By Paramagnetic Particles Patents (Class 324/214)
  • Patent number: 11221312
    Abstract: An adhesive bond test resonance array provides inspection of adhesively bonded composite laminate structures with improved productivity and higher reliability. A holder has multiple slots arranged in a two-dimensional array for holding transducers in respective slots. The holder is adapted to position a probe end of each of the transducers adjacent a component for scanning and has a material hardness adapted for enabling flexing while scanning curved composite parts. A fluid channel is adapted for delivering a couplant to the probe end of the transducers such that the couplant is automatically delivered during scanning of the component to inspect bond integrity.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: January 11, 2022
    Assignee: Textron Innovations, Inc.
    Inventors: Jay M. Amos, Bharath Kumar Kodumuru
  • Patent number: 11162918
    Abstract: A method for determining a quality of a friction stir welded seam is described. The method involves applying an impact to a welded plate and comparing its damping capacity with the damping capacity of a geometrically equivalent defect-free plate. Damping capacities that differ by a small percent difference indicate that the welded plate is also defect-free. This method is particularly advantageous when dealing with small defects, which produce miniscule changes in natural frequency which may not be measureable.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: November 2, 2021
    Assignee: King Abdulaziz University
    Inventors: Waheed Sami Abushanab, Essam B. Moustafa
  • Patent number: 10823655
    Abstract: Joints, strain measurement systems to measure strains in one or more components of joints, and methods of determining fatigue lives of joints are disclosed herein. A joint includes a first component, a second component, an adhesive, and a strain measurement system. The adhesive couples the first component and the second component together. The strain measurement system is configured to measure strain in one or more components of the joint. The strain measurement system includes a sensor coupled to one of the first component and the second component and a controller coupled to the sensor. The controller includes a processor and memory coupled to the processor that has instructions stored therein.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: November 3, 2020
    Assignee: DEERE & COMPANY
    Inventors: Indrajit Malvade, Austin E. Vize, Casey E. Gales
  • Patent number: 9733315
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: August 15, 2017
    Assignee: UNIVERSITY OF HOUSTON
    Inventors: Dmitri Litvinov, Richard Willson
  • Patent number: 9625425
    Abstract: A bond inspection system may include a material that reacts to applied activation energy by creating a compression wave, the material positioned adjacent a surface of a structure having a bond to be inspected and shaped in a predetermined pattern, such that reaction of the material causes compression waves to travel through the surface and structure; a source of activation energy capable of directing the activation energy at the material; and a controller programmed to actuate the source of activation energy to direct the activation energy at discrete portions of the predetermined pattern of material in a predetermined sequence selected to create a plurality of the compression waves so that the compression waves reflect from an opposite side of the structure as a plurality of tension waves that combine at substantially the same time at a bondline of the structure to be inspected.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: April 18, 2017
    Assignee: The Boeing Company
    Inventors: Alan Frank Stewart, Marc Joel Piehl, Douglas Allen Frisch, Kevin R. Housen, William J. Sweet
  • Patent number: 9030193
    Abstract: A system by which the proportion of ferromagnetic particles in a dielectric medium is measured. A magnetic field is generated by two signals in the medium: a low frequency feed and a relatively high frequency excitation. The feed magnetizes the ferromagnetic particles in the medium to the nonlinear range of the magnetization curve. The excitation is generated so that its spectrum is relatively wide and it is dense with frequency components. The level of the excitation is so high that the magnetic flux density in the medium corresponding to the excitation fluctuates nonlinearly, when the feed is at its peak value or near this. The magnetic field of the medium is measured by a secondary winding, and from the response signal produced by the sensor is detected the part resulting from the magnetic non-linearity, which part is the output signal. In the detection the response is multiplied by the signal, which arises magnetic field and includes the same random fluctuation as the response.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 12, 2015
    Assignee: Hemeltron
    Inventor: Arvi Kruusing
  • Patent number: 8994384
    Abstract: A powder sensor includes a piezoelectric element, an oscillator circuit, a phase determination circuit, and a powder presence/absence determination circuit. The oscillator circuit applies to the piezoelectric element an output signal having a frequency equal to or near a resonance frequency of the piezoelectric element. The phase determination circuit determines phase of a terminal voltage of the piezoelectric element relative to phase of the output signal from the oscillator circuit. The powder presence/absence determination circuit determines that powder is absent if the phase determination circuit determines, n consecutive times (where ā€œnā€ is an arbitrary integer satisfying n?2), that the phase of the terminal voltage of the piezoelectric element, relative to the phase of the output signal from the oscillator circuit, satisfies a predetermined condition.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 31, 2015
    Assignee: TDK Corporation
    Inventor: Nobuo Furukawa
  • Patent number: 8981770
    Abstract: The present invention relates to an apparatus and a method for void size determination of voids within an object into which an aerosol containing magnetic particles has been introduced, in particular for determining the size of a patient's pulmonary alveoli, said patient having inhaled an aerosol containing magnetic particles To review information concerning the lung structure, it is proposed to use magnetic particle imaging. First and second detection signals are acquired subsequently at different moments in time after introduction of the aerosol containing the magnetic particles into the object, in particular after inhalation of the aerosol by the patient. These detection signals are exploited, in particular the drop in intensity and/or the signal decay time, to get information about the diffusion of the magnetic particles within the voids, in particular alveoli, and to retrieve information therefrom about the size of the voids, in particular alveoli.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: March 17, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Bernhard Gleich
  • Patent number: 8854048
    Abstract: In a particle beam therapy system which scans a particle beam and irradiates the particle beam to an irradiation position of an irradiation subject and has a dose monitoring device for measuring a dose of the particle beam and an ionization chamber smaller than the dose monitoring device, the ionization chamber measuring a dose of a particle beam passing through the dose monitoring device, the dose of the particle beam irradiated by the dose monitoring device is measured; the dose of the particle beam passing through the dose monitoring device is measured by the small ionization chamber; and a correction coefficient of the dose measured by the dose monitoring device corresponding to the irradiation position is found based on the dose of the particle beam measured by the small ionization chamber.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Toshihiro Otani, Hisashi Harada, Masahiro Ikeda, Kazushi Hanakawa, Taizo Honda
  • Patent number: 8557608
    Abstract: A method is disclosed for characterizing a local magnetic field, in particular a stray field caused by a magnetizable or magnetic particle in a prescribed measuring area of a magnetic field. In at least one embodiment, a sensor array including a number of magnetic sensors and each having at least one layer sensitive to magnetic fields is arranged at least in a subregion of the measuring area, and at least one device is provided for reading out separately the signal from each sensor. According to at least one embodiment, the size, in particular of XMR sensors and the surface of the layer sensitive to magnetic fields and the grid dimension of the sensor array, are selected such that at least two neighboring sensors are influenced by the local stray field. An associated device for carrying out the method is also disclosed.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: October 15, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Joachim Bangert
  • Patent number: 8456158
    Abstract: A magnetic binding substance, which is a first binding substance that specifically binds with a target substance, having magnet enveloping dielectric particles, which have magnetic particles enveloped therein and surfaces modified with functional groups that exhibit polarity within a liquid sample, attached thereto, and a labeling binding substance, which is a second binding substance that specifically binds with the target substance having photoresponsive labels attached thereto, are mixed with the liquid sample such that binding reactions occur. A magnetic field is generated within a sample cell, to draw the magnetic binding substance to a local region. Excitation light is irradiated only onto a predetermined region including the local region while the magnetic binding substance is drawn to the local region, causing the photoresponsive labels present therein to generate optical signals. The optical signals are detected.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 4, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Hisashi Ohtsuka
  • Patent number: 8456157
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: June 4, 2013
    Assignee: University of Houston
    Inventors: Dmitri Litvinov, Richard Willson
  • Publication number: 20130088220
    Abstract: Apparatus for MPI testing, the apparatus comprising a portable, body worn MPI system including an electromagnetic MPI electrode in wired communication with a DC power supply, via an AC inverter. The apparatus includes a body worn arrangement for carrying the electromagnetic MPI electrode, DC power supply and AC inverter hands free.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 11, 2013
    Applicant: JOHNSON & ALLEN LIMITED
    Inventors: Jonathan Johnson, Robyn Aston
  • Publication number: 20120146632
    Abstract: The present invention relates to an apparatus and a method for void size determination of voids within an object into which an aerosol containing magnetic particles has been introduced, in particular for determining the size of a patient's pulmonary alveoli, said patient having inhaled an aerosol containing magnetic particles To review information concerning the lung structure, it is proposed to use magnetic particle imaging. First and second detection signals are acquired subsequently at different moments in time after introduction of the aerosol containing the magnetic particles into the object, in particular after inhalation of the aerosol by the patient. These detection signals are exploited, in particular the drop in intensity and/or the signal decay time, to get information about the diffusion of the magnetic particles within the voids, in particular alveoli, and to retrieve information therefrom about the size of the voids, in particular alveoli.
    Type: Application
    Filed: July 12, 2010
    Publication date: June 14, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Bernhard Gleich
  • Publication number: 20120092003
    Abstract: A magnetic-electric energy conversion device includes: a matrix (12) that includes ferromagnetic particles (10) with conductive properties; an injector (20) that injects carriers into the ferromagnetic particles; and a receptor (22) that accepts the carriers from the ferromagnetic particles. In the magnetic-electric energy conversion device, the carriers tunnel from the injector to the receptor via the ferromagnetic particles, when the magnetization state of the ferromagnetic particles is reversed by magnetic tunneling due to a magnetic field.
    Type: Application
    Filed: March 6, 2010
    Publication date: April 19, 2012
    Applicants: TOHOKU UNIVERSITY, THE UNIVERSITY OF TOKYO
    Inventors: Masaaki Tanaka, Pham Nam Hai, Shinobu Ohya, Stewart E. Barnes, Sadamichi Maekawa
  • Publication number: 20120094852
    Abstract: Magnetic nanoparticles are detected across a thin membrane that separates the nanoparticles from a magnetic sensor. The technique can be used in a medical context, in which an analyte of interest (present in a test fluid, such as blood) is attached to the membrane. Other compounds are in turn bound to the analyte, with one of these compounds including a magnetic nanoparticle that is then detected by the sensor. In this way, the analyte is detected by detecting the magnetic nanoparticle. By counting the number of magnetic nanoparticles, the concentration of the analyte in the test fluid can be determined.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David Berman, Qiu Dai, William M. Dyer, Wayne I. Imaino, Alshakim Nelson
  • Publication number: 20110304326
    Abstract: A magnetic field sensor which has a simple configuration and is capable of detecting a magnetic field with high sensitivity, including a vessel containing a dispersion in which magnetic particles are dispersed, a light source which irradiates the vessel with light, and light intensity measurement means arranged on an opposite side of the vessel from the light source for measuring the intensity of transmitted light having passed through the vessel, as needed.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 15, 2011
    Inventor: Adarsh Sandhu
  • Publication number: 20110215798
    Abstract: A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.
    Type: Application
    Filed: December 27, 2007
    Publication date: September 8, 2011
    Inventor: Neil Reginald Beer
  • Publication number: 20110169484
    Abstract: A cartridge (1,3) for a magnetic-label sensor, in particular for a magnetic-label biosensor, comprises a sensor area (4) a fluid channel (2) in contact with said sensor area and first (A) and second (B1, B2) reservoirs in fluid communication with said fluid channel. The first reservoir comprises a first type of magnetic particles (8) and the second reservoir comprises a second type of magnetic particles (8a). The first type of magnetic particles are functionalized for binding with said sensor area, whereas the second type of magnetic particles are non-functionalized for binding with said sensor area. The magnetic particles (8, 8a) are manipulated using magnet (13). Detection is based on frustrated total internal reflection (FTIR) is hereby light from laser/LED (II) is reflected at sensor area (4) and detected by photodetector/CCD(12).
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Hans Van Zon, Mikhail Ovsyanko, Jeroen Hans Nieuwenhuis
  • Publication number: 20110025315
    Abstract: A magnetic binding substance, which is a first binding substance that specifically binds with a target substance, having magnet enveloping dielectric particles, which have magnetic particles enveloped therein and surfaces modified with functional groups that exhibit polarity within a liquid sample, attached thereto, and a labeling binding substance, which is a second binding substance that specifically binds with the target substance having photoresponsive labels attached thereto, are mixed with the liquid sample such that binding reactions occur. A magnetic field is generated within a sample cell, to draw the magnetic binding substance to a local region. Excitation light is irradiated only onto a predetermined region including the local region while the magnetic binding substance is drawn to the local region, causing the photoresponsive labels present therein to generate optical signals. The optical signals are detected.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 3, 2011
    Applicant: FUJIFILM Corporation
    Inventor: Hisashi OHTSUKA
  • Publication number: 20100301849
    Abstract: A method of magnetic imaging at long detection ranges. In one embodiment the method comprises introducing a magnetic sample having magnetic particles into a detection field; detecting weak magnetic field signals of the magnetic particles; forming an image from the detected signals; and determining the location and quantity amount of the magnetic particles. The method further comprises introducing a magnetic sample to a human or other organism's body.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 2, 2010
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Shoujun XU, Li YAO
  • Publication number: 20100264913
    Abstract: A magnetic field sensor which has a simple configuration and is capable of detecting a magnetic field with high sensitivity, including a vessel containing a dispersion in which magnetic particles are dispersed, a light source which irradiates the vessel with light, and light intensity measurement means arranged on an opposite side of the vessel from the light source for measuring the intensity of transmitted light having passed through the vessel, as needed.
    Type: Application
    Filed: August 20, 2008
    Publication date: October 21, 2010
    Inventor: Adarsh Sandhu
  • Publication number: 20100207606
    Abstract: Method of quantifying an analyte in a liquid medium by means of magnetic particles functionalized by specific ligands of the analyte being quantified, consisting in applying a magnetic field to a liquid medium for a time period several times shorter than that of the reaction between the analyte being quantified and the ligands of the magnetic particles, in measuring the optical density of the liquid medium after applying the magnetic field, in repeating this cycle of applying the magnetic field and of measuring the optical density several times over the duration of the reaction between the analyte and the ligands, in calculating, by extrapolation, a limiting value for the optical density for an infinite magnetic field application time and in deducing therefrom the concentration of the analyte in the liquid medium.
    Type: Application
    Filed: July 11, 2008
    Publication date: August 19, 2010
    Inventors: Eric Compain, Catherine Rouzeau, Karine Bizet
  • Publication number: 20100188075
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Application
    Filed: July 26, 2006
    Publication date: July 29, 2010
    Inventors: Dmitri Litvinov, Richard Wilson
  • Patent number: 7741840
    Abstract: A magnetic probe includes a tubular container, the inside of which can be observed and at least one end of which is closed, a paramagnetic seed which is fixed to an end of the tubular container, and a paramagnetic colloidal particle dispersion liquid that is filled in the tubular container.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 22, 2010
    Assignee: Empire Technology Development LLC
    Inventor: Adarsh Sandhu
  • Publication number: 20100109657
    Abstract: A planar array of GMR or TMR sensor elements with planar free and pinned layers is used as the basis of a sensor for detecting the presence of small magnetized particles. In particular, the sensor is used for detecting the presence of magnetized particles bonded to biological molecules that are themselves bonded to a substrate. The magnetized particles on the molecules are detected by the sensors as a result of the interaction between the stray fields of the particles and the magnetic configuration of the sensors. By forming a co-planar layer of soft magnetic material over the sensor or its array, the external field used to magnetize the particles is self-aligned perpendicularly to the sensor plane whereby it does not interfere with the stray fields of the particles.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Inventor: Otto Voegeli
  • Publication number: 20090115415
    Abstract: This invention provides a system and method that improves the sensitivity and localization capabilities of Magnetic Particle Imaging (MPI) by using combinations of time-varying and static magnetic fields. Combinations of magnetic fields can be used to distribute the signals coming from the magnetic particles among the harmonics and other frequencies in specific ways to improve sensitivity and to provide localization information to speed up or improve the signal-to-noise ratio (SNR) of imaging and/or eliminate the need for saturation fields currently used in MPI. In various embodiments, coils can be provided to extend the sub-saturation region in which nanoparticles reside; to provide a static field offset to bring nanoparticles nearer to saturation; to introduce even and odd harmonics that can be observed; and/or to introduce combinations of frequencies for more-defined observation of signals from nanoparticles.
    Type: Application
    Filed: June 18, 2008
    Publication date: May 7, 2009
    Applicant: DARTMOUTH-HITCHCOCK CLINIC
    Inventors: John B. Weaver, Ian Baker, Eric W. Hansen
  • Patent number: 7502640
    Abstract: Contrast agents incorporating super-paramagnetic iron-oxide (SPIO) nanoparticles have shown promise as a means to visualize labeled cells using MRI. Labeled cells cause significant signal dephasing due to the magnetic field inhomogeneity induced in water molecules near the cell. With the resulting signal void as the means for detection, the particles are behaving as a negative contrast agent, which can suffer from partial-volume effects. Disclosed is a new method for imaging labeled cells with positive contrast. Spectrally-selective RF pulses are used to excite and refocus the off-resonance water surrounding the labeled cells so that only the fluid and tissue immediately adjacent to the labeled cells are visible in the image. Phantom, in vitro, and in vivo experiments show the feasibility of the new method. A significant linear correlation (r=0.87, p<0.005) between the estimated number of cells and the signal has been observed.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: March 10, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Steven M. Conolly, Charles H. Cunningham
  • Patent number: 7241630
    Abstract: A method of determining the number of magnetic particles within a sample using a tuned circuit having a capacitor and a coil. The method comprises: a. determining the difference in the resonant frequency of the tuned circuit when the sample is exposed to a magnetic field generated by the coil and when the sample is not exposed to the magnetic field generated by the coil; and b. using the difference in the resonant frequency to determine the number of magnetic particles within the sample.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: July 10, 2007
    Assignee: Randox Laboratories, Ltd.
    Inventors: Peter Hawkins, Richard William Luxton
  • Patent number: 7065994
    Abstract: A permanent invisible magnetic marking and positioning system of unfinished steel rods, spring steel bars, workpieces, and the like. A midpoint or center of the rod, bar or workpiece is automatically located and a high-energy pulse is applied for an embedded magnetic marker in the workpiece. Meanwhile, the magnetizing heads can also be repositioned to various points on a workpiece for imparting manufacturing and product identification data. In the case of leaf springs, the center of a spring steel bar is located a magnetic marker is embedded there. A high-energy rectangular pulse imparts a permanent invisible magnetic marks and data. The embedded indicators having peak magnetic strength allow manual or automatic positioning for perfect alignment in bending, tapping and other forming processes.
    Type: Grant
    Filed: March 1, 2003
    Date of Patent: June 27, 2006
    Inventors: Donald M. Danko, Joseph H. Taddeo
  • Patent number: 6939681
    Abstract: The invention relates to a method of evaluating the immunological status of a subject comprising the steps of 1) determining the content of an antibody in a liquid sample from the subject using an immunoassay, wherein the reaction between the antibody of the sample and a ligand in the form of an antigen, an antibody or a hapten, the ligand being directed to the Fab region of the sample antibody, is carried out in the presence of other constituents of the sample to obtain a measurement 1, 2) determining the content of an antibody in the liquid sample using an immunoassay, wherein the reaction between the antibody of the sample and a ligand in the form of an antigen, an antibody or a hapten, the ligand being directed to the Fab region of the sample antibody, is carried out in the absence of other constituents of the sample to obtain a measurement 2, and 3) interrelating measurements 1 and 2 to express the interference and using the interference as a parameter for evaluating the immunological status of the subje
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: September 6, 2005
    Assignee: Alk-Abello A/S
    Inventors: Hans-Henrik Ipsen, Niels Johansen, Rikke Morkeberg, Soren Bogestrand, Tine Charlotte Beck
  • Patent number: 6526793
    Abstract: A permanent invisible magnetic marking and positioning system of cylindrical metal steel rods. To accurately locate the physical midpoint of the rod-to-be-cut, a novel head centering and positioning mechanism automatically sets the midpoint distance for each setup as the length of the finished rod stock is changed. The steel rod that is used to manufacture the U-bolts is inserted lengthwise into a cutoff saw station or machine until it comes in contact with a stop that is set to the desired predetermined length. An automatic centering device positions the magnetizing heads located at the longitudinal center, on each side, of the steel rod. A high-energy rectangular pulse imparts a permanent invisible magnetic mark at the longitudinal center of the steel rod before being formed into a U-bolt. The rod is then suitably cut to the desired predetermined length, and each of the opposite ends threaded with the desired thread size.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: March 4, 2003
    Inventors: Donald M. Danko, Joseph H. Taddeo
  • Patent number: 6379909
    Abstract: The invention relates to a method of evaluating the immunological status of a subject comprising the steps of 1) determining the content of an antibody in a liquid sample from the subject using an immunoassay, wherein the reaction between the antibody of the sample and a ligand in the form of an antigen, an antibody or a hapten, the ligand being directed to the Fab region of the sample antibody, is carried out in the presence of other constituents of the sample to obtain a measurement 1, 2) determining the content of an antibody in the liquid sample using an immunoassay, wherein the reaction between the antibody of the sample and a ligand in the form of an antigen, an antibody or a hapten, the ligand being directed to the Fab region of the sample antibody, is carried out in the absence of other constituents of the sample to obtain a measurement 2, and 3) interrelating measurements 1 and 2 to express the interference and using the interference as a parameter for evaluating the immunological status of the subje
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: April 30, 2002
    Assignee: Alk-Abello A/S
    Inventors: Hans-Henrik Ipsen, Niels Johansen, R Ikke Morkeberg, Soren Bogestrand, Tine Charlotte Beck
  • Patent number: 6310471
    Abstract: A magnetic stripe card provides a quantitative tool for the measurement of magnetic sensitivity for fine-grained iron, iron oxide or other ferro-magnetic powders, that may be used for magnetic particle inspection and other purposes. The magnetic stripe card is encoded to establish distinct areas on the magnetic stripe. Each distinct area has a specific magnetic gradient. Ferro-magnetic powders are attracted to the gradient in proportion to the value of the gradient. A higher gradient more strongly attracts the powder. A determination of the sensitivity of the powder can be ascertained by observing the gradient with the lowest value to which the powder is attracted.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: October 30, 2001
    Assignee: Circle Systems, Inc.
    Inventor: William C. Chedister
  • Patent number: 5296806
    Abstract: Method for locating metal studs hidden from view by wall board members fastened thereto by screw-type fasteners characterized by a magnetic field of force which attracts particulate magnetic material, by first locating the screw-type fasteners which are hidden from view by spackling compound or other wall surface finishing material. The screw-type fasteners are located by depositing particulate magnetic material on the outer surface of the wall board, the particulate magnetic material being attracted to a screw-type fastener by the magnetic field of force and associating with the head of the fastener in a surrounding manner on the outside surface of the wall board.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: March 22, 1994
    Inventor: Charles J. Hurl, Jr.
  • Patent number: 5189491
    Abstract: A method and an apparatus for obtaining a displacement condition of a track in a longitudinal direction thereof on a magnetic tape on which a periodic signal is recorded by detecting a signal position from image information obtained by imaging said track while moving the magnetic tape and/or the image device in the longitudinal direction of the track.
    Type: Grant
    Filed: June 7, 1991
    Date of Patent: February 23, 1993
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasushi Sogabe, Kenji Matsuura, Shigeki Murata
  • Patent number: 4944185
    Abstract: A system and method for nondestructively inspecting and monitoring materials that indicates the structural integrity of the material is disclosed. The inspection method includes the following steps. First, the material to be subsequently monitored, is tagged by dispersing a small amount of finely divided particles throughout the material. The tagged material is then applied in accordance with its application, such as adhesive material to two pieces to be joined to form an adhesive joint. When the adhesive joint or other material is to be inspected, the tagged particles are activated to cause an inherent structural resonance in the tagged material. The activation and structural resonance of the material is then monitored and measured with a probe. Finally, the structure resonance of the material is related to the structural integrity of the adhesive joint, the matrix-reinforcement interface integrity of a composite material, or the state of cure of a resin.
    Type: Grant
    Filed: January 17, 1989
    Date of Patent: July 31, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: William G. Clark, Jr., Warren R. Junker
  • Patent number: 4064453
    Abstract: A magneto-optic cell comprising a composition responsive to magnetic fields. The composition comprises a ferrofluid and metal flakes which align with the ferrofluid in response to magnetic lines of force and along the magnetic lines of force. Detection of the presence of a magnetic field is thereby provided.
    Type: Grant
    Filed: July 2, 1976
    Date of Patent: December 20, 1977
    Assignee: Xerox Corporation
    Inventors: Werner E. L. Haas, Gary A. Dir