Magnetic Patents (Class 365/48)
  • Patent number: 10153423
    Abstract: An electronic device may include a semiconductor memory, and the semiconductor memory may include a free layer having a variable magnetization direction; a pinned layer having a pinned magnetization direction; a tunnel barrier layer interposed between the free layer and the pinned layer; and an under layer which is in contact with the free layer and includes a rare earth metal nitride.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 11, 2018
    Assignees: SK Hynix Inc., Toshiba Memory Corporation
    Inventors: Yang-Kon Kim, Guk-Cheon Kim, Jae-Hyoung Lee, Jong-Koo Lim, Ku-Youl Jung, Toshihiko Nagase, Youngmin Eeh
  • Patent number: 9007821
    Abstract: A semiconductor storage device according to the present embodiment includes a plurality of bit lines, a plurality of word lines, and a plurality of memory cells each including a storage element and a switching element which are connected in series between adjacently paired ones of the bit lines. Gates of the switching elements of the memory cells connected between one of the adjacently paired ones of the bit lines are respectively connected to different ones of the word lines. A plurality of the storage elements and a plurality of the switching elements of the adjacent memory cells are alternately connected in series.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: April 14, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tsuneo Inaba
  • Patent number: 8929132
    Abstract: A write driver for writing to a spin-torque magnetoresistive random access memory (ST-MRAM) minimizes sub-threshold leakage of the unselected (off) word line select transistors in the selected column. An effective metal resistance in the bit line and/or source line is reduced and power supply noise immunity is increased. Write driver bias signals are isolated from global bias signals, and a first voltage is applied at one end of a bit line using one of a first NMOS-follower circuit or a first PMOS-follower circuit. A second voltage is applied at opposite ends of a source line using, respectively, second and third PMOS-follower circuits, or second and third NMOS-follower circuits.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: January 6, 2015
    Assignee: Everspin Technologies, Inc.
    Inventors: Syed M. Alam, Thomas Andre
  • Patent number: 8912013
    Abstract: A magnetic tunneling junction (MTJ) device and fabrication method is disclosed. In a particular embodiment, an apparatus is disclosed that includes an MTJ device. The MTJ device includes a free layer and a spin torque enhancing layer. The spin torque enhancing layer includes a nano-oxide layer.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Xiaochun Zhu, Seung H. Kang, Xia Li
  • Patent number: 8913423
    Abstract: An apparatus includes a memory cell including a magnetic tunnel junction (MTJ) structure coupled between a bit line and a source line. The MTJ structure includes a free layer coupled to the bit line and a pinned layer. A magnetic moment of the free layer is substantially parallel to a magnetic moment of the pinned layer in a first state and substantially antiparallel to the magnetic moment of the pinned layer in a second state. A physical dimension of the pinned layer produces an unbalanced offset magnetic field which corresponds to a first switching current of the MTJ structure that enables switching from the first state to the second state when a first voltage is applied to the bit line and corresponds to a second switching current that enables switching from the second state to the first state when the first voltage is applied to the source line.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: December 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Kangho Lee, Seung H. Kang, Xiaochun Zhu
  • Patent number: 8879310
    Abstract: A semiconductor storage device according to the present embodiment includes a plurality of bit lines, a plurality of word lines, and a plurality of memory cells each including a storage element and a switching element which are connected in series between adjacently paired ones of the bit lines. Gates of the switching elements of the memory cells connected between one of the adjacently paired ones of the bit lines are respectively connected to different ones of the word lines. A plurality of the storage elements and a plurality of the switching elements of the adjacent memory cells are alternately connected in series.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tsuneo Inaba
  • Patent number: 8854871
    Abstract: A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: October 7, 2014
    Assignee: U.S. Department of Energy
    Inventors: Shikha Jain, Valentyn Novosad
  • Patent number: 8831458
    Abstract: An image forming apparatus is provided. The image forming apparatus includes: a storage section configured to store data; a printing section configured to perform duplex printing of the data stored in the storage section, the duplex printing including printing N sheets on first sides thereof and subsequently printing M sheets on second sides thereof, wherein M is equal to or smaller than N; a detection section configured to detect a request for storing data in the storage section; and a changing section configured to change the value of N into a smaller value during the duplex printing, in response to the detection of the request for storing data based on a function which uses the storage section concurrently with an operation of the duplex printing.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: September 9, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Shunsuke Minamikawa
  • Patent number: 8743578
    Abstract: Hydro-carbon nanorings may be used in storage. Sufficiently cooled, an externally hydrogen doped carbon nanoring may be used to create a radial dipole field to contain streams of electrons. Similarly, an internally hydrogen doped carbon nanoring may be used to create a radial dipole field to contain streams of positrons. When matched streams of positrons and electrons are sufficiently compressed they may form Cooper pairs with magnetic moments aligned to the movement of the stream. Matched adjacent Cooper pairs of electrons and positrons may contain information within their magnetic moments, and as such, may transmit and store information with little or no energy loss.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 3, 2014
    Inventor: Laurence H. Cooke
  • Patent number: 8514605
    Abstract: A memory unit includes a magnetic tunnel junction data cell is electrically coupled to a bit line and a source line. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by passing a write current through the magnetic tunnel junction data cell. A first diode is electrically between the magnetic tunnel junction data cell and the source line and a second diode is electrically between the magnetic tunnel junction data cell and the source line. The first diode and second diode are in parallel electrical connection, and having opposing forward bias directions. The memory unit is configured to be precharged to a specified precharge voltage level and the precharge voltage is less than a threshold voltage of the first diode and second diode.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: August 20, 2013
    Assignee: Seagate Technology LLC
    Inventors: Yiran Chen, Hai Li, Hongyue Liu, Yong Lu, Song S. Xue
  • Patent number: 8395925
    Abstract: An optimum forming method of performing a forming for a variable resistance element to maximize an operation window of the variable resistance element is provided. The forming method is used to initialize a variable resistance element (100). The forming method includes: a determination step (S35) of determining whether or not a current resistance value of the variable resistance element (100) is lower than a resistance value in a high resistance state; and a voltage application step (S36) of applying a voltage pulse having a voltage not exceeding a sum of a forming voltage and a forming margin when the determination is made that the current resistance value is not lower than the resistance value in the high resistance state (No at S35). The determination step (S35) and the voltage application step (S36) are repeated to process all memory cells in a memory array (202) (S34 to S37).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 12, 2013
    Assignee: Panasonic Corporation
    Inventors: Ken Kawai, Kazuhiko Shimakawa, Shunsaku Muraoka, Ryotaro Azuma
  • Patent number: 8363459
    Abstract: A magnetic tunneling junction (MTJ) device and fabrication method is disclosed. In a particular embodiment, an apparatus is disclosed that includes an MTJ device. The MTJ device includes a free layer and a spin torque enhancing layer. The spin torque enhancing layer includes a nano-oxide layer.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: January 29, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Xiaochun Zhu, Seung H. Kang, Xia Li
  • Patent number: 8300444
    Abstract: A nonvolatile semiconductor memory device comprises a memory cell array of electrically erasable programmable nonvolatile memory cells arranged in matrix, each memory cell using a variable resistor. A pulse generator generates plural types of write pulses for varying the resistance of the variable resistor based on write data. A selection circuit applies write pulses generated by the pulse generator to the memory cell. A sense amplifier executes verify read to the memory cell. A status decision circuit decides the verify result based on the output from the sense amplifier. A control circuit executes additional write to the memory cell based on the verify result from the status decision circuit.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 30, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Nagashima, Koichi Kubo, Yasuyuki Fukuda
  • Patent number: 8289746
    Abstract: A memory unit includes a magnetic tunnel junction data cell is electrically coupled to a bit line and a source line. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by passing a write current through the magnetic tunnel junction data cell. A first diode is electrically between the magnetic tunnel junction data cell and the source line and a second diode is electrically between the magnetic tunnel junction data cell and the source line. The first diode and second diode are in parallel electrical connection, and having opposing forward bias directions. The memory unit is configured to be precharged to a specified precharge voltage level and the precharge voltage is less than a threshold voltage of the first diode and second diode.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: October 16, 2012
    Assignee: Seagate Technology LLC
    Inventors: Yiran Chen, Hai Li, Hongyue Liu, Yong Lu, Song S. Xue
  • Patent number: 8279666
    Abstract: A magnetic device includes a magnetic reference layer with a fixed magnetization direction located either in the plane of the layer or perpendicular to the plane of the layer, a magnetic storage layer with a variable magnetization direction, a non-magnetic spacer separating the reference layer and the storage layer and a magnetic spin polarizing layer with a magnetization perpendicular to that of the reference layer, and located out of the plane of the spin polarizing layer if the magnetization of the reference layer is directed in the plane of the reference layer or in the plane of the spin polarizing layer if the magnetization of the reference layer is directed perpendicular to the plane of the reference layer. The spin transfer coefficient between the reference layer and the storage layer is higher than the spin transfer coefficient between the spin polarizing layer and the storage layer.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: October 2, 2012
    Assignees: Institut Polytechnique de Grenoble, Le Centre National de la Recherche Scientifique, Le Commissariat a l'Energie Atomique et aux Energies Altenatives
    Inventors: Bernard Dieny, Cristian Papusoi, Ursula Ebels, Dimitri Houssameddine, Liliana Buda-Prejbeanu, Ricardo Sousa
  • Patent number: 8098507
    Abstract: A method and apparatus for reading data from a non-volatile memory cell. In some embodiments, a cross-point array of non-volatile memory cells is arranged into rows and columns. A selection circuit is provided that is capable of activating the first block of memory cells while deactivating the second block of memory cells. Further, a read circuit is provided that is capable of reading a logical state of a predetermined memory cell in the first block of memory cells with a reduced leak current by programming a first resistive state to the block selection elements corresponding to the first block of memory cells while programming a second resistive state to the block selection elements corresponding to the second block of memory cells.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 17, 2012
    Assignee: Seagate Technology LLC
    Inventors: Chulmin Jung, Yong Lu, Insik Jin, YoungPil Kim, Harry Hongyue Liu
  • Patent number: 8040724
    Abstract: A magnetic random access memory includes: a magnetic recording layer including a ferromagnetic layer and having perpendicular magnetic anisotropy; and a magnetic reading layer provided on the magnetic recording layer and used for reading information. The magnetic recording layer includes: a magnetization switching area having reversible magnetization; a first magnetization pinned area connected to a first boundary of the magnetization switching area and having magnetization whose direction is pinned in a first direction; and a second magnetization pinned area connected to a second boundary of the magnetization switching area and having magnetization whose direction is pinned in a second direction. The magnetic reading layer includes: a magnetic sensing layer whose direction of magnetization changes based on a direction of the magnetization of the magnetization switching area; a nonmagnetic barrier layer provided on the magnetic sensing layer; and a pinned layer provided on the nonmagnetic barrier layer.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 18, 2011
    Assignee: NEC Corporation
    Inventors: Tetsuhiro Suzuki, Norikazu Ohshima, Shunsuke Fukami, Kiyokazu Nagahara, Nobuyuki Ishiwata
  • Patent number: 7965544
    Abstract: An inadvertent write can be prevented when a read is performed. The duration of the write current pulse for writing information in the magnetic memory layer is longer than the duration of the read current pulse for reading the information from the magnetic memory layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: June 21, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Masatoshi Yoshikawa, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7936580
    Abstract: A memory unit includes a magnetic tunnel junction data cell is electrically coupled to a bit line and a source line. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by passing a write current through the magnetic tunnel junction data cell. A first diode is electrically between the magnetic tunnel junction data cell and the source line and a second diode is electrically between the magnetic tunnel junction data cell and the source line. The first diode and second diode are in parallel electrical connection, and having opposing forward bias directions.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 3, 2011
    Assignee: Seagate Technology LLC
    Inventors: Yiran Chen, Hai Li, Hongyue Liu, Yong Lu, Song S. Xue
  • Patent number: 7929370
    Abstract: We describe the structure and method of formation of a STT MTJ or GMR MRAM cell element that utilizes transfer of spin torque as a mechanism for changing the magnetization direction of a free layer. The critical current is reduced by constructing the free layer as a lamination comprising two ferromagnetic layers sandwiching a coupling valve layer. When the Curie temperature of the coupling valve layer is above the temperature of the cell, the two ferromagnetic layers are exchange coupled in parallel directions of their magnetization. When the coupling valve layer is above its Curie temperature, it no longer exchange couples the layers and they are magnetostatically coupled. In the exchange coupled configuration, the free layer serves to store data and the cell can be read. In its magnetostatically coupled configuration, the cell can be more easily written upon because one of the layers can assist the spin torque transfer by its magnetostatic coupling.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: April 19, 2011
    Assignee: MagIC Technologies, Inc.
    Inventor: Tai Min
  • Publication number: 20110051511
    Abstract: A memory device that, in certain embodiments, includes a memory element coupled to a bit-line and a quantizing circuit coupled to the memory element via the bit-line. In some embodiments, the quantizing circuit includes an analog-to-digital converter having an input and output and a digital filter that includes memory. The input of the analog-to-digital converter may be coupled to the bit-line, and the output of the analog-to-digital converter may be coupled to the digital filter.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 3, 2011
    Applicant: Micron Technology, Inc.
    Inventor: R. Jacob Baker
  • Patent number: 7885096
    Abstract: An end of a selected bit line in a selected column is electrically coupled to an end of a corresponding current return line by one of first and second write column select gates, which are selectively turned on in response to results of column selection. A data write circuit sets the other end of the selected bit line and the other end of the current return line to one and the other of a power supply voltage and a ground voltage in accordance with a level of write data via one of first and second data buses and an inverted data bus, respectively.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 8, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hideto Hidaka
  • Patent number: 7826260
    Abstract: A spin-transfer torque memory apparatus and self-reference read and write assist schemes are described. One method of self-reference reading a spin-transfer torque memory unit includes applying a first read current through a magnetic tunnel junction data cell and forming a first bit line read voltage and storing the first bit line read voltage. A magnetic field is applied through the free magnetic layer the forming a magnetic field modified magnetic tunnel junction data cell, the magnetic field rotates the magnetization orientation of the free magnetic layer without switching a resistance state of the magnetic tunnel junction data cell.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: November 2, 2010
    Assignee: Seagate Technology LLC
    Inventors: Wenzhong Zhu, Yiran Chen, Xiaobin Wang, Zheng Gao, Haiwen Xi, Dimitar V. Dimitrov
  • Patent number: 7787288
    Abstract: An inadvertent write can be prevented when a read is performed. The duration of the write current pulse for writing information in the magnetic memory layer is longer than the duration of the read current pulse for reading the information from the magnetic memory layer.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Masatoshi Yoshikawa, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7685438
    Abstract: A tamper-resistant packaging approach protects an integrated circuit (100) from undesirable access. According to an example embodiment of the present invention, data is encrypted as a function of the state of a plurality of magnetically-responsive circuit elements (130-135) and then decrypted as a function of the state (130-135). A package (106) is arranged to prevent access to the integrated circuit and having magnetic particles (120-125) therein. The magnetic particles (120-125) are arranged to cause the magnetically-responsive circuit elements (130-135) to take on a state that is used to encrypt the data. The state of these elements is again accordingly used to decrypt the data (e.g., as a key). When the magnetic particles are altered, for example, by removing a portion of the package, the state of one or more of the magnetically-responsive circuit elements is changed, thus rendering the state incapable of being used for decrypting the data.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: March 23, 2010
    Assignee: NXP B.V.
    Inventor: Carl J. Knudsen
  • Patent number: 7633795
    Abstract: A write control method for a magnetoresistive random access memory, which includes a memory cell having a recording layer with an axis of easy magnetization and an axis of hard magnetization. The write control method includes writing a datum into the memory cell. The writing of the datum includes applying a pulsative first magnetic field substantially parallel to the axis of easy magnetization of the recording layer and a pulsative second magnetic field substantially parallel to the axis of hard magnetization to the recording layer so as to cause a period of the pulsative first magnetic field and a period of the pulsative second magnetic field to overlap each other, and applying a pulsative third magnetic field having substantially the same direction as the pulsative first magnetic field to the recording layer at least once after applying the pulsative first magnetic field to the recording layer.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: December 15, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoharu Shimomura, Tatsuya Kishi, Ryousuke Takizawa
  • Patent number: 7629182
    Abstract: Methods and apparatus are provided for magnetoresistive random access memory (MRAM) bits (52, 52?) combined with associated drive or sense transistors (53, 141) to form an integrated MRAM array. The MRAM array has lower electrodes (602, 150, 160, 162) of the MRAM bits (52, 52?) formed substantially directly on a source or drain region (56, 142, 152-2) of associated drive or sense transistors (53, 141), so that the intervening vias (302, 34, 36) and underlying interconnects layers (332, 35) of the prior art (20) can be eliminated. An interconnect layer (65) is provided above the MRAM bit (52, 52?) and transistor (53, 141) combination (50, 125, 129, 133) for coupling upper electrodes (41, 164) of the MRAM bits (52, 52?) and other electrodes (601, 58, 152-1, 152-3, 186-1, 186-3) of the transistors (53, 141) to other elements of the array.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: December 8, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Loren J. Wise
  • Patent number: 7511981
    Abstract: A non-volatile memory device according to one embodiment comprises a plurality of memory cells each comprising a magneto resistive element and a selection transistor; wherein at least some of the memory cells are arranged into a two dimensional array; a first interconnect line extending in a first direction of the memory array and functioning as a gate electrode of a selection transistor included in each memory cell; a second interconnect line extending in the first direction of the memory array; a third interconnect line extending in a second direction; wherein the magneto resistive element of at least some of the memory cells is sandwiched between the second and third interconnect lines, wherein the second interconnect line extends at least partially along all magneto resistive elements in a particular one of the memory cells.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 31, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hideo Asano, Koji Kitamura, Hisatada Miyatake, Kohki Noda, Toshio Sunaga, Hiroshi Umezaki
  • Patent number: 7471551
    Abstract: The direction of magnetization of a reading ferromagnetic material 5R forming a spin filter when reading is the same as that of a pinned layer 1. In this case, a torque that works on the spin of a free layer 3 due to a spin polarized current becomes ā€œzero.ā€ When the element size is made small so as to improve the integration degree of the magnetic memory, according to the scaling law, the writing current can be made small. In the present invention, the resistance to the spin injection magnetization reversal due to a reading current is high, so that the magnitude of the writing current can be lowered.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 30, 2008
    Assignee: TDK Corporation
    Inventor: Tohru Oikawa
  • Patent number: 7440303
    Abstract: A semiconductor memory device includes resistance memory elements that are coupled to selection transistors addressed by word lines and bit lines. The memory elements are read by read/write lines arranged parallel to the word lines. Two successive memory elements along a read/write line are coupled to selection transistors that are coupled to different word lines.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: October 21, 2008
    Assignee: Qimonda AG
    Inventor: Corvin Liaw
  • Patent number: 7423902
    Abstract: A storage device includes memory cells disposed in a matrix. The memory cells each include a storage element whose resistance changes from a higher state to a lower state when an electric signal of a first threshold level or higher is applied and whose resistance changes from the lower state to the higher state when an electric signal of a second threshold level or higher whose polarity is different from the polarity of the electric signal of the first threshold level or higher is applied, and a circuit element connected in series with the storage element. In a state in which an erasing voltage is applied to at least one memory cell on which erasing is currently being performed, after the lapse of a predetermined time from the application, an erasing voltage is applied to at least one memory cell on which erasing is to be next performed.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: September 9, 2008
    Assignee: Sony Corporation
    Inventors: Hironobu Mori, Hidenari Hachino, Nobumichi Okazaki
  • Patent number: 7349235
    Abstract: A non-volatile memory device according to one embodiment includes a plurality of memory cells each comprising a magneto resistive element and a selection transistor, where the memory cells are arranged into a two dimensional array. A first interconnect line extends in a first direction of the memory array and functions as a gate electrode of a selection transistor included in each memory cell. A second interconnect line extends in the first direction of the memory array. A third interconnect line extends in a second direction. The magneto resistive element of at least some of the memory cells is sandwiched between the second and third interconnect lines.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: March 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Hisatada Miyatake, Kohki Noda, Toshio Sunaga, Hiroshi Umezaki, Hideo Asano, Koji Kitamura
  • Patent number: 7227774
    Abstract: An integrated circuit includes operational circuitry; a sensor configured to sense an environmental parameter; and adjustment circuitry coupled to the sensor and to the operational circuitry and configured to affect the operational circuitry to at least partially counteract the effects of the environmental parameter. A method of testing an integrated circuit includes supporting a sensor in the integrated circuit and using the sensor to sense environmental data.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 5, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, D. Mark Durcan
  • Patent number: 7112354
    Abstract: An apparatus includes a low magnetic-coercivity layer of material (LMC layer) having a majority electron-spin-polarization (M-ESP), an energy-gap coupled with the LMC layer, wherein a flow of spin-polarized electrons having an electron-spin-polarization anti-parallel to the LMC layer are injected via the energy-gap, to change the M-ESP of the LMC layer. A non-magnetic material is in electrical communication with the LMC layer and provides a spin-balanced source of current to the LMC layer, responsive to the injection of spin-polarized electrons into the LMC layer.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: September 26, 2006
    Assignee: Intel Corporation
    Inventors: Eric C. Hannah, Michael A. Brown
  • Patent number: 7109539
    Abstract: A multiple-bit memory cell for use in a magnetic random access memory circuit includes a first adiabatic switching storage element having a first anisotropy axis associated therewith and a second adiabatic switching storage element having a second anisotropy axis associated therewith. The first and second anisotropy axes are oriented at a substantially non-zero angle relative to at least one bit line and at least one word line corresponding to the memory cell. The memory cell is configured such that two quadrants of a write plane not used for writing one of the storage elements can be beneficially utilized to write the other storage element so that there is essentially no loss of write margin in the memory cell.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: September 19, 2006
    Assignee: International Business Machines Corporation
    Inventor: Yu Lu
  • Patent number: 7075807
    Abstract: A magnetoresistive or magnetic memory element and a magnetic random access memory having one or more magnetic memory elements. The memory element includes a magnetic tunnel junction including first and a second magnetic layers. The first magnetic layer having a free magnetization. The free magnetization of the first magnetic layer is magnetically coupled to a first current line and a second current line for switching the free magnetization, and a mechanism for applying a static magnetic offset field in the direction of at least one of the first and second current lines.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: July 11, 2006
    Assignees: Infineon Technologies AG, Altis Semiconductor
    Inventors: Rainer Leuschner, Daniel Braun, Gill Yong Lee, Ulrich Klostermann
  • Patent number: 7035136
    Abstract: A nonvolatile magnetic memory device having a nonvolatile magnetic memory array comprising write-in word line(s), bit lines and tunnel magnetoresistance devices, wherein when data is written into the tunnel magnetoresistance device, a current I(m)RWL is passed through the m-th-place write-in word line, a current g(0)Ā·I(n)BL is passed through the n-th-place bit line, and at the same time, a current g(k)Ā·I(n)BL is passed through the q-th-place bit line (q=n+k, k is Ā±1, Ā±2, . . . , and the total number of the lines is K), and a spatial FIR filter assuming magnetic fields, which are supposed to be formed in the n-th-place bit line and the bit lines that are K in number by the current I(n)BL, to be discrete pulse response and assuming the coefficients g(0) and g(k) to be tap-gains is constituted of the n-th-place bit line and the bit lines that are K in number.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: April 25, 2006
    Assignee: Sony Corporation
    Inventors: Masaaki Hara, Tsunenori Shiimoto, Yujiro Ito, Jun Sawai
  • Patent number: 7029926
    Abstract: The semiconductor industry seeks to replace traditional volatile memory devices with improved non-volatile memory devices. The increased demand for a significantly advanced, efficient, and non-volatile data retention technique has driven the development of integrated magnetic memory structures. In one aspect, the present teachings relate to magnetic memory structure fabrication techniques in a high density configuration that includes an efficient means for programming high density magnetic memory structures.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: April 18, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Allan T. Hurst, Jeffrey Sather, Jason B. Gadbois
  • Patent number: 7027319
    Abstract: Methods and apparatuses are disclosed for retrieving data stored in a magnetic integrated memory. In one embodiment, the method includes applying a perturbing hard-axis magnetic field to a magnetic element in a magnetic integrated memory and detecting a change in an electrical parameter caused by said perturbing hard-axis magnetic field.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: April 11, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Thomas C. Anthony, Richard L. Hilton, Lung T. Tran
  • Patent number: 7020004
    Abstract: The semiconductor industry seeks to replace traditional volatile memory devices with improved non-volatile memory devices. The increased demand for a significantly advanced, efficient, and non-volatile data retention technique has driven the development of integrated magnetic memory structures. In one aspect, the present teachings relate to magnetic memory structure fabrication techniques in a high density configuration that includes an efficient means for programming high density magnetic memory structures.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: March 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Allan T. Hurst, Jeffrey Sather, Jason B. Gadbois
  • Patent number: 6992922
    Abstract: Providing a cross point memory array with memory plugs exhibiting a characteristic hysteresis. The memory plugs exhibit a hysteresis that, in the low resistive state, the first write threshold voltage is the point above which any voltages applied across the memory plug have substantially no effect on the resistive state and below which a voltage pulse will alter the resistance of the memory plug. Similarly, in the high resistive state, the second write threshold voltage is the point below which any voltages applied across the memory plug have substantially no effect on the resistive state and above which a voltage pulse will alter the resistance of the memory plug. The read voltages applied to the memory plug are typically above the first write threshold voltage and lower than the second write threshold voltage.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: January 31, 2006
    Inventor: Darrell Rinerson
  • Patent number: 6954375
    Abstract: A magnetic storage element and a recording method using the same capable of ensuring correct information recording without causing erroneous writing are proposed. A magnetic storage device having the magnetic storage elements incorporated therein, and being capable of recording information in a stable and correct manner even if the magnetic characteristics vary from the element to element is also proposed. The magnetic storage element comprises a storage layer, magnetic field applying means for applying magnetic field to the storage layer, and a magnetic field shield, disposed between the magnetic field application means and the storage layer, comprising a soft magnetic material, for shielding at least a part of the magnetic field. Recording to the magnetic storage element is made effective by applying a magnetic field to the storage layer while heating the magnetic field shield to thereby allow it to reduce or lose its magnetization.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: October 11, 2005
    Assignee: Sony Corporation
    Inventor: Hiroyuki Ohmori
  • Patent number: 6940748
    Abstract: This invention relates to MRAM technology and new variations on MRAM array architecture to incorporate certain advantages from both cross-point and 1T-1MTJ architectures. The fast read-time and higher signal-to-noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of these layouts. A single access transistor 16 is used to read multiple MRAM cells, which can be stacked vertically above one another a plurality of MRAM array layers arranged in a ā€œZā€ axis direction.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: September 6, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, Mirmajid Seyyedy
  • Patent number: 6940750
    Abstract: A magnetic memory includes a magnetic substance composed of a disc-shaped first magnetic layer and a ring-shaped second magnetic layer which is formed on the first magnetic layer.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: September 6, 2005
    Assignee: Osaka University
    Inventors: Masahiko Yamamoto, Ryoichi Nakatani, Yasushi Endo
  • Patent number: 6912154
    Abstract: In the first read operation, a read current is supplied to TMR elements connected in parallel in one column or one block to detect initial data. Trial data is then written in a selected memory cell. At the same time of or in parallel with writing of the trial data, the second read operation is performed. In the second read operation, a read current is supplied to the TMR elements connected in parallel in one column or one block to read comparison data. Subsequently, the initial data is compared with the comparison data to determine the data value in the selected memory cell. Finally, rewrite operation is performed for the selected memory cell.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: June 28, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshihisa Iwata
  • Patent number: 6906948
    Abstract: In the first read operation, a read current is supplied to TMR elements connected in parallel in one column or one block to detect initial data. Trial data is then written in a selected memory cell. At the same time of or in parallel with writing of the trial data, the second read operation is performed. In the second read operation, a read current is supplied to the TMR elements connected in parallel in one column or one block to read comparison data. Subsequently, the initial data is compared with the comparison data to determine the data value in the selected memory cell. Finally, rewrite operation is performed for the selected memory cell.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: June 14, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshihisa Iwata
  • Patent number: 6870762
    Abstract: An apparatus includes a low magnetic-coercivity layer of material (LMC layer) having a majority electron-spin-polarization (M-ESP), an energy-gap coupled with the LMC layer, wherein a flow of spin-polarized electrons having an electron-spin-polarization anti-parallel to the LMC layer are injected via the energy-gap, to change the M-ESP of the LMC layer. A non-magnetic material is in electrical communication with the LMC layer and provides a spin-balanced source of current to the LMC layer, responsive to the injection of spin-polarized electrons into the LMC layer.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 22, 2005
    Assignee: Intel Corporation
    Inventors: Eric C. Hannah, Michael A. Brown
  • Patent number: 6850429
    Abstract: Providing a cross point, memory array with memory plugs exhibiting a characteristic hysteresis. The memory plugs exhibit a hysteresis that, in the low resistive state, the first write threshold voltage is the point above which any voltages applied across the memory plug have substantially no effect on the resistive state and below which a voltage pulse will alter the resistance of the memory plug. Similarly, in the high resistive state, the second write threshold voltage is the point below which any voltages applied across the memory plug have substantially no effect on the resistive state and above which a voltage pulse will alter the resistance of the memory plug. The read voltages applied to the memory plug are typically above the first write threshold voltage and lower than the second write threshold voltage.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: February 1, 2005
    Inventors: Darrell Rinerson, Steven W. Longcor, Steve Kuo-Ren Hsia, Wayne Kinney, Edmond R. Ward, Christophe J. Chevallier
  • Patent number: 6804144
    Abstract: In the first read operation, a read current is supplied to TMR elements connected in parallel in one column or one block to detect initial data. Trial data is then written in a selected memory cell. At the same time of or in parallel with writing of the trial data, the second read operation is performed. In the second read operation, a read current is supplied to the TMR elements connected in parallel in one column or one block to read comparison data. Subsequently, the initial data is compared with the comparison data to determine the data value in the selected memory cell. Finally, rewrite operation is performed for the selected memory cell.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: October 12, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshihisa Iwata
  • Patent number: 6798705
    Abstract: Apparatus and method for data sensing circuitry that uses averaging to sense small differences in signal levels representing data states. The apparatus periodically switches the coupling of input terminals and output terminals of an integrator circuit from a first configuration to a second configuration, where the second configuration changes the polarity of the integrator circuit from the first configuration. The output signals of the integrator circuit are periodically compared, and based on the comparison, output signals having a voltage representative of a value are generated. The values of the output signals are then averaged over time to determine the data state.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: September 28, 2004
    Assignee: Micron Technology, Inc.
    Inventor: R. Jacob Baker