Sampled And Held Input Signal With Nonlinear Return To Datum Patents (Class 341/125)
  • Patent number: 9030342
    Abstract: An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by denormalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 12, 2015
    Assignee: Analog Devices Global
    Inventors: Kevin Cao-Van Lam, Richard E. Schreier, Donald W. Paterson
  • Patent number: 8988266
    Abstract: A method, comprising: receiving an analog input; determining an upper outer rail and a lower outer rail as polling values to be used by voltage comparators; blanking at least three comparators; determining which two of the at least three comparators are closest to the input analog voltage levels; defining the two comparators which are closest to the analog input signal to be the next comparators of the next sampling process; assigning a remaining comparator at a voltage level in between the new top and bottom voltage levels; enabling the outer rails, but blanking the inner rail; progressively narrowing down the voltage range spanned by the two outer comparators; and generating a 2-tuple value of an asynchronous voltage comparator crossing.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: March 24, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Janakiraman S, Udayan Dasgupta, Ganesan Thiagarajan, Abhijit A. Patki, Madhulatha Bonu, Venugopal Gopinathan
  • Patent number: 8947275
    Abstract: A high-quality Analog to Digital Converter (ADC) is used to calibrate a difference attributable to a capacitor mismatch in a Digital to Analog Converter (DAC). The present invention is advantageous in that it can fabricate a low-power high-resolution ADC by calibrating an error attributable to a capacitor mismatch through a digital background calibration apparatus and method using a Successive Approximation Register (SAR).
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: February 3, 2015
    Assignee: Postech Academy-Industry Foundation
    Inventors: Jae Yoon Sim, Hwa Suk Cho
  • Patent number: 8810440
    Abstract: A stochastic time-digital converter (STDC) including an input switching circuit, an STDC array, and an encoder. A clock circuit inputs two clock signals into two input terminals of the input switching circuit; the input switching circuit transmits the two clock signals in a cyclic cross-transposition form to two input terminals of the STDC array, and simultaneously outputs a trigger control signal to the encoder; each comparator in the STDC array independently judges the speeds of the two clock signals and sends the judgement results to the encoder for collection and processing; and the encoder outputs the size and positivity or negativity of the phase difference of the two clock signals. The technical solution utilizes the stochastic characteristic of the STDC to double the number of the equivalent comparators in the STDC array, eliminating the effects on the circuitry of device mismatching and processes, power supply voltage, and temperature.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: August 19, 2014
    Assignee: Southeast University
    Inventors: Jianhui Wu, Zixuan Wang, Xiao Shi, Meng Zhang, Cheng Huang, Chao Chen, Fuqing Huang, Xincun Ji, Ping Jiang
  • Patent number: 8547261
    Abstract: The present invention relates to the field of mobile terminal technology and describes a calibration device for a mobile terminal and an ADC module thereof, the ADC module being disposed inside a baseband chip. The calibration device includes a bandgap voltage reference inside the mobile terminal platform for generating a reference voltage; the device further includes a circuit for connecting the bandgap voltage reference, the circuit being connected with the ADC module for providing the reference voltage generated by the bandgap voltage reference to the ADC module. The present invention uses a bandgap voltage reference inside a mobile terminal platform to provide voltage to an ADC module, which, during the ADC module calibration, does not require an external reference voltage source to perform the ADC calibration, and therefore greatly reduces calibration errors and improves calibration efficiency.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: October 1, 2013
    Assignee: Huizhou TCL Mobile Communication Co., Ltd.
    Inventor: Jianliang Gu
  • Patent number: 8502714
    Abstract: A method for calibrating at least one analog-to-digital converting circuit includes: during a wafer level probe testing, inputting at least one calibration signal provided by a wafer level testing machine into the analog-to-digital converting circuit to generate at least one digital signal; and calibrating the analog-to-digital converting circuit according to at least the digital signal. The analog-to-digital converting circuit is applied to a video system or an audio system.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: August 6, 2013
    Assignee: Mediatek Inc.
    Inventors: Chien-Ming Chen, Chen-Yu Hsiao
  • Patent number: 8299949
    Abstract: A received plurality of signals may be filtered to select an in-band signal and/or an out-of-band. A signal strength of the selected signal(s) may be measured. A resolution of an analog-to-digital converter may be controlled based on the measured signal strength(s). The selected in-band signal may be converted to a digital representation via the analog-to-digital converter. The resolution may be decreased when the strength of the in-band signal is higher, and increased when the strength of the in-band signal is lower. The resolution may be increased when the strength of the out-of-band signal is higher, and decreased when the strength of the out-of-band signal is lower. A signal-to-noise ratio and/or dynamic range of the selected signal(s) may be determined based on the measured signal strength(s), and may be utilized to adjust the resolution of the analog-to-digital converter.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: October 30, 2012
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 7477170
    Abstract: A sample rate conversion is accomplished by presenting to a numerically controlled oscillator (NCO) register a clock input at the desired output rate; first-modifying the NCO register contents responsive to a first factor; determining when the first modified NCO register contents are in a predetermined range and in response to the first modified NCO register contents not being in the predetermined range, presenting the first modified NCO register contents to the input of the NCO register; second-modifying, responsive to a second factor, the first modified NCO register contents when the first modified NCO register contents are within the predetermined range and presenting it to the input of the NCO register; and fetching samples, in response to the first-modified NCO register contents being in the predetermined range and interpolating them to produce a resultant sample value at the output rate, and in response to the contents not being in the predetermined range to interpolate the previous sample to produce a
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: January 13, 2009
    Assignee: Analaog Devices, Inc.
    Inventor: Ganesh Ananthaswamy
  • Patent number: 7369072
    Abstract: A method of operating an imaging device, an imaging device, a camera system including an imaging device, and a processing system including an imaging device for calibrating an analog-to-digital converter of the imaging device to generate a look-up table of correction values, and correcting an output of the analog-to-digital converter with the correction values.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Richard L. Baer
  • Patent number: 6888483
    Abstract: An input stage includes a plurality of arrays of autozero amplifiers arranged in series in each array, wherein each autozero amplifier receives an output of a preceding autozero amplifier, wherein a first autozero amplifier in each array amplifiers receives an input signal and a corresponding reference voltage at its inputs, and wherein at least one of the autozero amplifiers includes a circuit that receives the signal corresponding to the output signal, the circuit substantially passing the signal corresponding to the output signal and the reference voltages to the amplifiers during the clock phase ?2 and substantially rejecting the signal corresponding to the output signal during the clock phase ?1.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: May 3, 2005
    Assignee: Broadcom Corporation
    Inventor: Jan Mulder
  • Patent number: 6504497
    Abstract: The stored energy in the energy-storage capacitors of a power supply during the hold-up time is improved by providing two groups of energy storage capacitors, and by connecting one group of capacitors to the input of a hold-up-time extension circuit that has its output connected to the other group of energy-storage capacitors. Each group of energy-storage capacitors may consist of a single capacitor, or a number of capacitors connected in parallel. The hold-up-time extension circuit is designed so that its output is regulated at a voltage that is lower than the minimum regulation voltage of the output-stage dc/dc converter. As a result, the hold-up-time extension circuit is inactive during the normal operation mode. i.e., when the input voltage is present. In fact, during the normal operation mode both groups of capacitors are effectively connected in parallel so that their voltages are equal.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: January 7, 2003
    Assignee: Delta Electronics, Inc.
    Inventors: Yungtaek Jang, Milan M. Jovanovic
  • Patent number: 6140950
    Abstract: The invention provides methods and apparatus for improving the full-scale accuracy of an oversampling analog-to-digital converter. In particular, an improved switched-capacitor subtractor/integrator circuit is described that effectively provides a desired capacitor ratio by using N+M distinct unit capacitors that each sample an input signal a first predetermined number of times and sample one or more reference signals a second predetermined number of times, where the ratio of the first predetermined number to the second predetermined number is the desired capacitor ratio N/M.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: October 31, 2000
    Assignee: Linear Technology Corporation
    Inventor: Florin A. Oprescu
  • Patent number: 4926180
    Abstract: A 1-bit nonstandard A/D converter for converting a block u of N samples of a continuous time analog signal u(t) into N corresponding 1-bit binary values x, such that a distortion measure of the form d(u,x)=(Au-Bx).sup.T (Au-Bx) is minimized, is implemented with an N-input parallel sample-and-hold circuit and a neural network having N nonlinear amplifiers, where u and x are n-dimensional vectors, and A and B are N.times.N matrices. Minimization of the above distortion measure is equivalent to minimizing the quantity1/2x.sup.T B.sup.T Bx-u.sup.T A.sup.T Bx,which is achieved to at least a good approximation by the N-amplifier neural network. Accordingly, the conductances of the feedback connections among the amplifiers are defined by respective off-diagonal elements of the matrix -B.sup.T B. Additionally, each amplifier of the neural network is connected to receive the analog signal samples through respective conductances defined by the matrix B.sup.T.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: May 15, 1990
    Assignee: Trustees of Columbia University in the City of New York
    Inventor: Dimitris Anastassiou