Multiple Magnetic Paths Patents (Class 336/214)
  • Patent number: 11522522
    Abstract: A low pass filter is disclosed. In an embodiment a low-pass filter includes a current-compensated choke, a reference potential and a capacitor connected in parallel with the current-compensated choke and to the reference potential, wherein a core of the current-compensated choke is configured to have a magnetic circuit, and wherein the core has an air gap.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 6, 2022
    Assignee: TDK ELECTRONICS AG
    Inventor: Peter Schweiberger
  • Patent number: 11380473
    Abstract: A combined transformer/inductor device includes a core having a central core leg and an outer core leg spaced apart from the central core leg, an inner bobbin disposed around the central core leg, an outer bobbin disposed around the inner bobbin and the central core leg and having an upper portion having a first oblong portion disposed around the outer core leg, a lower portion having a second oblong portion disposed around the outer core leg, and a central portion disposed around the inner bobbin and the central core leg, a first winding wound around the inner bobbin, and a second winding wound around the outer bobbin, the second winding having a first portion wound around the first oblong portion, a second portion wound around the central portion, and a third portion wound around the second oblong portion.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: July 5, 2022
    Assignee: VISHAY DALE ELECTRONICS, LLC
    Inventors: Jason Ebner, Matthew Foley
  • Patent number: 10205374
    Abstract: A time-varying current from a DC voltage-source, flows through a primary winding of a magnetic circuit containing permanent magnets, induces more inductive voltages across different windings. The windings are wrapped around the main, sub-magnetic paths of different forms and constructions of the Tran-generators. The invention when combined with any one of recovering the utilized electric charge, using the (hybrid) soft magnetic wires, applying the Voltage-Doubler circuits, and using the transfer of high-potential electric charge to generate more electric energy, make the tran-generators useful.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: February 12, 2019
    Inventors: Toan Cong Tran, Michael Giao Thien Nguyen, Annalisa Tran Torrente, Nhu Ha Thi Tran, Toan Cong Tran
  • Publication number: 20150085533
    Abstract: A reactor includes a magnetic core; a first coil wound around the magnetic core; a second coil wound around the magnetic core; and a magnetic body that is provided between the first coil and the second coil separate from the magnetic core, and that reduces a coupling coefficient between the first coil and the second coil.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Inventor: Fumiki Tanahashi
  • Patent number: 8970338
    Abstract: A distribution transformer having a slot-and-tab core frame assembly. The core frame (17) encloses a transformer core (11) having at least one phase and provides compression on the core yokes and end members of the transformer to bind the assembly together. First and second clamps (10, 24) of the core frame contain receiving slots (34) for the tabbed (18, 28), longitudinal side supports (20), creating an interlock when connected. For larger transformers, the tabbed side supports may be alternatively comprised of a subassembly of end plates, cams, and tabbed locking plates, encompassing a sturdy locking mechanism.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: March 3, 2015
    Assignee: ABB Technology AG
    Inventor: Charles W. Johnson
  • Patent number: 8963677
    Abstract: An oil immersed stereo wound-core amorphous alloy transformer, comprising an iron core, a high-low voltage winding, leads and a tank. The core comprises three single frames made of amorphous alloy strips by winding and are identical in structure, and the single frames have a rectangular shape; the vertical sides of every two adjacent frames fit together fixedly to form a core pillar, and the horizontal sides of the single frame form iron yokes; the cross sections of the core pillars have an approximately circular or polygonal shape; the transformer further comprises a clamp, comprising a quasi-triangular upper and lower clamp, and posts, the lower clamp is provide with three food pads; the iron yokes in the lower portion of the iron core are located on the foot pads, and the high-low voltage winding is wound on the core pillars.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 24, 2015
    Assignee: Haihong Electric Co., Ltd.
    Inventors: Kaixuan Xu, Xianqing Guo
  • Patent number: 8922325
    Abstract: A coil component comprising a first split magnetic core and a second split magnetic core, each having an outer core leg, an inner core leg and a back yoke connecting the outer core leg and the inner core leg, and a coil block mounted to the inner core leg, wherein the outer core leg has a sectional area smaller than a sectional area of the inner core leg, a density of magnetic body in the outer core leg is different from a density of the magnetic body in any of the inner core leg and the back yoke, and the first split magnetic core and the second split magnetic core are butted against each other to form a magnetic core of a closed magnetic circuit.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomonori Shibuya, Tsunetsugu Imanishi
  • Patent number: 8910373
    Abstract: A method for manufacturing a low profile, magnetic component. The method includes stacking a the plurality of substantially planar and flexible magnetic powder sheets, locating a preformed multiple turn conductive winding between at least two of the plurality of substantially planar and flexible magnetic powder sheets in the stack, and pressure laminating the flexible magnetic powder sheets around the preformed multiple turn conductive winding to define a magnetic core containing the winding.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: December 16, 2014
    Assignee: Cooper Technologies Company
    Inventors: Yipeng Yan, Robert James Bogert
  • Publication number: 20140340188
    Abstract: A structure is disclosed, comprising: a first magnetic core portion comprising: a first plurality of leg posts that are to be surrounded by a first set of windings; and a first plurality of center portions that are not to be surrounded by windings; and a second magnetic core portion comprising: a second plurality of leg posts that are to be surrounded by a second set of windings; and a second plurality of center portions that are not to be surrounded by the second set of windings, wherein the first set of center portions and the second set of center portions are configured to provide a plurality of physically separate magnetic flux paths.
    Type: Application
    Filed: April 7, 2014
    Publication date: November 20, 2014
    Inventor: Fred O. Barthold
  • Patent number: 8869383
    Abstract: A magnetics assembly (100) including a transformer (1) made of litz wire. The transformer includes a toroid core (2) and a bundle of wires (3) winding around the toroid core. The bundle of wires includes first to eighth wires, and has a central portion with all eight wires twisted together and winding around the toroid core. First and second ends of the bundle of wires oppositely extend out from the toroidal core. The ends of the first to eighth wires are connected to form a primary and a secondary coils of the transformer, wherein the second ends of the first wire and the second wire, and the first ends of the third wire and the fourth wire are sorted out to form central taps (35, 36) of the primary and secondary coils, respectively.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yong-Chun Xu, Jie Zhang
  • Patent number: 8847719
    Abstract: A transformer includes a core having a first leg, a second leg and a third leg, a split primary winding including first turns about the first leg electrically coupled with second turns about the third leg, and a secondary winding about the second leg. Magnetic flux linking the first turns of the split primary winding and magnetic flux linking the second turns of the primary winding link the secondary winding.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: September 30, 2014
    Assignee: Cirrus Logic, Inc.
    Inventors: John L. Melanson, Mauro L. Gaetano
  • Patent number: 8789262
    Abstract: A method for manufacturing an inductor includes a mold device having a mold cavity, disposing a coil member above the mold cavity of the mold device, filling metallic particles into the mold cavity of the mold device, forcing the coil member into the metallic particles to form a base member, applying two conductive coating members onto the base member and electrically connecting to the terminals of the coil member respectively, and attaching two conductive coverings onto the conductive coating members respectively and electrically connecting to the conductive coating members respectively for allowing the inductors to be quickly manufactured in a mass production.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: July 29, 2014
    Assignee: Mag. Layers Scientific Technics Co., Ltd.
    Inventor: Chien Chih Liu
  • Patent number: 8766758
    Abstract: A high-frequency transformer includes a plurality of cores having a central leg, the cores being arranged to form core windows that are separated by the central legs. A primary winding has a predetermined length of electrically conductive wire that is wound about the central legs and extends through each of the core windows. One or more secondary windings extend through each core window, generally adjacent to the primary winding. The core windows are sized and shaped to provide a predetermined amount of leakage inductance between the primary and secondary windings, and are further adapted to provide a path for cooling air through an interior portion of the transformer.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: July 1, 2014
    Assignee: Solid State Controls, LLC
    Inventor: Matthew Bridge
  • Patent number: 8736414
    Abstract: A magnetic power converter has a core that has at least a first leg and a second leg. In addition, the magnetic power converter has an output coil positioned around the second leg and a toroid integrated into the first leg, the toroid comprising a permanent magnet and an first input coil, the input coil positioned relative to the permanent magnet, such that when an alternating current (A/C) is applied to the first input coil, permanent magnet magnetic flux produced by the permanent magnet is displaced and travels through the second leg.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 27, 2014
    Assignee: OnyxIP, Inc.
    Inventors: Harvey S. Henning, III, David L. Priputen
  • Publication number: 20140139202
    Abstract: In some embodiments, a common mode inductor comprises a principal core, and a leakage boosting core located within a threshold distance of the principal core in order to enhance a leakage flux of the inductor. In some embodiments, a circuit comprises a power converter, and a common mode inductor coupled to the power converter, the common mode inductor comprising a principal core and a leakage boosting core located within a threshold distance of the principal core wherein the threshold distance is selected to control a leakage flux of the inductor.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 22, 2014
    Inventor: Adam Michael White
  • Patent number: 8707547
    Abstract: A lead-frameless power inductor and its fabrication method are disclosed. The power inductor comprises a lower substrate, a coil provided on the lower substrate, and an intermediate layer which encloses the coil, wherein the lower substrate can be a soft magnetic entrainer or a non-magnetic entrainer. The coil is made of an insulated wire, and the intermediate layer is a colloid consisting of magnetic powder. A method for fabricating the lead-frameless power inductor includes steps of preparing a lower substrate; forming a plurality of conducting metal layers on the lower substrate; forming a wire package on an upper surface of said lower substrate; coating a surface of said wire package with a magnetic powder; dividing the substrate into a plurality of granulated elements by cutting process; and forming the conducting metal layer on both sides of the element to form a surface mounting device.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: April 29, 2014
    Assignee: Inpaq Technology Co., Ltd.
    Inventor: Wei Chih Lee
  • Patent number: 8601673
    Abstract: A method of producing an inductor with high inductance includes forming a removable polymer layer on a temporary carrier; forming a structure including a first coil, a second coil, and a dielectric layer on the removable polymer layer; forming a first magnetic glue layer on the removable polymer layer and the structure; removing the temporary carrier; and forming a second magnetic glue layer below the structure and the first magnetic glue layer.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Cyntec Co., Ltd.
    Inventor: Shih-Hsien Tseng
  • Patent number: 8576037
    Abstract: A dual output autotransformer is realized by employing a novel topology in which three transformers are wound on a single, high permeability, ferrite, binocular core. The three transformers are (1) an autotransformer; (2) a coupled winding to the autotransformer; and, (3) a transmission line transformer. Within the topology employed, the outputs of the coupled line transformer and the transmission line transformer provide the balanced output (secondary) and the input to the autotransformer forms the unbalanced primary. Such an approach results in a wideband response of from 30 MHz to 3000 MHz or greater with the requisite amplitude and phase balance.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 5, 2013
    Assignee: Scientific Components Corporation
    Inventor: Daxiong Ji
  • Patent number: 8536971
    Abstract: A magnetic component includes a magnetic component core. The magnetic component core includes a first plate, a second plate, a secondary core post connected between the first plate and the second plate, and a plurality of primary core posts disposed between the first plate and the second plate. Each of the plurality of primary core posts including a first section connected to the first plate and a second section connected to the second plate. The first and second section of each of the plurality of primary core posts is separated by a gap. A secondary winding is formed about the secondary core post. Primary windings are formed about each of the plurality of primary core posts.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 17, 2013
    Inventors: Saher Waseem, Sana Waseem, Waseem Ahmed Roshen
  • Patent number: 8421578
    Abstract: A magnetic device includes two symmetric magnetic cores, each of which includes a base, a first protruding portion and second protruding portions. The first protruding portion and the second protruding portions are formed on the base separately along two edges of the base. The two symmetric magnetic cores are assembled such that a gap is formed between the first protruding portion of one of the two symmetric magnetic cores and the first protruding portion of the other one of the two symmetric magnetic cores. A method for generating inductance is also disclosed herein.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 16, 2013
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Zhi Huang, Jiang Chu, Zeng Li
  • Patent number: 8416045
    Abstract: A rare earth magnet is observed to function as a constant flux generator until coerced. To exploit this law, a Magnetic Power Converter is configured as a figure eight shaped balanced reluctance bridge where a rare earth magnet provides a source of constant flux employed as a working fluid. One side of the bridge drives an output coil and the other side is moderated by a toroid shaped control core acting as a variable reluctance shunt with respect to the magnet. Current in the control coil determines the rate and degree of flux variation across the bridge and therefore the resultant output voltage. Due to a mitigation of Lenz effect, full output loading is not reflected in the input; this property supports real power conversion efficiencies that may have wide applications in alternative energy and green energy generation.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 9, 2013
    Assignee: OnyxIP, Inc.
    Inventors: Harvey S. Henning, III, David L. Priputen
  • Publication number: 20130076476
    Abstract: A power supply apparatus which includes a transformer having a primary winding and a secondary winding, whereby magnetic flux generated by a varying primary voltage applied to the primary winding induces a varying secondary voltage on the secondary winding, a torroidal transformer core over which said primary winding and secondary winding are applied, and at least one magnetic shunt arranged to provide a diversion path for magnetic flux generated by the primary winding which diverts magnetic flux from the secondary winding.
    Type: Application
    Filed: February 16, 2011
    Publication date: March 28, 2013
    Inventors: Frank Fornasari, Clive Stuart White
  • Patent number: 8188830
    Abstract: The transformer includes: a magnetic core having two base-plates and four legs; a first conductive member as a first winding, having four through-holes through which the four legs pass, respectively; and one or more second conductive members as a second winding, each having four through-holes through which the four legs pass, respectively. The first and second windings are wound around the four legs. Closed magnetic paths are formed inside the magnetic core from the four legs to the two base-plates due to currents flowing through the first or the second winding. A couple of magnetic fluxes each generated inside each of a couple of legs arranged along one diagonal line are both directed in a first direction, while another couple of magnetic fluxes each generated inside each of another couple of legs arranged along another diagonal line are both directed in a second direction opposite to the first direction.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 29, 2012
    Assignee: TDK Corporation
    Inventor: Wataru Nakahori
  • Patent number: 8035470
    Abstract: A DC inductor comprising a core structure (11) comprising one or more magnetic gaps (12), a coil (14) inserted on the core structure (11), at least one permanent magnet (15) positioned in the core structure, the magnetization of the permanent magnet (15) opposing the magnetization producible by the coil (14). The core structure is adapted to form a main flux path and an auxiliary flux path, where the main flux path is adapted to carry the main magnetic flux producible by the coil, wherein the auxiliary flux path comprises a magnetic gap and is adapted to lead magnetic flux past the at least one permanent magnet (15).
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: October 11, 2011
    Assignee: ABB Oy
    Inventors: Tero Viitanen, Paulius Pieteris
  • Patent number: 8009003
    Abstract: A method for powering a magnetic coupler, in which: a) each winding of a first magnetic elementary cell is powered such as to produce a magnetizing flux in a bar of the first cell which is joined with a second cell, the fundamental component of which has an angular offset xi; and b) powering each winding of the second cell such as to produce a magnetizing flux in the bar of the second cell which is joined with the first cell, the fundamental component of which has an angular offset xj. The absolute value of the difference between the angular offsets xi and xj is greater than or equal to (I) rad.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: August 30, 2011
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S.), Institut National Polytechnique de Toulouse, University Montpellier 2, Sciences et Techniques
    Inventors: Eric Laboure, Thierry Antoine Meynard, François Forest
  • Patent number: 7994891
    Abstract: Improved inductive electronic apparatus and methods for manufacturing the same. In one exemplary embodiment, the apparatus comprises an inductive device module comprising N inductors and N+1 core elements. The core elements comprise ferrite core pieces that are optionally identical to one another. These core elements are stacked (e.g., in a longitudinal coaxial arrangement) such that the back of one core element associated with a first inductor provides a magnetic flux path for a second inductor. Form-less (bonded) windings are also optionally used to simplify the manufacture of the device, reduce its cost, and allow it to be made more compact (or alternatively additional functionality to be disposed therein). One variant utilizes a termination header for mating to a PCB or other assembly, while another totally avoids the use of the header by directly mating to the PCB.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: August 9, 2011
    Assignee: Pulse Engineering, Inc.
    Inventor: Timothy Craig Wedley
  • Patent number: 7924134
    Abstract: A vehicular power converter includes switches and first and second inductive components. The first and second inductive components have substantially adjacent portions and are coupled to the plurality of switches such that when current flows from the plurality of switches and through the first and second inductive components, flux generated by the current flowing through the adjacent portions of the first and second inductive components and located between the adjacent portions is oriented in substantially opposite directions.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 12, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Keming Chen
  • Patent number: 7915989
    Abstract: A magnetic element includes a magnetic core assembly and multiple winding coils. The magnetic core assembly is used for proving a closed magnetic flux path and includes a first side plate, a second side plate, a first side pillar, a second side pillar and at least two middle pillars. The first and second side pillars are arranged between the first and second side plates and respectively disposed on bilateral edges of the first and second side plates. The at least two middle pillars are arranged between the first and second side pillars and includes a first middle pillar and a second middle pillar. The winding coils are wound around the at least two middle pillars.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 29, 2011
    Assignee: Delta Electronics, Inc.
    Inventors: Wen-Hua Li, Gui-Song Huang, Hai-Feng Fan, Jui-Chu Cheng, Su-Chiung Hsu
  • Patent number: 7893807
    Abstract: A magnetic element including a first core and a second core each of which has a winding core provided with a flange portion having a flange surface at least at one end thereof; and an intermediate core to form a closed magnetic circuit which is disposed between said first core and said second core in a manner being integrally connected with said first core and said second core.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: February 22, 2011
    Assignee: Sumida Corporation
    Inventor: Kan Sano
  • Patent number: 7886425
    Abstract: A method of manufacturing a transformer is disclosed. A first bobbin piece, having a first channel and a primary winding section is provided. A second bobbin comprising first and second secondary side plates, plural partition plates, a wall portion, a secondary base having a first pin arranged on a bottom surface of the secondary base, plural secondary winding sections, and a second channel is provided. A second pin is inserted into the second bobbin piece to form a wire-arranging part protruded from the second secondary side plate and an insertion part protruded from the bottom surface of the secondary base. A primary winding coil is wound on the primary winding section, and the first and second terminals of a secondary winding coil are respectively fixed on the first pin and the wire-arranging part. A magnetic core assembly is partially disposed within the first channel and the second channel.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: February 15, 2011
    Assignee: Delta Electronics, Inc.
    Inventors: Tzu-Yang Liu, Ching-Hsien Teng, Hsin-Wei Tsai, Yi-Lin Chen, Bou-Jun Zung, Chia-Hung Pai, Shih-Hsien Chang
  • Patent number: 7849586
    Abstract: A method for making a power inductor comprises providing a first magnetic core comprising a ferrite bead core material, cutting a first cavity and a first air gap in said first magnetic core, and attaching a second magnetic core to said first magnetic core at least one of in and adjacent to said air gap.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 7830238
    Abstract: An electromagnetic current limiter device comprising at least one ferromagnetic core having a central opening; at least one winding of electric conducting material wound on the core; a portion of said winding passing through said opening; an input terminal for receiving alternating current for supplying said alternating current to said winding; an output terminal for supplying current limited current to an external load; and a plurality of predetermined aligned magnetic domains defined in said core for limiting the current to said output terminal.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: November 9, 2010
    Inventor: Deo Prafulla Rajabhau
  • Publication number: 20100254168
    Abstract: A magnetic device formed with U-shaped core pieces employable in a power converter, and a method of forming the same. In one embodiment, the magnetic device includes a rectilinear core piece formed of a magnetic material, and first and second U-shaped core pieces positioned on the rectilinear core piece. The magnetic device also includes first and second conductive windings formed about the first and second U-shaped core pieces, respectively.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 7, 2010
    Inventor: Sriram Chandrasekaran
  • Patent number: 7768373
    Abstract: An inductor includes common mode and differential mode flux paths. The inductor comprises a first core having a first segment, a second segment extending from the first segment and a first bridge segment extending from the second segment; a first wiring arrangement at least partially disposed around the first segment; a second core having a third segment, a fourth segment extending from the third segment and a second bridge segment extending from the fourth segment; and a second wiring arrangement at least partially disposed around the third segment; wherein the first segment, second segment, third segment and fourth segment cooperate to promote the common mode flux path, and the first bridge segment and the second bridge segment cooperate to promote the differential mode flux path.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: August 3, 2010
    Assignee: Cramer Coil & Transformer Co., Inc.
    Inventor: Todd Alexander Shudarek
  • Patent number: 7728708
    Abstract: The present invention provides a transformer apparatus configured by integrating an inverter transformer and balance transformer to be a downsized form, and a drive circuit using the transformer apparatus. The transformer apparatus comprises an inverter transformer having a core potion on which a primary coil and a secondary coil are wound, and a balance transformer having a core portion on which a primary coil and a secondary coil are wound, wherein the inverter transformer and the balance transformer are integrally formed by sharing a part of the core portions.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: June 1, 2010
    Assignee: Sumida Corporation
    Inventors: Tadayuki Fushimi, Hiroyuki Miyazaki, Hiroki Miura
  • Patent number: 7584533
    Abstract: A damascene process is utilized to fabricate the segmented magnetic core elements of an integrated circuit inductor structure. The magnetic core is electroplated from a seed layer that is conformal with a permanent dielectric mold that results in sidewall plating defining an easy magnetic axis. The hard axis runs parallel to the longitudinal axis of the core and the inductor coils are orthogonal to the core's longitudinal axis. The magnetic field generated by the inductor coils is, therefore, parallel and self-aligned to the hard magnetic axis. The easy axis can be enhanced by electroplating in an applied magnetic field parallel to the easy axis.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: September 8, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Andrei Papou
  • Patent number: 7568278
    Abstract: A method for manufacturing an inductor using a system-in-package (SIP) includes forming a first penetration electrode in a silicon substrate; depositing an insulating film on a first surface of the silicon substrate, and patterning the insulating film to form an inductor hole and a second penetration hole aligned with the first penetration hole; forming an inductor in the inductor hole and a second penetration electrode in the second penetration hole; and depositing a protective film on the insulating film and performing a back grind process such that the first penetration electrode is exposed from a second surface of the silicon substrate, the second surface being opposed to the first surface.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: August 4, 2009
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jae-Won Han
  • Patent number: 7352269
    Abstract: Methods and structures for constructing a magnetic core of a coupled inductor. The method provides for constructing N-phase coupled inductors as both single and scalable magnetic structures, where N is an integer greater than 1. The method additionally describes how such a construction of the magnetic core may enhance the benefits of using the scalable N-phase coupled inductor. The first and second magnetic cores may be formed into shapes that, when coupled together, may form a single scalable magnetic core. For example, the cores can be fashioned into shapes such as a U, an I, an H, a ring, a rectangle, and a comb, that cooperatively form the single magnetic core.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: April 1, 2008
    Assignee: Volterra Semiconductor Corporation
    Inventors: Jieli Li, Charles R. Sullivan, Angel Gentchev
  • Patent number: 7332992
    Abstract: Disclosed herein is a transformer including: an iron core; and a winding wound around the iron core; wherein the iron core includes a column-shaped output side iron core part, a plurality of column-shaped input side iron core parts, and a connecting iron core part, the winding includes a plurality of primary windings, a secondary winding, and generated magnetic fluxes.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: February 19, 2008
    Assignee: Sony Corporation
    Inventor: Kenji Iwai
  • Patent number: 7271695
    Abstract: An electromagnetic apparatus includes: (a) A magnetic material arranged in a core structure establishing a first flux path set and a second flux path set; the first flux path set includes a first middle flux path oriented about a first axis and two first side flux paths parallel with the first axis; the second flux path set includes a second middle flux path oriented about a second axis and two second side flux paths parallel with the second axis; the second axis is perpendicular with the first axis. The first and second flux path sets cooperate to establish open spaces. Each open space is bounded by portions of two flux paths from each of the first and second flux path sets. (b) A plurality of windings for conducting electrical current about the magnetic core structure. The windings are oriented around one axis on both sides of the other axis.
    Type: Grant
    Filed: August 27, 2005
    Date of Patent: September 18, 2007
    Assignee: Tyco Electronics Power Systems, Inc.
    Inventors: James C. Wadlington, James J. Hansen, Robert James Catalano
  • Patent number: 6937130
    Abstract: A magnetic field production system is proposed and has a two-dimensional winding configuration with two windings. The windings are disposed essentially orthogonally with respect to one another and enclose a machine or system. The windings have winding axes that are essentially at right angles to one another, and which are supplied with alternating variables via two feed circuits. In order to produce a two-dimensional, rotating magnetic field, the two alternating variables are at the same frequency, have similar current amplitudes and similar voltage amplitudes, and are synchronized to one another. A phase shift of preferably 90° is set between the alternating variable of the first feed circuit and the alternating variable of the second feed circuit. Furthermore, a three-dimensional magnetic field, as well as an configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system are possible.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: August 30, 2005
    Assignee: ABB Research Ltd.
    Inventors: Guntram Scheible, Jean Schutz, Carsten Oberschmidt
  • Patent number: 6933822
    Abstract: A magnetically influenced current or voltage regulator includes a body of an anisotropic magnetisable material that provides a closed magnetic circuit. A first electrical conductor is wound around the body along at least a part of the close circuit for at least one turn which forms a first main winding. At least one second electrical conductor is wound around the body along at least a part of the closed circuit for at least one turn which forms a control winding. The winding axis for the main winding is at right angles to the winding axis for the control winding. Orthogonal magnetic fields are generated in the body when the first main winding and the control winding are excited. A characteristic of the anisotropic magnetisable material relative to a field in the main winding is controlled by means of a field in the control winding.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: August 23, 2005
    Assignee: Magtech AS
    Inventors: Espen Haugs, Frank Strand
  • Patent number: 6822545
    Abstract: The invention relates to an inductor comprising a plurality of interconnected conductive segments interwoven with a substrate. The inductance of the inductor is increased through the use of coatings and films of ferromagnetic materials such as magnetic metals, alloys, and oxides. The inductor is compatible with integrated circuit manufacturing techniques and eliminates the need in many systems and circuits for large off chip inductors. A sense and measurement coil, which is fabricated on the same substrate as the inductor, provides the capability to measure the magnetic field or flux produced by the inductor. This on chip measurement capability supplies information that permits circuit engineers to design and fabricate on chip inductors to very tight tolerances.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: November 23, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 6791447
    Abstract: A configuration for producing electrical power from a magnetic field includes a three-dimensional winding configuration formed from a central core of a magnetic material on which at least three windings are fitted. The windings have winding axes each disposed at right angles to one another and intersecting at a common point. Each of the windings is connected to a rectifier. Each of the windings is, preferably, connected to a resonant capacitor to form a resonant circuit.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: September 14, 2004
    Assignee: ABB Research Ltd.
    Inventors: Guntram Scheible, Kai Garrels
  • Patent number: 6774758
    Abstract: Non-linear inductor(s) are used to reduce the percent total harmonic distortion of the harmonics in the line currents in the input side rectifier system of an ac drive system. Several constructions for the non-linear inductor(s) are described. The non-linear inductor(s) may be constructed from E and I laminations. The gap depends on the construction of the middle leg of the E laminations and may have a step with a constant spacing or a variable spacing which depends on the stacking of the laminations. Alternatively the non-linear inductor(s) may be constructed from a toriodal core that either has a step gap or a variable type gap.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: August 10, 2004
    Inventors: Kalyan P. Gokhale, Alpo K. Vallinmäki, Nicklas Jan Anders Sodo
  • Patent number: 6765467
    Abstract: Transformer cores, especially those of wound or laminated annealed amorphous metals which include support assemblies are disclosed. Methods for their manufacture, and their use in assembled transformers are also disclosed.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: July 20, 2004
    Inventors: Dung A. Ngo, Donald Christian Pruess, Kimberly M. Borgmeier
  • Patent number: 6744343
    Abstract: A flyback transformer is mounted on a main wiring board formed with a power circuit. A mounting bracket shaped like an L-character in plan view is integrally molded on a chassis. A mounting portion disposed at the top of the flyback transformer is fixed by screws to an upper end of the mounting bracket. A boss in a height middle portion of the mounting bracket is fitted into a cabinet.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: June 1, 2004
    Assignee: Funai Electric Co., Ltd.
    Inventor: Tomokazu Sugamura
  • Patent number: 6734773
    Abstract: A transformer having an additional integrated inductor includes a first core (1) having at least a primary winding (5), a second core (2) having at least a secondary winding (4), and a third core (3), in which each core (1, 2, 3) is a separate component.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: May 11, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Bernd Ackermann
  • Publication number: 20040004526
    Abstract: In an inductor comprising an open magnetic path formed by a soft magnetic material and a winding provided around the open magnetic path, the soft magnetic material has its relative complex dielectric constant varying according to a frequency. In the soft magnetic material, the imaginary part of the relative complex dielectric constant is greater than the real part thereof in a high-frequency band equal higher than the frequency of the electric signal flowing in the winding. Specifically, the soft magnetic material has a resistivity of 150 &OHgr;m, has a real part of the relative complex dielectric constant, ranging from 1,000 to 20,000 at 1 kHz and 50 or less at 1 MHz, and the imaginary part is greater than the real part at 1 MHz.
    Type: Application
    Filed: April 23, 2003
    Publication date: January 8, 2004
    Applicant: Minebea Co., Ltd.
    Inventors: Osamu Kobayashi, Osamu Yamada, Yukio Suzuki, Kiyoshi Ito, Mayuka Shirai
  • Patent number: 6400249
    Abstract: A transformer providing low output voltage. A transformer core has two outer leg portions and a center portion. A primary winding has a first portion looped around one of the legs so that a current passed through the first winding will produce a magnetic flux in that leg that circulates in either the right hand or left hand sense. A second portion of the input signal winding is looped around the other leg in the opposite sense. This provides for a magnetic flux circulating through the two outer leg portions in the same sense, and provides that the magnetic flux circulating through the center portion is zero. The secondary winding is preferably provided as a fractional loop around one of the outer legs.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: June 4, 2002
    Assignee: Ascom Energy Systems AG
    Inventor: Ionel Jitaru