Using Ionization Effects Patents (Class 324/459)
  • Patent number: 11892430
    Abstract: Provided according to one embodiment is a device for sensing a gas, comprising: a lamp for outputting ultraviolet light; a first PCB including a hole for inserting the lamp; a second PCB disposed perpendicular to the first PCB and including a lamp power terminal and a lamp ground terminal used to supply power to the lamp; a third PCB disposed parallel to the first PCB, disposed perpendicular to the second PCB, and including a power reception terminal for receiving power from the outside; a first ring-shaped electrode attached to the lamp power terminal and fixing the lamp; and a second ring-shaped electrode attached to the lamp ground terminal, fixing the lamp, and disposed parallel to the first electrode.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: February 6, 2024
    Assignee: TAESUNG ENVIRONMENTAL RESEARCH INSTITUTE CO., LTD.
    Inventors: Gi Yeol Yun, Seok Man Kim, Chai Rok Lim, Kwang Bum Park, Dae Sung Lee
  • Patent number: 11810754
    Abstract: A system and method for optimizing a ribbon ion beam in a beam line implantation system is disclosed. The system includes a calibration sensor disposed in the beam line after the mass analyzer. The calibration sensor is able to measure both the total current of the ribbon ion beam, as well as provide information about its vertical position. Information from the calibration sensor can then be utilized by a controller to adjust various parameters to improve the density as well as the vertical position. In some embodiments, the calibration sensor may include a plurality of Faraday sensors, where, both the total current and the vertical position of the ion beam can be determined. Furthermore, the focus of the ion beam can be estimated based on the distribution of the current in the height direction.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Eric D. Hermanson, Nevin Clay, Antonella Cucchetti, Philip Layne, Sudhakar Mahalingam, Michael Simmons
  • Patent number: 11796505
    Abstract: Apparatuses and methods are described for determining properties of ions travelling through a gas under the influence of an electric field. The apparatuses and methods can be understood to provide measurements of the electrical mobility of ions as useful for determining the electrical mobility constant Ko of electrosprayed substances, such as proteins. The apparatuses and methods relate to the scientific discipline of ion mobility spectrometry. Modules connected to ion mobility spectrometers provide stress to substances for the purpose of investigating, for example, the thermal stability of proteins. One form of the technology includes a tubular spectrometer body having an electrically conductive inner wall; a rod positioned along the longitudinal center of the body and electrodes positioned on, but electrically isolated from, the inner wall, where the ratio of the radius of the tubular spectrometer body to the ratio of the radius of the rod is at least 20.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: October 24, 2023
    Assignee: ION DX, INC.
    Inventors: W. Henry Benner, Michael J. Bogan, Ben Aguilar
  • Patent number: 11715743
    Abstract: A display panel, a crack detection method and a display device are provided. The display panel includes a substrate, a signal wiring disposed over the substrate, and a test wiring insulated from the signal wiring and disposed on a side of the signal wiring facing away from the substrate. An orthographic projection of the test wiring on the substrate overlaps an orthographic projection of the signal wiring on the substrate. The display panel also includes a first test terminal disposed over the substrate and electrically connected with an end of the test wiring, and a second test terminal disposed over the substrate and electrically connected with another end of the test wiring.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: August 1, 2023
    Assignees: WUHAN TIANMA MICRO-ELECTRONICS CO., LTD., WUHAN TIANMA MICROELECTRONICS CO., LTD. SHANGHAI BRANCH
    Inventors: Zi Xu, Lin Cheng, Xinzhao Liu
  • Patent number: 11705306
    Abstract: A variable frequency and non-sinusoidal power generator includes a pulse module circuit, a slope module circuit, and first and second cooling systems. The pulse module circuit and the slope module circuit includes control switches, and generates at least one of a output currents and a output voltages by selectively turning on/off the control switches based on control signals. The first and second cooling systems are disposed at first and second sides of the control switches. A bias power having a variable frequency and a non-sinusoidal waveform is generated based on the control signals, at least one of the output currents and the output voltages.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: July 18, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunbae Kim, Hyunjae Lee, Youngdo Kim, Hyejin Kim, Sangki Nam, Chanhee Park, Minho Jung
  • Patent number: 11698399
    Abstract: [Object] An electric conductivity-measuring material which emits light according to electric conductivity of a measurement object; an electric conductivity-measuring film containing the material; and an electric conductivity-measuring device and an electric conductivity-measuring method using the electric conductivity-measuring film are provided. An electric resistivity-measuring material which emits light according to electric resistivity of a measurement object when electrons are made incident; an electric resistivity-measuring film containing the material; and an electric resistivity-measuring device and an electric resistivity-measuring method using the electric resistivity-measuring film are also provided.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: July 11, 2023
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Nao Terasaki, Kazuya Kikunaga
  • Patent number: 11268997
    Abstract: A system of measuring and correcting for distortions in homodyne systems and a method for operating a data processing system to provide an estimate of distortions in homodyne systems are disclosed. The method for operating a data processing system to provide an estimate of a distortion introduced by a homodyne system when the homodyne system processes a time a multi-tone time domain input signal, x(t), to obtain a time domain output signal, y(t) includes receiving a frequency spectrum, X(f), of the multi-tone time domain input signal, x(t) and measuring an output frequency spectrum, Y(f), when the homodyne system operates on x(t). A plurality of parameters of a model that represents a linear frequency response of the homodyne system when operating on X(f) to arrive at Y(f) by fitting the model to Y(f) and X(f) is determined, and the model is applied to X(f) and Y(f) to estimate the distortions.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: March 8, 2022
    Assignee: Keysight Technologies, Inc.
    Inventors: Jan Verspecht, Augustine Stav
  • Patent number: 10605458
    Abstract: The present invention relates to a method for controlling a heating unit comprising a burner (1) with a burner housing (2), an ionization electrode (7) associated with the burner (1), and a voltage supply (8) for applying an alternating voltage between the ionization electrode (7) and the burner housing (2), said method comprising the method steps: applying an alternating voltage between the ionization electrode (7) and the burner housing (2) by means of the voltage supply (8) and correcting the output of the voltage supply (8) in the event of parasitic leakage flows. The object of the present invention is in particular to improve the reliability when ascertaining the air-fuel ratio via the ionization current.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: March 31, 2020
    Assignee: Viessmann Werke GmbH & Co. KG
    Inventors: Sebastian Hack, Arno Clemens, Martin Ries
  • Patent number: 10451596
    Abstract: An automated sensor calibration system and method provide for calibrating a gas sensor in-situ in a controlled atmosphere workstation. The system comprises a controller for automatically controlling the calibration system; an enclosure member movable between a first position and a second position; and a drive mechanism, operable by the controller, for moving the enclosure member between the first position and the second position. In the first position, the enclosure member is arranged in a spaced relationship from the sensor such that a sensing head of the sensor is exposed to the controlled atmosphere of the workstation. In the second position, the enclosure member is arranged in engagement with at least one surface so as to define a calibration chamber and enclose the sensing head in the calibration chamber.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: October 22, 2019
    Assignee: Don Whitley Scientific Limited
    Inventors: Evan Jonathan Kitsell, David Boast
  • Patent number: 10110119
    Abstract: A multiplier assembly for a power supply and a method of manufacturing the multiplier assembly. The multiplier assembly may be a stack of capacitors and support elements electrically and mechanically coupled together to form a first capacitor string and a second capacitor string. The support elements may electrically and mechanically connect adjacent series capacitors in the first capacitor string. Additionally or alternatively, the support elements may electrically and mechanically connect adjacent series capacitors in the second capacitor string. In one embodiment, the power supply may include drive and feedback circuitry capable of controlling operation of the multiplier assembly.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: October 23, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Robert J. Warmack, Charles L. Britton, Jr., Milton Nance Ericson, John P. Brainard
  • Patent number: 9767988
    Abstract: Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 19, 2017
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Victor Brouk, Daniel J. Hoffman, Daniel Carter
  • Patent number: 9753013
    Abstract: A system and method comprising a charger for ionizing aerosols; a spectrometer coupled to the charger and operable to select for a predetermined particle size; a porous charge collector coupled to the spectrometer, and a MEMS electrometer. In some embodiments the charge collector may be a metal frit electrically coupled to the electrometer. The electrometer may include a comb drive actuator coupled to a moving shuttle supported on flexures.
    Type: Grant
    Filed: May 17, 2014
    Date of Patent: September 5, 2017
    Assignee: Brechtel Manufacturing, Inc.
    Inventors: Fredrick J Brechtel, David A. Horsley, Gerardo Jaramillo
  • Patent number: 9623232
    Abstract: A method and medical system for operating three electrodes electrically coupled to three proximal contacts carried by three lead bodies is provided. The electrodes are implanted adjacent tissue of a patient and include a middle electrode and a pair of electrodes flanking the middle electrode. Electrical energy is conveyed between three different pairs of the proximal contacts, thereby respectively generating three electrical fields in the tissue between three electrode pairs. A potential of each of the electrical fields is measured at the remaining electrodes via the remaining proximal contacts, respectively. The lead body associated with the middle electrode is identified based on the measured electrical field potentials.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: April 18, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Changfang Zhu
  • Patent number: 9325157
    Abstract: A discharge electrode that generates ions when supplied with a voltage includes a first part, a second part, and a third part. The first part includes a basal end and a distal end. The second part includes a basal end, which is continuous with the distal end of the first part, and a distal end. The third part includes a basal end, which is continuous with the distal end of the second part, and a convex surface defining a distal surface of the discharge electrode. The first to third parts are formed integrally. The basal end of the first part is wider than the distal end thereof. The second part is rod-shaped and has a width that is constant from the distal end to the basal end of the second part. The width of the second part is the same as that of the basal end of the third part.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 26, 2016
    Assignee: Panasonic Industrial Devices SUNX Co., Ltd.
    Inventor: Keiji Kawada
  • Patent number: 8970221
    Abstract: A discharge ionization current detector capable of supplying plasma gas in large quantity to stabilize plasma simultaneously with lowering the sample dilution ratio to improve detection sensitivity is provided. A gas supply pipe 7 for supplying a plasma gas, which also functions as a dilution gas, is connected to a point near the connecting section of a first gas passage 3 having electrodes 4-6 for plasma generation and a second gas passage having electrodes 16 and 17 for ion detection. A first gas discharge pipe 8 is connected to the other end of the first gas passage 3, and a second gas discharge pipe 13 is connected to the other end of the second gas passage 11. Flow controllers 9 and 14 are provided in the gas discharge pipes 8 and 13, respectively. The flow rate of the gas passing through a plasma generation area and that of the gas passing through an ion current detection area can be independently regulated.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Shimadzu Corporation
    Inventors: Kei Shinada, Shigeyoshi Horiike, Takahiro Nishimoto
  • Patent number: 8963552
    Abstract: A device for detecting an electrostatic discharge event by an object, the device comprising: a receiver for forming a first capacitive coupling with the object and a second capacitive coupling with a ground; and a first discharge path for discharging the second capacitive coupling to the ground, such that an electrostatic discharge event by the object charges the second capacitive coupling by an amount in a first time interval ?t1 that is substantially less than a second time interval ?t2 that it takes for the second capacitive coupling to discharge by the same amount through the first discharge path.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: February 24, 2015
    Assignee: 3M Innovative Properties Company
    Inventor: Siarhei V. Savich
  • Publication number: 20150010934
    Abstract: A method of screening for increased risk of fatal prostate cancer in a subject comprises providing a blood sample collected from the subject, and then detecting the presence or absence of an increased level of serum calcium in the sample. An increased level of serum calcium indicates the subject is at increased risk of fatal prostate cancer.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Gary G. Schwartz, Halcyon G. Skinner
  • Publication number: 20150008932
    Abstract: A system and method comprising a charger for ionizing aerosols; a spectrometer coupled to the charger and operable to select for a predetermined particle size; a porous charge collector coupled to the spectrometer, and a MEMS electrometer. In some embodiments the charge collector may be a metal frit electrically coupled to the electrometer. The electrometer may include a comb drive actuator coupled to a moving shuttle supported on flexures.
    Type: Application
    Filed: May 17, 2014
    Publication date: January 8, 2015
    Applicant: Brechtel Manufacturing, Inc.
    Inventors: Frederick J. Brechtel, David A. Horsley, Gerardo Jaramillo
  • Patent number: 8928329
    Abstract: A fast response output signal circuit (10) for a cold cathode gauge is provided to produce a fast response output signal (48) in addition to a voltage output signal (40) that is representative of the pressure in the cold cathode gauge. The fast response output signal (48) is either on or off, thus can be used to trigger a closing of an isolation valve or other responsive action upon a change in pressure that attains or exceeds a certain set point threshold. The fast response output signal is produced and processed with analog circuits, but the set point is produced with a microprocessor. The voltage output signal can be produced as a logarithmic function of the pressure.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 6, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Bert Downing, Donghua Gu, Neil T. Peacock
  • Patent number: 8922227
    Abstract: Systems and methods are provided for detecting surface charge on a semiconductor substrate having a sensing arrangement formed thereon. An exemplary sensing system includes the semiconductor substrate having the sensing arrangement formed thereon, and a module coupled to the sensing arrangement. The module obtains a first voltage output from the sensing arrangement when a first voltage is applied to the semiconductor substrate, obtains a second voltage output from the sensing arrangement when a second voltage is applied to the semiconductor substrate, and detects electric charge on the surface of the semiconductor substrate based on a difference between the first voltage output and the second voltage output.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 30, 2014
    Assignee: Freescale Semiconductor Inc.
    Inventors: Chad S. Dawson, Bernhard H. Grote, Woo Tae Park
  • Patent number: 8922219
    Abstract: A photo ionization detector (PID) is provided for selectively determining various compounds or gases present in a breath sample. The PID, comprises a substrate comprising a gas ionization chamber, at least one pair of ion sensing electrodes, and at least one amplifying circuit; and an ultraviolet (UV) ionization source to transmit a UV light beam into the gas ionization chamber. A system comprises the PID is also provided. A method of detecting a response pattern for various compounds or gases in breath using PID is also provided.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 30, 2014
    Assignee: General Electric Company
    Inventors: Bo Li, Rui Chen, Matthew Damian Pietrzykowski, Xuefeng Wang, Nannan Chen, Cheng-Po Chen
  • Patent number: 8836342
    Abstract: A test structure and a process for the electromigration test of integrated circuits is suggested, in which metallization planes consisting of strip conductors of a usual thickness (11) are connected with metallization planes consisting of substantially thicker strip conductors (12) as they are required for the connection of components of higher performance.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: September 16, 2014
    Assignee: X-FAB Semiconductor Foundries AG
    Inventor: Verena Hein
  • Patent number: 8823384
    Abstract: There is provided a fine particle detection system with a fine particle sensor, a cable and a sensor drive control device. The fine particle sensor has an ion source unit with first and second electrodes, a particle charging unit and inner and outer sensor casings. The cable has a power supply wiring line connected to the second electrode, an inner shield line electrically continuous with the inner sensor casing and an outer shield line electrically continuous with the outer sensor casing. The sensor drive control device has an ion-source power supply circuit, a signal current detection circuit, an inner circuit casing electrically continuous with a first output terminal of the ion-source power supply circuit and surrounding the ion-source power supply circuit and an outer circuit casing connected to the ground potential and shielding the ion-source power supply circuit, the signal current detection circuit and the inner circuit casing.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: September 2, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Toshiya Matsuoka, Masayuki Motomura, Takeshi Sugiyama, Keisuke Tashima, Hitoshi Yokoi
  • Patent number: 8773137
    Abstract: A method for flame sensing in a solid, liquid or gaseous fuel burner, the flame generated at an ionization electrode, the flame presence resulting in an ionizing effect on the electrode. The electrode is powered by an alternating voltage signal. The ionization phenomenon generates in the electrode a direct current. The current being sensed by a suitable sensing circuit including a control unit. This signal generator being of relatively low internal impedance to enable the measured generated current to have a high value compared with that normally used and of waveform to tend to limit the value of the direct current flowing through the electrode. The sensing and control circuit being such as to enable the presence of a parasitic current on the flame sensing electrode to be measured. A device for implementing the method is also disclosed.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 8, 2014
    Assignee: Bertelli & Partners, S.R.L.
    Inventor: Pierluigi Bertelli
  • Patent number: 8773138
    Abstract: A discharge ionization current detector using a low-frequency barrier discharge is provided to improve the linearity of detection sensitivity with respect to a sample introduction amount. From a lower end of a lower gas passage connected to a lower end of an upper gas passage, a dilution gas is supplied upward against a downward flow of a plasma gas. A gas discharge passage for discharging a plasma gas, the dilution gas and a sample gas is arranged between an ion-collecting electrode and a bias voltage application electrode. The sample gas introduced through a capillary tube is mixed with the plasma gas and the dilution gas due to a disturbed flow generated by collision of the plasma gas and the dilution gas. The sample component is efficiently ionized by light from the plasma without undergoing light-shielding effect of concentrated sample components.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 8, 2014
    Assignee: Shimadzu Corporation
    Inventors: Kei Shinada, Shigeyoshi Horiike, Takahiro Nishimoto
  • Patent number: 8729496
    Abstract: In various embodiments of the invention, a cargo container can be monitored at appropriate time intervals to determine that no controlled substances have been shipped with the cargo in the container. The monitoring utilizes reactive species produced from an atmospheric analyzer to ionize analyte molecules present in the container which are then analyzed by an appropriate spectroscopy system. In an embodiment of the invention, a sorbent surface can be used to absorb, adsorb or condense analyte molecules within the container whereafter the sorbent surface can be interrogated with the reactive species to generate analyte species characteristic of the contents of the container.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 20, 2014
    Assignee: Ionsense, Inc.
    Inventor: Brian D. Musselman
  • Publication number: 20140125349
    Abstract: An apparatus and method for conducting a test cycle for an electrometer of an environmental radiation monitor by current injection is provided. The environmental radiation monitor includes a high pressure ionization chamber, a power supply electrically connected to the high pressure ionization chamber, and an electrometer electrically connected to the high pressure ionization chamber. A controller controls the power supply voltage signal provided to the high pressure ionization chamber to create a constant current to be injected into the electrometer. The methods include varying the voltage signal provided to the high pressure ionization chamber, measuring a current signal, processing the current signal with the electrometer and comparing the voltage signal to an expected result, indicating proper operation of the electrometer. Further examples of the method include initiating and discontinuing a test function.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: General Electric Company
    Inventor: Dan Jay McCormick
  • Patent number: 8710849
    Abstract: A process for measuring particle concentrations in a gas using an ejector for producing an essentially constant sample flow and for efficient mixing of the particle-containing sample and essentially clean, ionized gas. The invention also relates to an apparatus implementing such process. The process and the apparatus can be utilized for example in measuring particle concentrations in an exhaust system of a combustion engine.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 29, 2014
    Assignee: Pegasor Oy
    Inventor: Juha Tikkanen
  • Publication number: 20140062495
    Abstract: Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Daniel Carter, Victor Brouk, Daniel J. Hoffman
  • Publication number: 20140055145
    Abstract: The disclosure describes techniques for determining an ion concentration in a sample. According to these techniques of this disclosure, an ion concentration of a sample is determined based on detecting at least one change in an electrical characteristic of a semiconductor device due to a gate insulation layer of the semiconductor device placed in contact with the sample.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 27, 2014
    Inventors: Stefan KRIVEC, Guenter SCHAGERL
  • Patent number: 8653807
    Abstract: Techniques for ion beam current measurement, especially for measuring low energy ion beam current, are disclosed. In one exemplary embodiment, the techniques may be realized as an ion beam current measurement apparatus has at least a planar Faraday cup and a magnet device. The planar Faraday cup is close to an inner surface of a chamber wall, and may be non-parallel to or parallel to the inner surface. The magnet device is located close to the planar Faraday cup. Therefore, by properly adjusting the magnetic field, secondary electrons, incoming electrons and low energy ions may be adequately suppressed. Further, the planar Faraday cup may surround an opening of an additional Faraday cup being any conventional Faraday cup. Therefore, the whole ion beam may be received and measured well by the larger cross-section area of at least the planar Faraday cup on the ion beam path.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 18, 2014
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Peter M Kopalidis, Zhimin Wan
  • Patent number: 8638106
    Abstract: A microdischarge-based pressure sensor that includes an anode, two cathodes, a drive circuit connected to the electrodes, and a measurement circuit that permits sensing of transient current pulses flowing through at least one of the electrodes. One of the cathodes is interposed between the anode and other cathode, and it includes a central opening which permits a microdischarge to occur between the anode and each cathode in response to applied voltage pulses from the drive circuit. Changes in relative current between the two cathodes are indicative of changes in ambient pressure in the microdischarge chamber. In other embodiments, a sealed chamber can be used with one of the electrodes acting as a diaphragm which deflects based on external pressure and changes its inter-electrode spacing, thereby altering the relative cathode currents.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: January 28, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Yogesh B. Gianchandani, Scott Andrew Wright
  • Patent number: 8614581
    Abstract: A vacuum ionization gauge includes a cold cathode, a shield electrode, an anode ring, and a collector. The shield electrode includes a receiving space. The anode ring is located in the receiving space of the shield electrode. The cold cathode includes a field emission unit and a grid electrode corresponding to the field emission unit. The field emission unit includes at least one emitter. Each of the at least one emitter includes a carbon nanotube pipe. The carbon nanotube pipe has a first end, a second end, and a main body connecting to the first end and the second end. The second end has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 24, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8563945
    Abstract: In various embodiments of the invention, a cargo container can be monitored at appropriate time intervals to determine that no controlled substances have been shipped with the cargo in the container. The monitoring utilizes reactive species produced from an atmospheric analyzer to ionize analyte molecules present in the container which are then analyzed by an appropriate spectroscopy system. In an embodiment of the invention, a sorbent surface can be used to absorb, adsorb or condense analyte molecules within the container whereafter the sorbent surface can be interrogated with the reactive species to generate analyte species characteristic of the contents of the container.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 22, 2013
    Assignee: Ionsense, Inc.
    Inventor: Brian D. Musselman
  • Patent number: 8490598
    Abstract: Systems and methods for controlling an internal combustion engine include an ignition coil that generates a pre-discharge ionization signal during charging of the ignition coil after reaching a first threshold charge level and prior to spark discharge and a controller that determines an engine operating condition, such as pre-ignition or plug fouling, in response to the pre-discharge ionization signal. The ignition coil may also generate digital feedback and ionization signals used to by the controller for to control ignition coil dwell and repetitive sparking, as well as providing various combustion diagnostics.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: July 23, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Qiuping Qu, Garlan J. Huberts, Christopher Paul Glugla
  • Patent number: 8461844
    Abstract: A self charging ion current sensing circuit is provided. The self charging ion current sensing circuit is coupled to spark generation circuitry, and utilizes the spark plug electrodes as the ion current sensing electrodes. The self charging is achieved by utilizing the spark current during an ignition event to charge an ion bias capacitor. After the ignition event, the charge voltage build up on the ion bias capacitor is used to provide an ion current across the spark plug gap. The ion current is passed through an offset stage that translates the ion current sense voltage to a voltage that can be buffered and amplified from a single power source available in automotive and vehicular applications. The output of the circuit provides tri-state information, including spark current, null current, and linear representation of ion sense current.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 11, 2013
    Assignee: Woodward, Inc.
    Inventor: David C. Petruska
  • Patent number: 8358137
    Abstract: A detection membrane is joined to a first surface of an electrolyte membrane. After the detection membrane is hydrogenated, oxygen is supplied to a space facing a second surface of the electrolyte membrane. If the electrolyte membrane has a defect, oxygen leaks to the first surface, resulting in a change in resistance of the detection membrane owing to dehydrogenation of the detection membrane. The defect is recognized by this change. An air electrode is joined to the second surface, and an electric circuit is connected between the detection membrane and the air electrode. After hydrogenating the detection membrane and ionizing oxygen supplied to a space facing the air electrode, oxygen ions permeate through the electrolyte membrane and dehydrogenate the detection membrane. Uniformity of the oxygen ion conductivity is examined by measuring resistance of the detection membrane, which varies depending on the amount of oxygen ions, for each region.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: January 22, 2013
    Assignee: Kabushiki Kaisha Atsumitec
    Inventor: Naoki Uchiyama
  • Patent number: 8350572
    Abstract: An ionization vacuum device measures a pressure in a vacuum vessel, and has: an anode provided inside the vacuum vessel; a cathode provided inside the vacuum vessel; a power source for discharge that supplies electric power for discharge between the anode and the cathode; a power source for cathode-heating that supplies power for heating to the cathode, means for forming a magnetic field in a space between the anode and the cathode; control means for controlling so as to heat said cathode by said power source for cathode-heating while discharge of gas inside said vacuum vessel is caused, and so as to maintain the temperature of said cathode within a temperature range where thermonic electrons are not emitted from said cathode.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: January 8, 2013
    Assignee: Ampere Inc.
    Inventor: Fumio Watanabe
  • Publication number: 20120306508
    Abstract: In-situ flux measurement methods, devices, and systems are provided. According to some embodiments, an in-situ molecular flux device generally comprises a electrically conductive container configured to hold a precursor material, a heat source proximate the electrically conductive container to heat the precursor material to release ions such that an ion current is produced; and a current-measuring device in electrical communication with the electrically conductive container to measure the ion current associated with the heated precursor material. Other embodiments are also claimed and described.
    Type: Application
    Filed: August 15, 2012
    Publication date: December 6, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: W. Alan Doolittle, Alexander Carver
  • Patent number: 8242783
    Abstract: An ionization vacuum gauge includes a cathode electrode, a gate electrode, and an ion collector. The cathode electrode includes a base and a field emission film disposed thereon. The gate electrode is disposed adjacent to the cathode electrode with a distance therebetween. The ion collector is disposed adjacent to the gate electrode with a distance therebetween. The field emission film of the cathode electrode includes carbon nanotubes, a low-melting-point glass, and conductive particles.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 14, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yuan-Chao Yang, Jie Tang, Li Qian, Pi-Jin Chen, Liang Liu, Shou-Shan Fan
  • Publication number: 20120169347
    Abstract: A vacuum ionization gauge includes a cold cathode, a shield electrode, an anode ring, and a collector. The shield electrode includes a receiving space. The anode ring is located in the receiving space of the shield electrode. The cold cathode includes a field emission unit and a grid electrode corresponding to the field emission unit. The field emission unit includes at least one emitter. Each of the at least one emitter includes a carbon nanotube pipe. The carbon nanotube pipe has a first end, a second end, and a main body connecting to the first end and the second end. The second end has a plurality of carbon nanotube peaks.
    Type: Application
    Filed: April 21, 2011
    Publication date: July 5, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Publication number: 20120122716
    Abstract: In some embodiments, the invention relates to a stable, long-term human ES cell line. In other aspects, the invention relates to methods for establishing a stable long-term ES cell line and methods for screening therapeutic treatments for inner ear diseases, such as Meniere's disease.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Inventors: DAVID LIM, SUNG-KYUN MOON, HELGE RASK-ANDERSEN, JOHNG S. RHIM
  • Patent number: 8169223
    Abstract: An ionization vacuum gauge includes a cathode, an anode and an ion collector. The anode is surrounding the cathode. The ion collector is surrounding the anode. The cathode, the anode and the ion collector are concentrically aligned and arranged in that order. The anode comprises a carbon nanotube structure including a plurality of carbon nanotubes.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 1, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Lin Xiao, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8129978
    Abstract: To realize a small size and high detection accuracy in a substance detection apparatus. A charge detection field effect transistor and a control circuit therefor are provided in each cell, and the control circuit controls the charge detection field effect transistor so that the drain-source voltage and the drain current of the charge detection field effect transistor are always maintained constant. The control circuit may be formed in a CMOS configuration including a small number of elements in a small area using a standard CMOS integrated circuit technique.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 6, 2012
    Assignee: National University Corporation Nagoya University
    Inventor: Kazuo Nakazato
  • Publication number: 20120019257
    Abstract: Techniques for ion beam current measurement, especially for measuring low energy ion beam current, are disclosed. In one exemplary embodiment, the techniques may be realized as an ion beam current measurement apparatus has at least a planar Faraday cup and a magnet device. The planar Faraday cup is close to an inner surface of a chamber wall, and may be non-parallel to or parallel to the inner surface. The magnet device is located close to the planar Faraday cup. Therefore, by properly adjusting the magnetic field, secondary electrons, incoming electrons and low energy ions may be adequately suppressed. Further, the planar Faraday cup may surround an opening of an additional Faraday cup being any conventional Faraday cup. Therefore, the whole ion beam may be received and measured well by the larger cross-section area of at least the planar Faraday cup on the ion beam path.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 26, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: PETER M. KOPALIDIS, ZHIMIN WAN
  • Publication number: 20120019258
    Abstract: An electrochemical sensor allows even extremely small quantities or concentrations of a target chemical substance to be detected or quantified with a high precision in a particularly reliable manner. The novel sensor has a detector zone formed by nanoparticles which are embedded in a matrix and have a higher electric conductivity than the matrix material. The electric conductivity of the zone is determined by electron tunneling, ionization or hopping processes among the nanoparticles and by the electrochemical interaction thereof with a target substance to be detected.
    Type: Application
    Filed: October 22, 2009
    Publication date: January 26, 2012
    Applicant: NANOSCALE SYSTEMS NAOSS GMBH
    Inventor: Alexander Kaya
  • Publication number: 20110234233
    Abstract: An ionization gauge includes an electron generator array that includes a microchannel plate that includes an electron generating portion of the microchannel plate comprising a source for generating seed electrons and an electron multiplier portion of the microchannel plate, responsive to the seed electrons generated by the electron generating portion, that multiplies the electrons. The ionization gauge includes an ionization volume in which the electrons impact a gaseous species, and a collector electrode for collecting ions formed by the impact between the electrons and gas species. The collector electrode can be surrounded by the anode, or the ionization gauge can be formed with multiple collector electrodes. The source of electrons can provide for a spontaneous emission of electrons, where the electrons are multiplied in a cascade.
    Type: Application
    Filed: December 17, 2008
    Publication date: September 29, 2011
    Inventor: Gerardo A. Brucker
  • Publication number: 20110221447
    Abstract: The invention relates to a sensor system (2) designed for detecting analytes in low concentration in water. The system (2) comprises at least one sensor element (4) with at least one detection region (6) which is designed for the detection of at least one analyte on its surface, and a voltage source (14) by way of which, the detection region (6) of the sensor element (4) may be subjected to an electrical voltage.
    Type: Application
    Filed: August 15, 2008
    Publication date: September 15, 2011
    Applicant: Grundfos Management a/s
    Inventor: Bentien Anders
  • Patent number: 7990161
    Abstract: Disclosed herein are an apparatus for measuring the total acid number of oil, an apparatus for measuring the lifetime of oil through the measurement of the total acid number of oil, a method for measuring the total acid number of oil, and a method of making measurements using an oil sensor. According to the disclosed invention, measurement accuracy can be increased through the use of a high-sensitivity conductance measuring sensor, the inventive apparatus can be applied to both lubricant oil and insulating oil, the size of the total acid number-measuring apparatus can be reduced.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 2, 2011
    Assignees: SNS Revolution Co., Ltd., Korea University Industrial & Academic Collaboration Foundation
    Inventors: Byeong Kwon Ju, Kyung Shin, Cheol Ho Yeo
  • Publication number: 20110181291
    Abstract: A measuring device for carrying out purity measurements in a media circuit of a power station with an ion exchanger device and a measuring means for measuring a parameter of a media current flowing through the ion exchanger device is described. In order to obtain measurements in a rapid and reliable manner at the start up of the ion exchanger device, for example during the start-up phase of the power station, it is suggested that the ion exchanger device has two flow paths for two different operating modes of the power station.
    Type: Application
    Filed: June 1, 2007
    Publication date: July 28, 2011
    Inventor: Michael Rziha