Combined With Determining Direction (i.e., Bearing) Patents (Class 342/113)
  • Patent number: 11835644
    Abstract: Aspects of the disclosure are directed to adaptive correction of radar channel-to-channel time-dependent errors. In accordance with one aspect, the adaptive correction of radar channel-to-channel time-dependent errors includes transforming a digitized data flow to generate a transformed data flow; detecting the transformed data flow to generate a detected data flow; focusing the detected data flow to generate a focused data flow; and aligning the focused data flow to generate a corrected data flow. In one aspect, it may further include performing a direction of arrival (DOA) processing on the corrected data flow to generate a resolved data set, processing the resolved data set to generate a post-processed data set, radiating a transmit radar waveform, capturing a receive radar waveform related to the transmit radar waveform and generating the digitized data flow based on the receive radar waveform.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 5, 2023
    Assignee: Electromagnetic Systems, Inc.
    Inventors: Brian Michael Lamb, Stephen Jeffrey Hershkowitz
  • Patent number: 11693086
    Abstract: Techniques and apparatuses are described that implement a smart device with an integrated radar system. The radar integrated circuit is positioned towards an upper-middle portion of a smart device to facilitate gesture recognition and reduce a false-alarm rate associated with other non-gesture related motions of a user. The radar integrated circuit is also positioned away from Global Navigation Satellite System (GNSS) antennas and a wireless charging receiver coil to reduce interference. The radar system operates in a low-power mode to reduce power consumption and facilitate mobile operation of the smart device. By limiting a footprint and power consumption of the radar system, the smart device can include other desirable features in a space-limited package (e.g., a camera, a fingerprint sensor, a display, and so forth).
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: July 4, 2023
    Assignee: Google LLC
    Inventors: David J. Weber, Maryam Tabesh, Jian Wang, Camille Ann Lesko, Alexis K. Salazar, Abhijit Aroon Shah
  • Patent number: 11243302
    Abstract: A management system for objects under monitoring that is capable of managing the presence of moving objects under monitoring. The management system includes a plurality of beacon terminals, one or more management terminals, and a management server. The beacon terminals are respectively held by the moving objects under monitoring, and each have a unique identifier and broadcast a beacon signal. The one or more management terminals are respectively held by one or more moving bodies moving in one or more areas, receive beacon signals to acquire beacon identifiers and beacon presence information, and acquire location information via a positioning system. The management terminals output beacon information spontaneously or upon request. The management server determines the state of presence of the objects under monitoring in the one or more areas, based on the beacon information acquired from the one or more management terminals.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: February 8, 2022
    Assignee: CHIYODA CORPORATION
    Inventors: Yuki Hamada, Masaki Kadono, Yoshiaki Katsumata, Shunichi Otagaki, Yasuhisa Yamamoto
  • Patent number: 10989793
    Abstract: Aspects of the disclosure are directed to adaptive correction of radar channel-to-channel time-dependent errors. In accordance with one aspect, the adaptive correction of radar channel-to-channel time-dependent errors includes transforming a digitized data flow to generate a transformed data flow; detecting the transformed data flow to generate a detected data flow; focusing the detected data flow to generate a focused data flow; and aligning the focused data flow to generate a corrected data flow. In one aspect, it may further include performing a direction of arrival (DOA) processing on the corrected data flow to generate a resolved data set, processing the resolved data set to generate a post-processed data set, radiating a transmit radar waveform, capturing a receive radar waveform related to the transmit radar waveform and generating the digitized data flow based on the receive radar waveform.
    Type: Grant
    Filed: December 1, 2018
    Date of Patent: April 27, 2021
    Assignee: Electromagnetic Systems, Inc.
    Inventors: Brian Michael Lamb, Stephen Jeffrey Hershkowitz
  • Patent number: 10374686
    Abstract: A method of receiving a signal, which is received by a receiving end in a wireless communication system, is disclosed in the present specification. The method includes the steps of calculating effective Doppler spread values of reception beam combinations, wherein each reception beam combination consists of two or more reception beams among a plurality of reception beams; selecting a first reception beam combination from the reception beam combinations using the effective Doppler spread values; and receiving the signal from a transmitting end using at least one reception beam included in the selected first reception beam combination.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: August 6, 2019
    Assignee: LG ELECTRONICS INC.
    Inventors: Jiwon Kang, Kitae Kim, Kilbom Lee, Kyungmin Park, Heejin Kim
  • Patent number: 10340605
    Abstract: There is provided a planar antenna device having a first antenna and a second antenna arranged on a front surface of a substrate to be set in parallel to an up and down direction. The first antenna and the second antenna are arranged such that the magnitude of the difference between the lengths of predetermined sections of the transmission line parts becomes one of a positive odd multiple of a half wavelength of the guide wavelength of electric waves which can be transmitted in the transmission line parts and a positive even multiple of a half wavelength of the guide wavelength. The predetermined sections are provided in sections from the connection parts to the antenna elements.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: July 2, 2019
    Assignee: DENSO TEN Limited
    Inventor: Hiroaki Yoshitake
  • Patent number: 10126405
    Abstract: A system comprises: onboard a first craft, called host craft, a triplet of antennas comprising a transmitting and receiving antenna and two transmitting antennas, a transmission chain that can be successively coupled to each antenna of the triplet of antennas by a radiofrequency switch, a reception chain that can be coupled to the transmitting and receiving antenna, and a processing device intended to determine a relative angular position between, on the one hand, the host craft and, on the other hand, a plurality of spacecraft, called companion craft, from measurements of path differences performed and transmitted by the companion craft; onboard the companion craft, a transmitting and receiving antenna, a transmission chain and a reception chain coupled to the transmitting and receiving antenna and a measurement device intended to measure path differences between three signals originating from the three antennas of the triplet of antennas of the host craft.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: November 13, 2018
    Assignee: THALES
    Inventors: Jean-Baptiste Thevenet, Christian Mehlen
  • Patent number: 10049295
    Abstract: Methods and systems detect changes occurring over time between synthetic aperture sonar (SAS) images. A processor performs coarse navigational alignment, fine-scale co-registration and local co-registration between current image data and historical image data. Local co-registration includes obtaining correlation peaks for large neighborhood non-overlapping patches. Relative patch translations are estimated and parameterized into error vectors. Interpolation functions formed from the vectors re-map the current image onto the same grid as the historical image and the complex correlation coefficient between images is calculated. The resulting interferogram is decomposed into surge and sway functions used to define the argument of a phase function, which is multiplied by the current image to remove the effects of surge and sway on the interferogram. Based on the aforementioned computations, a canonical correlation analysis is performed to detect scene changes between the historical and new SAS images.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: August 14, 2018
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Tesfaye G-Michael, Daniel Sternlicht, Bradley Marchand, James Derek Tucker, Timothy M. Marston
  • Patent number: 9851429
    Abstract: A terrestrial positioning and timing system (TPTS) comprising a ground segment and user segment is disclosed that is comprised of a spread-spectrum based range and bearing reference signal, with respect to a reference time, transmitted by an antenna over a broad region of space; and a spread-spectrum based bearing variable signal with bearing specific modulation referenced to a reference time, transmitted using a scanning antenna over a spatial region of space that is more narrow than the spread-spectrum based range and bearing reference signal transmission spatial area. Various embodiments enable the TPTS station and user to support various position, velocity or time services. Most notably, an embodiment with a single TPTS station, active interrogation/transponder reply, and data delivery subsystem can provide a position, velocity, and time solution for the user. Additional embodiments disclosed provide varying levels of user solutions to include bearing, position, velocity, or time.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 26, 2017
    Assignee: Ohio University
    Inventor: Chris G. Bartone
  • Patent number: 9795877
    Abstract: Described embodiments include a real-time system, method, and apparatus. A system includes an incoming object sensor configured to acquire data indicative of a trajectory of an incoming projectile. The system includes a human tracking circuit configured to acquire data indicative of a location of a human present in a monitored geographic area. The system includes a processing circuit configured to (i) receive the data indicative of the trajectory of the incoming projectile; (ii) predict a spatial relationship of the trajectory of the incoming projectile relative to the location of the human; and (iii) determine a suggested movement by the human to evade the incoming projectile. The system includes a transmitter circuit configured to transmit the suggested movement to evade the incoming projectile.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: October 24, 2017
    Inventors: Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9788162
    Abstract: In one embodiment, a method includes by an RF transceiver of a wireless communications device associated with a first user of an online system, receiving an RF reference signal from each antenna of a plurality of antennas coupled to the RF transceiver. The method also includes, by a processor of the wireless communications device, determining, for each antenna of the plurality of antennas, at least one characteristic of the RF reference signal. The method further includes, by the processor of the wireless communications device, characterizing, based on the at least one determined characteristic, at least one aspect of an environment around the device to determine that an object is approaching the device. The method also includes, by the processor of the wireless communications device, retrieving from the online system, based on determining that the object is approaching the device, information associated with the first user.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: October 10, 2017
    Assignee: Facebook, Inc.
    Inventor: Yael Maguire
  • Patent number: 9618482
    Abstract: The invention relates to a device and a method for remotely determining the impulse response of an object irradiated by a pulse train with low-intensity pulses of electromagnetic radiation. A complete representation of the pulse train transmitted towards the object is known in advance, and a convolution between the signal representation of the pulse train and the signal of the detected response from the object is performed, which provides a signal representation of the impulse response. Said signal representation can then be used, e.g., to analyze possible defects in the structure of the object.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: April 11, 2017
    Assignee: TOTALFORSVARETS FORSKNINGSINSTITUT (FOI)
    Inventors: Claes Vahlberg, Joakim Vikström
  • Patent number: 9622108
    Abstract: An n input, radio frequency (RF) signal matrix is formed of a plurality of two-to-one RF signal routing units each including first, second, and third switching units selectively connecting either a first input to an output via a bypass conductive path while electrically isolating first and second signal combining conductive paths from the output or first and second inputs to the output via first and second signal combining conductive paths while electrically isolating the bypass conductive path from the output. The RF signal routing units are connected in at least two levels with outputs from a first level connected to inputs for a second level to form the n inputs for the RF signal matrix. Any number of the n inputs may be employed without unused inputs loading the output.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 11, 2017
    Assignee: RAYTHEON COMPANY
    Inventor: John Paul Gianvittorio
  • Patent number: 9562788
    Abstract: An airborne navigation system that uses Doppler information from an on-board weather radar to improve the system's accuracy and/or fault tolerance. The system can determine a drift angle and ground speed from Doppler information associated with radar returns from the Earth's surface. Alternatively, the system can be configured to determine heading angle using the drift angle and a track angle received from another sensor.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 7, 2017
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Vladislav Gavrilets, Richard M. Rademaker, Daniel L. Woodell, Damien B. Jourdan, James H. Doty
  • Patent number: 9417330
    Abstract: A receiver of satellite signals serving for location (GNSS) adapted to be fixed on a support having at least one antenna able to receive the satellite signals serving for location. The antenna includes at least two mobile phase centers for determining a location on the basis of the satellite signals received, and a displacement device adapted for displacing the phase centers, for selecting one of the phase centers and for determining a position of the selected phase center with respect to the support.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: August 16, 2016
    Assignee: Thales
    Inventors: Marc Revol, David Depraz Depland
  • Patent number: 9316733
    Abstract: An ultra-wideband (UWB) radar imaging system is carried by a mobile platform—such as an aircraft—the UWB radar imaging system including multiple UWB radar sensors; the UWB radar sensors transmitting a high resolution radar signal using an array of power amplifiers and corresponding polarizing antenna arrays to form spatial power combining and beam forming from each UWB radar sensor; and receiving reflections using an array of low noise amplifiers and corresponding antenna arrays to form spatial power combining from the reflections at each. UWB radar sensor; processing the radar sensor data from the UWB radar sensors by an imaging processor for detecting a ballistic projectile; and providing trajectory information of a detected ballistic projectile on a display. Trajectory modeling enables fusing the radar sensor data with optical or thermal imaging data and the trajectory information to display a probable source location of the detected ballistic projectile.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: April 19, 2016
    Assignee: Farrokh Mohamadi
    Inventor: Farrokh Mohamadi
  • Patent number: 9151610
    Abstract: Implementations are disclosed for validating data retrieved from a calibration database. In some implementations, calibrated magnetometer data for a magnetometer of a mobile device is retrieved from a calibration database and validated by data from another positioning system, such as course or heading data provided by a satellite-based positioning system. In some implementations, one or more context keys are used to retrieve magnetometer calibration data from a calibration database that is valid for a particular context of the mobile device, such as when the mobile device is mounted in a vehicle. In some implementations, currently retrieved calibration data is compared with previously retrieved calibration data to determine if the currently retrieved calibration data is valid.
    Type: Grant
    Filed: June 8, 2013
    Date of Patent: October 6, 2015
    Assignee: Apple Inc.
    Inventors: Sunny Kai Pang Chow, Xiaoyuan Tu
  • Patent number: 9035821
    Abstract: An antenna array for a radar sensor, wherein the antenna array has a number of antenna elements linearly arranged next to one another. The antenna elements are designed for transmitting or receiving a radar signal, and the antenna array has a switching unit, which is designed to connect the antenna elements according to a predetermined switching sequence individually, one after the other in time, with a transmitting or receiving unit of the radar sensor. The switching sequence, according to which the antenna elements are connected one after the other with the transmitting or receiving unit, deviates from the spatial sequence of the antenna elements in the antenna array.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: May 19, 2015
    Assignee: Endress+Hauser GmbH +Co. KG
    Inventor: Peter Feil
  • Patent number: 9035820
    Abstract: Provided is a technique capable of suppressing the deterioration in azimuth resolution and distance resolution in even a modulated and transmitted or received signal or a signal reflected by an object and varied in intensity when acquiring waveform information. A measurement device comprise: a plurality of sensors which receive waves propagating through a space; and a sampling timing calculation means which obtains, on the basis of the relative positions of the sensors and the velocities of the waves, the difference between the arrival times of the waves received by the respective sensors and calculates, for each sensor, sampling timing for acquiring the waveform information relating to the waves, on the basis of the difference between the arrival times.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 19, 2015
    Assignee: NEC CORPORATION
    Inventor: Hisashi Shiba
  • Patent number: 8994582
    Abstract: There is a calculation device for a radar apparatus which is configured to specify a direction of a target based on a reception signal of an antenna. A calculation unit is configured to calculate a relative displacement magnitude in a lateral direction of the target relative to a traveling direction of a moving object having the antenna mounted thereon, from data of the target position-measured by the reception signal while the moving object is moving, and evaluate a relative inclination between a reference axis of a scanning direction of the radar apparatus and a reference axis of the traveling direction of the moving object, based on the displacement magnitude.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: March 31, 2015
    Assignee: Fujitsu Ten Limited
    Inventor: Jun Itoh
  • Patent number: 8981989
    Abstract: A projectile detection system, and method of detecting a projectile (for example a bullet), for use on a vehicle (100) (for example a helicopter), the projectile detection system comprising: a radar antenna array (4) arranged to transmit and receive microwave signals so as to provide a plurality of detection segments (40, 42, 44, 46) of a volume of airspace (38); one or more processors (3) arranged to: determine which segments (40, 42, 44, 46) microwave signals reflected by a projectile (10) are received from; determine timing information relating to a time order in which the received microwave signals are received; and determine directional information relating to a direction of travel of the projectile (10) using the determined segments (40, 42, 44, 46) and the determined timing information; wherein the microwave signals have a frequency between 1 GHz and 30 GHz.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 17, 2015
    Assignee: BAE Systems plc
    Inventors: Dale Martin Gould, Robert Ian Henderson, David John Shephard, Barbara Helen Wright
  • Patent number: 8963766
    Abstract: According to one embodiment, a target tracking apparatus calculates N-dimensional predicted values from a respective stored (N+1)-dimensional tracks for each of the targets, determines whether or not the N-dimensional predicted value for each of the targets is correlated with the received N-dimensional angle observed value for the target, if the N-dimensional predicted value is not correlated, generates a new (N+1)-dimensional track for the target based on the N-dimensional track corresponding to the N-dimensional angle observed value and if the N-dimensional predicted value is correlated, updates and stores the (N+1)-dimensional track using the N-dimensional angle observed value.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Furukawa
  • Patent number: 8948238
    Abstract: Apparatus, the apparatus having at least one processor and at least one memory having computer-readable code stored thereon which when executed controls the at least one processor to perform a method comprising: obtaining in-phase and quadrature samples of a received radio signal at least first and second discrete instances in time; processing the samples to provide information relating to the amplitude and/or phase of the received radio signal at the first and second instances in time; using the amplitude and/or phase information of the received radio signal at the first and second instances in time to determine whether interference is present on the received radio signal; forwarding the complex signal parameters for processing if interference is determined not to be present; and discarding the complex signal parameters without forwarding them for processing if interference is determined to be present.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: February 3, 2015
    Assignee: Nokia Corporation
    Inventors: Ville Valtteri Ranki, Antti Paavo TapaniKainulainen, Fabio Belloni
  • Patent number: 8912945
    Abstract: In a method of determining a deviation of a path of a projectile from a predetermined path, the method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or real path is determined and the deviation is determined.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Trackman A/S
    Inventor: Fredrik Tuxen
  • Patent number: 8860604
    Abstract: A radar system comprising a transmitter to transmit radar signals into a region, a receiver to receive return signals of said radar signals reflected from within the region wherein the transmitter and receiver are adapted for location on a structure at a wind farm, and a processor to process the return signals to extract wind farm associated data for said region.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 14, 2014
    Assignee: Cambridge Consultants Limited
    Inventor: Gordon Kenneth Andrew Oswald
  • Patent number: 8838985
    Abstract: A method and apparatus which ensures that static data entered into a communications device or apparatus is accurate, or at least consistent with data provided to an authentication service. In some embodiments of the invention, the authentication service may maintain a database of static data associated with each communications apparatus and/or verify the validity of at least a portion of the static data.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: September 16, 2014
    Assignee: Vesper Marine Limited
    Inventor: Jeffrey M. Robbins
  • Patent number: 8823578
    Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
  • Patent number: 8816902
    Abstract: There is provided a radar apparatus for detecting a target. A detection signal generating unit generates detection signals of the target based on transmission and reception waves of antennas. A detection signal processing unit performs frequency analysis on the detection signals to extract signal components of the target, and performs a predetermined process on the signal components to calculate at least one of a distance to the target, a relative speed to the target, and an orientation of the target. The detection signal generating unit includes a filter unit for giving changes to the detection signals in a frequency bandwidth higher than Nyquist frequency which is a half a sampling frequency. The detection signal processing unit acquires the signal components from the detection signals to which the filter unit gives the changes to determine whether the signal components are generated by replication due to the Nyquist frequency.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Ten Limited
    Inventor: Hiroshi Itoh
  • Patent number: 8816897
    Abstract: A method of estimating the angular position ?c of a target detected by a radar equipping a mobile carrier and emitting, via an steerable antenna, a signal, in the form of pulses, towards the target and receiving echoes from the reflection of said signal on the target, comprises: estimating, for each pulse or group of pulses of time index i, the angular position ?(i) of the antenna; estimating, for each pulse or group of pulses of time index i, the Doppler frequency fD(i) of the echo or echoes received; pairing, for each pulse or group of pulses of time index i, the angular position ?(i) and the Doppler frequency fD(i); and, estimating the angular position ?c at least by solving the equation ? ? ? f D ? ( i ) 2 = V a ? sin ? ? ? ? ( i ) ? ( ? c - ? ? ( i ) ) + V r , c , where ? is the wavelength of the radar, Va is the norm of the speed of the carrier and Vr,c is the radial speed of the target.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: August 26, 2014
    Assignee: Thales
    Inventors: Nicolas Bon, Jean-Michel Quellec
  • Patent number: 8730096
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 20, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventors: Junji Kanamoto, Hiroyuki Akimoto
  • Patent number: 8700306
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: Davis S. Duggan, David A. Felio, Craig S. Askew
  • Publication number: 20140062760
    Abstract: A signal processing device is provided. The device includes an echo signal input unit for receiving echo signals resulted from transmission signals reflected on an object. The transmission signals are transmitted from a transmission source at transmission timings at predetermined time intervals, at least one of the transmission timings shifted from the other timings in time. The device includes a complex reception signal generator for generating complex reception signals, a phase calculator for calculating a phase change amount of the complex reception signals with respect to a reference phase, a phase corrector for phase-correcting the complex reception signals and outputting the corrected signals, and a Doppler processor for performing Doppler processing on the corrected signals and outputting the Doppler-processed signals as Doppler echo signals of the object.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 6, 2014
    Applicant: Furuno Electric Co., Ltd.
    Inventors: Yasunobu Asada, Akira Okunishi, Koji Dai, Sae Takemoto
  • Patent number: 8633815
    Abstract: A system for automatically monitoring traffic, identifying vehicles traveling in violation of predetermined regulations and for automatically and immediately issuing traffic citations includes an audio or visual signal to the operator of the motor vehicle that they are in violation of regulations and receiving a citation. A printer is included in the vehicle and activatible from a remote station to immediately print the citation. A vehicle disposed receiver/transmitter/comparator includes ownership data that is transmitted to a remote station together with operating data that may result in an infraction.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: January 21, 2014
    Inventors: Harmad S. H. S. Al-Harbi, Dheya Ali Mohammad Al-Fayez
  • Patent number: 8633850
    Abstract: A method and apparatus for identifying locations of objects. A portion of a sum signal corresponding to angular locations and velocities with respect to a sensor system that are different from a selected angular location and a selected velocity with respect to the sensor system, respectively, is modified to form a set of modified sum signals. A portion of a difference signal corresponding to the angular locations and the velocities with respect to the sensor system that are different from the selected angular location and the selected velocity with respect to the sensor system, respectively, is modified to form a modified difference signal. An angular location of a target object is identified with respect to the sensor system using the set of modified sum signals and the modified difference signal.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: January 21, 2014
    Assignee: The Boeing Company
    Inventor: Kai-Bor Yu
  • Publication number: 20140015708
    Abstract: An apparatus and associated method for improved angular resolution capability of a remote sensing echo system based on utilizing both a first and a secondary echo of a single transmission signal.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 16, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: IGAL BILIK
  • Patent number: 8587467
    Abstract: A method for determining locations of a moving emitter is disclosed. Initially, a set of emitter pulses is collected when a collector platform moves over a collection baseline. In addition, the time and location of the collection platform are recorded each time an emitter pulse is collected. A set of time-tagged pulse time-of-arrival (TOA) values is then generated by associating a recorded collection time value to each of the collected emitter pulses. Next, a set of time-tagged and position-tagged pulse TOA values is generated by associating a recorded collection location value to each of the time-tagged pulse TOA values. Finally, a set of location values and velocity values of a moving emitter is estimated based on the time-tagged and position-tagged pulse TOA values.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: November 19, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Paul D. Zemany
  • Patent number: 8547273
    Abstract: The invention provides a pulse radar apparatus, and a control method thereof, that permits to readily downsize and to lower its cost and allows information on an object to be detected in high precision by removing an influence of noise when a gain of a variable gain amplifier is discontinuously changed corresponding to detected distance, with a simple configuration. A variable gain amplifier 135 configured to adjust a gain corresponding to a distance gate is used to be able to detect weak reflected wave from a distant object and to amplify a reflected wave from a short distance with a low gain. An offset noise from the variable gain amplifier 135 is prepared together with interference noise and self-mixing noise in advance as a replica signal of unwanted wave and the replica signal is removed from a baseband signal in detecting the object T.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 1, 2013
    Assignees: Furukawa Electric Co., Ltd., Furukawa Automotive Systems Inc.
    Inventors: Yasushi Aoyagi, Kazutaka Kamimura, Yoshihito Ishida
  • Patent number: 8542145
    Abstract: The present invention relates to a system for locating non-cooperating objects by means of a random or pseudo-random noisy type waveform generator, an amplifier, of said waveforms and an antenna which radiates them towards the object, which object generates an electromagnetic echo which is detected by a passive subsystem of antennas and receivers. The time delay and Doppler shift values are determined in the latter subsystem and in turn forwarded from encoding and modulating blocks to a central processor which estimates the position and the speed of the object. The passive subsystem receives, through a transmission channel or storage element, the reference signal which represents the transmitted noisy type waveform and uses it for calculating the bi-dimensional cross correlation (ambiguity function), which permits to estimate the time delay and the Doppler shift.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: September 24, 2013
    Assignee: Universita' Degli Studi di Roma Tor Vergata
    Inventor: Gaspare Galati
  • Publication number: 20130106647
    Abstract: A method and apparatus for identifying locations of objects. A portion of a sum signal corresponding to angular locations and velocities with respect to a sensor system that are different from a selected angular location and a selected velocity with respect to the sensor system, respectively, is modified to form a set of modified sum signals. A portion of a difference signal corresponding to the angular locations and the velocities with respect to the sensor system that are different from the selected angular location and the selected velocity with respect to the sensor system, respectively, is modified to form a modified difference signal. An angular location of a target object is identified with respect to the sensor system using the set of modified sum signals and the modified difference signal.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: THE BOEING COMPANY
    Inventor: Kai-Bor Yu
  • Patent number: 8416123
    Abstract: A non-scanning radar for detecting and tracking multiple moving objects. The transmit antenna continuously illuminates the entire surveillance volume, which can even be omni-directional (hemispherical). Multiple receive antennas are employed, each covering part of the surveillance volume. Receivers are used in combination to measure angles of incidence via interferometry on objects that are resolved in range and Doppler. Very long processing times are used to compensate for the reduced antenna gain compared to any radar that scans. By continuously illuminating the surveillance volume, there is no hard limit to the number of objects that can be simultaneously tracked. The primary application for this technology is detection and tracking of such objects as bullets, artillery projectiles, mortar shells, and rockets, and determining the location of the weapon that fired them. Numerous other applications are also described.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: April 9, 2013
    Assignee: MARK Resources, Inc.
    Inventors: Richard L. Mitchell, August W. Rihaczek
  • Patent number: 8400349
    Abstract: The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 19, 2013
    Assignee: Sandia Corporation
    Inventors: Dale F. Dubbert, Bertice L. Tise
  • Patent number: 8380425
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 19, 2013
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Craig S. Askew
  • Publication number: 20130021195
    Abstract: A projectile detection system, and method of detecting a projectile (for example a bullet), for use on a vehicle (100) (for example a helicopter), the projectile detection system comprising: a radar antenna array (4) arranged to transmit and receive microwave signals so as to provide a plurality of detection segments (40, 42, 44, 46) of a volume of airspace (38); one or more processors (3) arranged to: determine which segments (40, 42, 44, 46) microwave signals reflected by a projectile (10) are received from; determine timing information relating to a time order in which the received microwave signals are received; and determine directional information relating to a direction of travel of the projectile (10) using the determined segments (40, 42, 44, 46) and the determined timing information; wherein the microwave signals have a frequency between 1 GHz and 30 GHz.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 24, 2013
    Applicant: BAE SYSTEMS PLC
    Inventors: Dale Martin Gould, Robert Ian Henderson, David John Shephard, Barbara Helen Wright
  • Patent number: 8299958
    Abstract: An airborne radar device having a given angular coverage in elevation and in azimuth includes a transmit system, a receive system and processing means for carrying out target detection and location measurements. The transmit system includes: a transmit antenna made up of at least a first linear array of radiating elements focusing a transmit beam, said arrays being approximately parallel to one another; at least one waveform generator; means for amplifying the transmit signals produced by the waveform generator or generators; and means for controlling the transmit signals produced by the waveform generator or generators, said control means feeding each radiating element with a transmit signal. The radiating elements being controlled for simultaneously carrying out electronic scanning of the transmit beam in elevation and for colored transmission in elevation.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Thales
    Inventors: Stépahne Kemkemian, Pascal Cornic, Patrick Le Bihan, Myriam Nouvel-Fiani
  • Publication number: 20120182174
    Abstract: An antenna array for a radar sensor, wherein the antenna array has a number of antenna elements linearly arranged next to one another. The antenna elements are designed for transmitting or receiving a radar signal, and the antenna array has a switching unit, which is designed to connect the antenna elements according to a predetermined switching sequence individually, one after the other in time, with a transmitting or receiving unit of the radar sensor. The switching sequence, according to which the antenna elements are connected one after the other with the transmitting or receiving unit, deviates from the spatial sequence of the antenna elements in the antenna array.
    Type: Application
    Filed: May 19, 2010
    Publication date: July 19, 2012
    Applicant: Endress + Hauser GmbH + Co. KG
    Inventor: Peter Feil
  • Publication number: 20120154201
    Abstract: Disclosed is a system for determination of attitude for a projectile in flight. The system includes at least one antenna mounted on the projectile. Each antenna is configured to receive Global Positioning System (GPS) signals. Further, the system includes a signal receiving unit communicably coupled to the each antenna to receive the GPS signals and to ascertain the earth referenced velocity vector. The system also includes a plurality of magnetometers for ascertaining a projectile referenced earth's magnetic field vector. Moreover, the system includes a processing unit. The processing unit is configured to utilize a known projectile referenced velocity vector and a stored prediction of the earth referenced earth's magnetic field vector along with the measured earth referenced velocity vector and the measured projectile referenced earth's magnetic field vector to determine the attitude of the projectile. Further disclosed is a method for determination of attitude for a projectile in flight.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 21, 2012
    Inventor: Robert D. Frey, JR.
  • Patent number: 8135537
    Abstract: A route data base generating system avoids GPS satellite signals sources for land based vehicle azimuth and heading determinations in areas where reception of the satellite signals is unavailable or impaired and relies on vehicle part movements that are equatable to the heading and azimuth changes of the vehicle for determining such vehicle orientations. Part movements equatable to the heading changes are found in the vehicle wheel assemblies. A route data base founded on interconnecting linear route segments that are arranged in and end-to-end serial order is advocated and wherein the angular deviation between connecting segments in the order is predetermined. Various uses of the generating systems and related procedures are advocated for both on-the-road and off-road usage.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 13, 2012
    Inventors: Roger L. Martin, Thurman Sasser
  • Patent number: 8106814
    Abstract: The present invention relates to a method enabling precise determination of the elevation of a projectile following a ballistic trajectory by use of a conventional Doppler surveillance radar. The method includes calculating first the estimate {circumflex over (?)}? of the value of the radial component ?? of the acceleration of the projectile from the quantities {dot over (d)} and {umlaut over (d)}, respectively representing the first derivative and the second derivative with respect to time of the Doppler velocity d of the projectile, then calculating the estimate {circumflex over (V)} of the speed V of the projectile from d, {dot over (d)} and {circumflex over (?)}?, and finally calculating the estimate Ê of its angle of elevation E from d and {circumflex over (V)}. The method according to the invention may apply to the protection of sensitive areas against the firing of ballistic projectiles.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Thales
    Inventors: Bernard Durand, Christian Cavallari, Odile Adrian
  • Patent number: 8102308
    Abstract: The present invention provides a radar apparatus capable of changing a characteristic of filter processing while considering also a relative velocity of an object. A measurement section measures a relative position and a relative velocity of an object such as another vehicle, a pedestrian, and an object placed on a road. The radar apparatus calculates a time until the object and an own vehicle collide with each other, based on the relative position and relative velocity of the object measured by the measurement section, and changes, based on the calculated time, a filter coefficient to be used when filter processing is performed on a measured position converted from the measured relative position of the object, thereby changing a characteristic of the filter processing to be performed on the measured position, between stability and responsiveness.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Jun Tsunekawa
  • Publication number: 20110291876
    Abstract: This invention is related to a Doppler-Vision-Radar Traffic Surveillance System comprising of multiple Doppler radars, circuitry for processing radar signals, and data recording and displaying devices. Although the system is mainly designed for roadside traffic surveillance, it can be used in different applications, such as mounted on a host vehicle or on a UAV. The system will provide continuous surveillance of all incoming and leaving traffic.
    Type: Application
    Filed: May 29, 2010
    Publication date: December 1, 2011
    Inventors: Lang Hong, Steven Siying Hong