotor assembly with multiple PMs arranged around an outer axial periphery of the rotor assembly; a stator assembly comprising a ferromagnetic stator yoke, multiple ferromagnetic stator teeth mounted to the stator yoke with distal ends proximate the outer axial periphery of the rotor assembly separated by an air gap and multiple stator coils mounted between the stator teeth; multiple saturable ferromagnetic shunts, each shunt coupling adjacent distal ends of the stator teeth to shunt air gap magnetic flux ?g generated by the PMs across the air gap through the distal ends of the stator teeth; and multiple saturation control coils, each saturation control coil wrapped about a saturable region of an associated one of the shunts; wherein application of a control current Ic to the control coils at least partially magnetically saturates the shunts to reduce shunting of air gap magnetic flux ?
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: December 28, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jacek F. Gieras, Gregory I. Rozman
  • Patent number: 7859230
    Abstract: Methods and systems are disclosed for reducing alternating current ripples in direct current electrical power generation systems with one or more regulated permanent magnet machines. Ripple suppression is achieved, in one aspect, by modulating the control current of a regulated permanent magnet machine.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: December 28, 2010
    Assignee: Pratt & Whitney Canada Corp
    Inventors: Gregory I. Rozman, Kevin A. Dooley
  • Patent number: 7852049
    Abstract: A dual channel power generation system comprises: a prime mover; a permanent magnet (PM) dynamoelectric machine that has a PM rotor coupled to the prime mover, two multiphase alternating current (AC) stators that develop electromotive force (EMF) in response to rotation of the PM rotor due to the magnetic flux linkage between the PM rotor and the stators, two control coils that each change the magnetic flux linkage of a respective stator in response to the level of a control current that passes through the control coil; a multiphase AC rectifier for each stator that receives AC power from its respective stator to supply DC power on a respective rectifier bus; a current feedback loop for each rectifier bus; a voltage feedback loop for each rectifier bus; a load-sharing controller responsive to both current feedback loops to develop a voltage regulator reference signal for each rectifier bus that is representative of the value of voltage that its corresponding stator should produce to maintain equal values of c
    Type: Grant
    Filed: April 20, 2008
    Date of Patent: December 14, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Vijay K Maddali, Gregory I Rozman, Matthew L Wilhide
  • Patent number: 7847526
    Abstract: A system for controlling torque ripple in a permanent magnet synchronous machine includes a power converter configured to be coupled to the permanent magnet synchronous machine and to receive converter control signals and a system controller coupled to the power converter. The system controller includes a fundamental current controller configured for providing fundamental voltage commands, a harmonic current controller configured for using harmonic current commands, current feedback signals from the permanent magnet machine, and fundamental current commands in combination with positive and negative sequence regulators to obtain harmonic voltage commands, and summation elements configured for adding the fundamental voltage commands and the harmonic voltage commands to obtain the converter control signals.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 7, 2010
    Assignee: General Electric Company
    Inventors: Zhuohui Tan, Xiaoming Yuan, Changyong Wang, Ronghai Qu, Robert William Delmerico, Patrick Lee Jansen
  • Patent number: 7795747
    Abstract: A method and apparatus for moving magnetic material includes an electromagnet for attaching and detaching the magnetic material where upon release of the magnetic material, the residual magnetic flux of the released magnetic material is reduced. The apparatus includes a generator coupled to the electromagnet. The generator includes a control input and an armature having a voltage output. A controller has an output coupled to the generator's control input and an input coupled to the armature voltage output, whereupon receiving a lift or release material signal from an operator interface panel to lift or release the magnetic material from the electromagnet, the controller transmits a control signal that is at least partially responsive to the voltage output of the armature to effectively maintain the voltage output of the armature to a set-point value.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: September 14, 2010
    Assignee: Ephaugh, Inc.
    Inventor: John Samila
  • Patent number: 7768240
    Abstract: A power generator includes a magnetic pole rotor in which a plurality of N magnetic pole cores and S magnetic pole cores are arranged alternately at regular intervals and that is rotatably supported, stator coils that oppose the magnetic pole rotor and are wound round pole portions of poles of stator poles so as to generate AC power, full-wave rectifying circuits 18 for respective stator coils, and smoothing circuits that are connected to the output sides of the respective full-wave rectifying circuits. The power generator is so structured as to convert multiphase AC generated electric power into DC electric power. Further, line ends of positive (+) poles at the output side of the smoothing circuits are connected to the input side of rectifiers that make only current in the forward direction pass through, and the output side (+) line ends of the rectifiers are connected to a (+) combination line.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: August 3, 2010
    Inventor: Toshio Takekawa
  • Patent number: 7667439
    Abstract: A power converter arrangement for connecting an induction generator to an electric power network comprises a first path provided for transferring electric power from the induction generator to the electric power network during a first operation condition, and a second path provided for transferring electric power from the induction generator to the electric power network during a second operation condition, where the first path includes an AC-AC converter and the second path includes a switch. A capacitor arrangement is interconnected between the induction generator and the first and second paths and a first AC reactor device is interconnected between the capacitor arrangement and the first and second paths, where the capacitor arrangement is provided for compensating for a magnetization current of the induction generator.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 23, 2010
    Assignee: ABB Research Ltd.
    Inventors: Lars Gertmar, Erik Koldby, Hans C. Christensen, Jouko Niiranen, Leif-Erik Wraae, H{dot over (a)}kan Korske, legal representative
  • Patent number: 7646178
    Abstract: A brushless generator with permanent-magnet multi-pole rotor disks and coreless stator winding disks includes integral electronics to efficiently generate regulated DC current and voltage from shaft input power over a broad speed range. Its power rating is scalable, and it incurs no cogging torque, or friction from gearing. Integral power control electronics includes high-frequency pulse-width-modulated boost regulation, which provides regulated current at requisite voltage over its broad speed range. A main embodiment to produce DC power at widely variable speeds includes signal processing so output power varies according to the third power of speed. A version for use with vertical-axis wind turbines has a relatively large diameter to facilitate a large number of poles. Combined boost-regulation, zero cogging torque, and no gearing, enable a wide speed range, for better power quality and higher wind energy yields.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: January 12, 2010
    Inventor: Richard B. Fradella
  • Patent number: 7595612
    Abstract: A device and method for controlling the output of a wide speed range high reactance permanent magnet machine based PGS is provided. The windings of a permanent magnet machine are coupled to a three-phase diode bridge. A transistor is used for temporarily short-circuiting said diode bridge. A capacitor smoothes the voltage at a voltage detection point. A control unit generates a signal that switches the transistor in response to a voltage detected at the voltage detection point. The control unit signal modifies the duty cycle of the switching of the transistor in response to variations in the speed of the power generator to maintain a desired voltage at the voltage detection point.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: September 29, 2009
    Assignee: Honeywell International Inc.
    Inventors: Evgeni Ganev, Andrew R. Druzsba, Addy Fouad Alkhatib
  • Patent number: 7579812
    Abstract: Methods and apparatuses are disclosed for producing current with a desired output frequency from one or more fixed or variable speed alternators by varying a saturation level of a portion of the alternator(s) based on a output frequency desired, and preferably then rectifying the output to produce a desired electrical output which may be provided as direct current or alternating current to a suitable load.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: August 25, 2009
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Kevin Allan Dooley
  • Patent number: 7554303
    Abstract: The controller of permanent magnet generator controls the current by using control switch which is installed in between power coil and control coil and switches on and off in switches in order to generate two different voltage and increase the power at very low speed condition of generator. The controller controls the voltage of power coil constantly by adjusting current of flowing in the control switch which the voltage is sensed on the load voltage sensor and the controller control the voltage constantly at very small speed by using power switches furthermore, the controller controls the two kind of voltage in power coils constantly by using control switch and switches in case of the generator having different kind of voltages.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: June 30, 2009
    Assignees: Megumi Kawamura
    Inventor: Hideo Kawamura
  • Patent number: 7550953
    Abstract: A permanent magnet generator voltage regulation system controls the output voltage of a permanent magnet generator. The output voltage of the permanent magnet generator is controlled by configuring the electrical connection of the stator coils. A monitoring device monitors the output voltage generated by the PMG, and a controller selectively configures the stator coil configuration based on the monitored output voltage. A switch array having a number of switches is connected to the stator coils, the switches being controlled by the controller to configure the electrical connection of the stator coils. For instance, to maximize output voltage generated by the PMG, the controller causes the switch array to connect the stator coils in series with one another. To reduce the output voltage, the controller causes the switch array to connect at least some of the stator coils in parallel with one another. In this way, the output voltage of the permanent magnet generator can be coarsely controlled.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: June 23, 2009
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Mahesh J. Shah
  • Patent number: 7538524
    Abstract: Electrical generators are provided with toroidally wound stator windings electrically connected in series; a high permeability stator core, preferably an amorphous magnetic alloy material, glassy metal or HYPERCO™ 50 laminations; and a rotor. The toroidally wound stator coils and the stator core trap essentially all of the flux fields generated by the stator coils within the stator core. Since there is essentially no magnetic field leaving the stator, there is essentially no flux field interaction with the field generated by the rotor. The reduction of flux field interaction also reduces counter torque.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 26, 2009
    Assignee: Omnidyne, Inc.
    Inventors: Steven L. Sullivan, David L. Goulet, Donald Hofmann
  • Patent number: 7518344
    Abstract: A method and a damping device are proposed for damping a torsional oscillation in a rotating drive train. Arranged on the drive train is an electrical machine (13), which is connected to an electrical multipole (31). A damping torque is generated in the electrical machine (13) by an electrical damping member connected to the electrical machine (13). It is proposed that the damping torque has a predetermined damping frequency and is antiphase to the angular velocity of the torsional oscillation.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: April 14, 2009
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventor: Christof Sihler
  • Patent number: 7501799
    Abstract: An electromechanical power transfer system that transfers power between a direct current (DC) electrical power system and a prime mover, comprises: a permanent magnet machine (PMM) comprising a permanent magnet (PM) rotor that rotates a drive shaft of the prime mover, a stator and a control coil; that an inverter/rectifier system for converting DC power from the DC power system to multiphase alternating current (AC) power on an AC bus; a control coil current regulator system for regulating current through the control coil; wherein the inverter/rectifier system responds to a position reference signal, a current load feedback signal and a current load reference signal to regulate acceleration of the PMM; wherein the control coil current regulator system responds to a control coil current reference signal and a control coil current feedback signal to regulate current in the PMM; and wherein the power transfer system starts in an open loop mode, and the first and second speed switches respond to a closed loop ena
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 10, 2009
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Matthew L. Wilhide, Arthur A. Pershall
  • Patent number: 7482787
    Abstract: A generator controller for controlling a permanent magnet generator where each phase of the generator is connectable to a DC link via electrically controllable switches, the controller characterized by a data processor adapted to receive a measurement of generator current output and a demand current, and to form a current error between the demanded value and the measured generator current; derive a target voltage as a function of the current error; and form control signals for the electrically controllable switches as a function of the target voltage.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: January 27, 2009
    Assignee: Goodrich Control Systems Limited
    Inventors: Philip Henry Mellor, Stephen George Burrow, Philip Michael Churn
  • Patent number: 7466109
    Abstract: An electrical generation system comprising a generator. The generator including, a stator portion, and a rotor portion, and a variable frequency generator (VFG) exciter. The VFG exciter including, a first converter, operative to convert DC current to AC current connected to a DC link and a second converter, operative to convert DC current to AC current connected to the DC link. The system including a first switch operative, when closed, to connect the first converter to the stator portion while the generator is operating in a starting condition, wherein the first switch is open while the generator is operating in a running condition. The system including second switch operative, when closed, to connect the first converter and the second converter in parallel to the rotor portion while the generator is operating in a running condition, wherein the second switch is open while the generator is operating in the starting condition.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventors: Einar Vaughn Larsen, James Michael Fogarty, Cyrus David Harbourt
  • Patent number: 7453241
    Abstract: A feedback control method and circuit for inclusion in a control system of an electrical power generating source that comprises a free piston Stirling engine driving a linear alternator. An instantaneous value of a variable, Vinternal, is continuously derived from other sensed and computed parameters and used in a negative feedback control loop of the control system to control engine piston stroke in order to maintain the power produced by the engine equal to the power transferred from the engine to the alternator. Vinternal is the sum of the voltage induced on the alternator winding and the voltage across the equivalent circuit lumped resistance of the alternator winding and a switching mode rectifier connects the alternator winding to an energy storage capacitor or battery.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 18, 2008
    Assignee: Sunpower, Inc.
    Inventors: Douglas E. Keiter, Ezekiel S. Holliday