Particular Pumping Means Patents (Class 372/69)
  • Patent number: 11545809
    Abstract: A laser light source unit for vehicles is provided, having a resonator containing a first end mirror and a second end mirror and an active laser medium in between. The laser light source unit has a pump device for generating a pump radiation into the resonator. The pump radiation is configured such that laser light of the first wavelength, a second wavelength, and/or a third wavelength can be radiated. An intermediate mirror is configured so that the radiation of the second wavelength is reflected, and the radiation of the third wavelength is transmitted. A third end mirror is configured so that the radiation of the second wavelength is reflected. A color control module acts on the radiation of the second wavelength and/or the third wavelength so that an intensity of the stimulated emission of the radiation of the second wavelength is adjusted to the radiation of the third wavelength.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: January 3, 2023
    Assignee: Hella GmbH & Co. KGaA
    Inventors: Hanieh Babaei, Julien Hansen, Lukas Pörtner
  • Patent number: 11506916
    Abstract: According to an aspect of an embodiment, operations may include receiving a light wave and generating a pumping wave by performing polarization modulation on the light wave based on a bit stream. The pumping wave may include a first polarization component having a first polarization and a second polarization component having a second polarization and having a same wavelength as the first polarization component. The operations may also include emitting the pumping wave in an optical medium such that the pumping wave amplifies an optical signal propagating within the optical medium.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: November 22, 2022
    Assignee: FUJITSU LIMITED
    Inventor: Youichi Akasaka
  • Patent number: 11139787
    Abstract: An exemplary embodiment of the invention relates to an electrical amplifier comprising a differential preamplifier having a first output port and a second output port; and a downstream amplifier stage having a first output unit and a second output unit; wherein the first output unit is connected to the first output port of the differential preamplifier and the second output unit is connected to the second output port of the differential preamplifier; and wherein a negative impedance converter is electrically located in at least one of said differential preamplifier and said downstream amplifier stage.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: October 5, 2021
    Assignee: SICOYA GMBH
    Inventor: Danilo Bronzi
  • Patent number: 11031745
    Abstract: An X-ray laser has a target anode of a crystalline material that emits X-ray radiation in response to excitation and that is located on a thermally conductive substrate. An X-ray source provides an input X-ray beam that illuminates a predetermined volume of the target anode at a predefined angle relative to a surface of the anode so as to induce a Borrmann mode standing wave in the predetermined volume. An electron source outputs an electron beam that is incident on the Borrmann mode region so as to cause electron impact ionization of the crystalline material and thereby induce stimulated emission of a coherent output X-ray beam.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: June 8, 2021
    Inventors: Roger D. Durst, Juergen Graf, Christoph Ollinger
  • Patent number: 10998693
    Abstract: An X-ray laser has a target anode of a crystalline material that emits X-ray radiation in response to excitation and that is located on a thermally conductive substrate. An X-ray source provides an input X-ray beam that illuminates a predetermined volume of the target anode at a predefined angle relative to a surface of the anode so as to induce a Borrmann mode standing wave in the predetermined volume. An electron source outputs an electron beam that is incident on the Borrmann mode region so as to cause electron impact ionization of the crystalline material and thereby induce stimulated emission of a coherent output X-ray beam.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 4, 2021
    Inventors: Roger D. Durst, Juergen Graf, Christoph Ollinger
  • Patent number: 10555409
    Abstract: A target supply apparatus according to one aspect of the present disclosure includes a nozzle configured to output a target, a plurality of vibrators including a first vibrator configured to vibrate the nozzle, a detection unit configured to detect a change in state of the target having been output from the nozzle, a vibrator switching unit configured to perform switching of a vibrator that vibrates the nozzle from the first vibrator to the other vibrator that is included in the vibrators and is different from the first vibrator, and a control unit configured to control the switching of the vibrator that vibrates the nozzle, based on the change in state of the target having been output from the nozzle, detected by the detection unit.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: February 4, 2020
    Assignee: Gigaphoton Inc.
    Inventor: Masaki Nakano
  • Patent number: 10539805
    Abstract: Optical output beams from a vertical stack of diode-laser bars are focused by a simple focusing lens on an optical axis of the lens. The optical output beams from outlying diode-laser bars in the vertical stack are tilted with respect to the optical axis of the focusing lens such that optical output from the whole vertical stack is brought to a common focus location on the optical axis of the focusing lens.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: January 21, 2020
    Assignee: Coherent, Inc.
    Inventors: Athanasios Chryssis, Geunmin Ryu, David Schleuning
  • Patent number: 10297968
    Abstract: A system includes a master oscillator configured to generate a low-power optical beam. The system also includes a planar waveguide (PWG) amplifier configured to receive the low-power optical beam and generate a high-power optical beam having a power of at least about ten kilowatts. The PWG amplifier includes a single laser gain medium configured to generate the high-power optical beam. The single laser gain medium can reside within a single amplifier beamline of the system. The master oscillator and the PWG amplifier can be coupled to an optical bench assembly, and the optical bench assembly can include optics configured to route the low-power optical beam to the PWG amplifier and to route the high-power optical beam from the PWG amplifier. The PWG amplifier could include a cartridge that contains the single laser gain medium and a pumphead housing that retains the cartridge.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: May 21, 2019
    Assignee: Raytheon Company
    Inventors: David M. Filgas, Stephen H. McGanty
  • Patent number: 9899788
    Abstract: Disclosed are a solid-state laser device having an advantage of achieving simplification of a configuration and reduction in size, and a photoacoustic measurement device. In a solid-state laser device which accommodates a solid-state laser medium and an excitation light source having a rod-shaped portion, the excitation light source is provided to be pulled out of a laser chamber. An optical element which bends light is provided at a position separated from the rod-shaped portion such that at least a part of the optical element and at least a part of the rod-shaped portion are at the same position in the longitudinal direction of the rod-shaped portion. One resonator mirror is disposed at a position where bent light is incident. Optical components between the optical element and the resonator mirror are provided at positions separated from a path along which the excitation light source is pulled out.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 20, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Koki Nakabayashi, Takuji Tada
  • Patent number: 9865988
    Abstract: A system includes a laser system having a master oscillator and a planar waveguide (PWG) amplifier having one or more laser diode pump arrays, a PWG pumphead, input optics, and output optics. The PWG pumphead is configured to receive a low-power optical beam from the master oscillator and generate a high-power optical beam. The PWG pumphead includes a laser gain medium, a cartridge, and a pumphead housing. The cartridge is configured to receive and retain the laser gain medium, and the cartridge includes one or more cooling channels configured to transport coolant in order to cool the laser gain medium. The pumphead housing is configured to receive and retain the cartridge, where the cartridge is removable from the housing.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: January 9, 2018
    Assignee: Raytheon Company
    Inventors: David M. Filgas, Stephen H. McGanty, Christopher R. Koontz
  • Patent number: 9806484
    Abstract: A radial polarization disk laser, including a pumping source, a collimator lens, a focusing lens, a laser gain medium, a Brewster axial cone, and a output lens, which are sequentially arranged along a laser light path. An angle formed between the conical surface and the bottom surface of said Brewster axial cone is a Brewster's angle. Said laser gain medium is bonded with said bottom surface; said laser gain medium and said output lens form a laser harmonic oscillator cavity therebetween. The pumped laser light emitted by said pumping source passes through said collimator lens and said focusing lens, then is focused on the laser gain medium, and. the generated photons oscillate in said laser harmonic oscillator cavity, and then a radial polarized laser beam is finally output by said output lens.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: October 31, 2017
    Assignees: HAN'S LASER TECHNOLOGY INDUSTRY GROUP CO., LTD., HAN'S CNC TECHNOLOGY CO., LTD.
    Inventors: Lei Xiao, Chengwan Gong, Jiantao Zhao, Jinbin Yang, Yanhua Ning, Yunfeng Gao
  • Patent number: 9800011
    Abstract: A laser pumping method pumps a primary amount of energy into a laser medium to populate an intermediate level near an upper laser level. A lesser amount of energy is pumped into the laser medium to populate an excited level that lies above the upper laser level and transfers atomic or molecular population to the upper laser level by a nonradiative process. A laser device includes a laser medium supporting four levels, including a lower laser level, an upper laser level, an excited level above the laser level from which population transfers to the upper laser level via nonradiative transition, and an intermediate level within a few kT of the upper laser level.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: October 24, 2017
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, John Darby Hewitt
  • Patent number: 9768579
    Abstract: A laser comprises a first end mirror and a second end mirror defining an optical cavity therebetween, a first gain medium and a second gain medium positioned in the optical cavity, at least one radiation source configured to provide pump radiation to the first and second gain media, wherein the pump radiation comprises a first pump beam directed to be incident on the first gain medium and a second pump beam directed to be incident on the second gain medium so as to stimulate emission of radiation from the first and second gain media thereby establishing a laser beam in the optical cavity and a control apparatus operable to adjust a property of at least one of the first and second pump beams and thereby control a thermal lens of at least one of the first and second gain media so as to substantially remove an instability zone from the power curve of the laser.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: September 19, 2017
    Assignee: LASER QUANTUM INC.
    Inventors: Alan Cox, Jean-Charles Cotteverte
  • Patent number: 9574745
    Abstract: The invention provides a light source apparatus including first and second light sources that output light in mutually opposing directions along a single optical axis; a wavelength conversion element that is disposed between these light sources and that generates light of a wavelength different from that of said light due to irradiation with the light; a first optical member that is disposed between the wavelength conversion element and the first light source, that transmits the light therefrom, and that reflects back light that is scattered towards the first light source, toward the wavelength conversion element; and a second optical member that is disposed between the wavelength conversion element and the second light source, that transmits the light therefrom, and that deflects, in a direction intersecting the optical axis, the light scattered toward the second light source and the light reflected back by the first optical member.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 21, 2017
    Assignee: OLYMPUS CORPORATION
    Inventor: Koichiro Furuta
  • Patent number: 9563746
    Abstract: A method and system of physically solving the charge, mass, and current density functions of organic molecules using Maxwell's equations and computing and rendering the physical nature of the chemical bond using the solutions. The solutions can be used to solve the dipole moments in molecules or induced dipole moments between species that in turn can be used to solve condensed matter parameters and reaction kinetics. The results can be displayed on visual or graphical media. The display can be static or dynamic such that electron motion and specie's vibrational, rotational, and translational motion can be displayed in an embodiment. The displayed information is useful to anticipate reactivity and physical properties. The insight into the nature of the chemical bond of at least one species can permit the solution and display of those of other species to provide utility to anticipate their reactivity and physical properties.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 7, 2017
    Assignee: BRILLIANT LIGHT POWER, INC.
    Inventor: Randell L. Mills
  • Patent number: 9559481
    Abstract: A large aperture uniform-amplification laser module including a longer, larger diameter crystal bar is disclosed. The laser module includes a ring-shaped pump bar structure, a crystal bar, a glass sleeve, and a structural component. The pump bar structure includes pump blocks composed of a bar, a cooling heat sink, and a cooling pipe. The bar is connected with the heat sink, and a cooling water channel is provided inside of the cooling heat sink. Heat sinks are provided with outlet pipes and an inlet pipes to communicate with water channels, which are connected in series through the cooling pipes to form a ring shape. The bar is close to a center axis of the ring-shaped pump bar structure. The crystal bar is provided in the glass sleeve. A plurality of the ring-shaped pump bar structures are sleeved on the glass sleeve along the length of the glass sleeve.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: January 31, 2017
    Assignee: Academy of Opto-Electronics, Chinese Academy of Science
    Inventors: Zhongwei Fan, Tianzhuo Zhao, Weiran Lin, Ke Huang, Shuzhen Nie, Jin Yu
  • Patent number: 9312654
    Abstract: An optical amplification component 1 includes a heat dissipation plate 10 and an amplification optical fiber 20 arranged on the heat dissipation plate 10. The amplification optical fiber 20 includes a first section SC1 extending from a reference position RP between a first end E1 and a second end E2 of the amplification optical fiber 20 up to a position at which a fiber portion 20A extending from the reference position RP toward the end E1 and a fiber portion 20B extending from the reference position RP toward the end E2 are aligned in one direction, and a second section SC2 where the fiber portions 20A and 20B aligned in one direction are wound in a spiral outside the first section SC1. The circumferences of one and the other end parts of the amplification optical fiber 20 are separated from side surfaces of the fiber portions wound in a spiral.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: April 12, 2016
    Assignee: FUJIKURA LTD.
    Inventor: Hiroyuki Taya
  • Patent number: 9293885
    Abstract: A continuous-wave (CW), ultraviolet triply-optically-pumped atomic laser (TOPAL) is disclosed. The inventive laser device includes a laser active media comprising a mixture of a neutral atomic vapor and one or more buffer gases. The gain mixture is placed within a segmented gain cell, allowing for periodic, selected spectral filtering of deleterious ASE transitions; the segmented gain cell, in turn, is placed within an optical cavity with a high Q at a specified ultraviolet wavelength, and is successively, resonantly excited by three drive pump lasers, in three energy-contiguous visible/IR electric-dipole allowed transitions, producing a steady-state electron population inversion density between a high-lying electronic energy level and the ground electronic level, and producing laser emission on a UV transition (within the spectral range Ëś230 to Ëś370 nm) terminating on the ground electronic level.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: March 22, 2016
    Inventors: William F Krupke, David Eimerl
  • Patent number: 9172203
    Abstract: A laser system for the marking of metallic and non-metallic materials comprising a laser oscillator (1), characterized in that said laser oscillator (1) comprises: an active optical means (13) of the crystal laser type, a laser pump (10) to provide a pump energy to said active optical means (13); a mirror (14) disposed upstream said active optical means (13); an optical switch (16), apt to provide a pulsed laser beam, disposed downstream said active optical means (13); a mode adaptor (18) coupled to said optical switch (16); a predetermined length single-mode optical fiber (19), coupled to said mode adapter (18); a Bragg Grating type reflector coupled to said optical fiber (19).
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 27, 2015
    Assignee: DATALOGIC AUTOMATION S.R.L.
    Inventors: Marco Tagliaferri, Fabio Cannone, Orazio Svelto
  • Patent number: 9138249
    Abstract: A shock wave catheter system and method produces a shock wave with reduced energy. The system includes a catheter and a power source. The catheter has an elongated carrier and a balloon about the carrier in sealed relation thereto. The balloon is arranged to receive a fluid therein that inflates the balloon. The catheter further includes an arc generator including at least two electrodes within the balloon. The power source is coupled to the at least two electrodes and is configured to grow a bubble at one of the at least two electrodes and then thereafter to rapidly expand the bubble to form a shock wave within the balloon.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 22, 2015
    Assignee: SHOCKWAVE MEDICAL, INC.
    Inventors: John Adams, Randy Holmberg
  • Patent number: 9076741
    Abstract: A light-emitting element having a light-emitting section and a light-receiving section provided on a substrate. The light-emitting section includes: an organic compound in which light is emitted; a translucent reflecting portion that transmits the emitted light which has spectral radiance changeable with changes in ambient temperature; and a transparent portion that radiates first part of the light coming through the translucent reflecting portion to outside and total-reflects second part that is light incident to a boundary surface therebetween at angles larger than a critical angle. Wherein, the light-receiving section is capable of receiving the light total-reflected at the boundary surface, the received light having a quantity of light changeable with changes in wavelength of the light passing through the translucent reflecting portion. The light-receiving section further outputs a signal which has an amplitude level in correlation to the quantity of light.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 7, 2015
    Assignee: KONICA MINOLTA, INC.
    Inventors: Yoshikazu Watanabe, Satoshi Masuda, Makoto Obayashi, Masayuki Iijima, So Yano
  • Patent number: 9036667
    Abstract: A high power fiber laser system emitting a substantially diffraction limited beam with a Gaussian intensity profile includes a single mode (“SM”) neodymium fiber pump source outputting a SM pump light; a seed laser operative to emit a SM signal light at a wavelength greater than that of the pump light; a SM DWM receiving and multiplexing the SM pump and signal lights. The disclosed system further includes a booster fiber amplifier which is configured with a frustoconically-shaped ytterbium (“Yb”) doped core receiving the pump and signal lights and configured with a small diameter input end which supports only a SM and a large diameter output end which is capable of supporting the SM and high order modes (:HOM”). The booster further has a cladding surrounding and coextending with the core, the core being configured for having intensity profiles of respective SMs of pump and signal lights overlap one another so that an overlap integral substantially equals to one (1) along an entire length of the core.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 19, 2015
    Assignee: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Igor Samartsev
  • Patent number: 9025626
    Abstract: A semiconductor laser excited solid state laser device and method. The device including a semiconductor laser; a driving device; a solid state laser module which has maximum output efficiency at the set temperature and which generates, from excitation light, an output light of a predetermined output level when the optical noise is at or below a fixed level and the output level of the excitation light is the set output level; a single temperature adjustment device which adjusts the temperature of the semiconductor laser and the temperature of the solid state laser module; and a control device which controls the driving device such that the output light will be at the predetermined output level and controls the temperature adjustment device such that the temperature of the semiconductor laser and the solid state laser module will be the set temperature.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: May 5, 2015
    Assignee: Shimadzu Corporation
    Inventors: Kazutomo Kadokura, Katsuhiko Tokuda, Mamoru Hisamitsu, Kazuya Inoue
  • Patent number: 9014223
    Abstract: Systems and methods of optical parametric chirped pulse amplification for laser pulses are provided. Techniques and components include replacing pulse stretcher and/or pulse compressors with chirped volume Bragg gratings (CVBGs) to reduce size, weight, cost, and environmental sensitivity of the laser system.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 21, 2015
    Assignee: Lockheed Martin Corporation
    Inventor: Edward J. Miesak
  • Patent number: 8995481
    Abstract: An optical system includes an electrically pumped laser light source and an optically pumped laser light source. An optical switch is located in a light path of the electrically pumped laser light source such that when the optical switch is in a first position light from the electrically pumped laser light source is directed toward the optically pumped laser light source and when the optical switch is in a second position light from the electrically pumped laser light source is directed away from the optically pumped laser light source.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: March 31, 2015
    Assignee: Photodigm, Inc.
    Inventors: Martin Achtenhagen, John Edward Spencer
  • Patent number: 8995494
    Abstract: Techniques and architecture are disclosed for providing a laser system. In one specific example embodiment, the system includes a thulium-doped fiber laser coupled by silica glass fiber to a remote optical converter (ROC) including a Ho:YAG laser and, optionally, an optical parametric oscillator (OPO) utilizing zinc germanium phosphide (ZnGeP2; ZGP) or orientation-patterned gallium arsenide (OPGaAs). The fiber laser may emit a low-peak-power, continuous wave pump signal that pumps the Ho:YAG laser, which in turn emits a higher-peak-power, pulsed signal. When included, the OPO can be used to convert the resultant, pulsed signal to a longer wavelength (e.g., about 2-5 ?m, or greater). In some cases, distributed architecture and reduced weight/bulk may be realized while eliminating the need to actively cool the ROC for operation, for example, over a broad temperature range (e.g., ?55-125° C.). Also, methods of preparing high-peak-power, pulsed signals using such systems are disclosed.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: March 31, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Leonard A Pomeranz, Joseph M Owen, Michael J. Shaw, David P. Kelly, Philip R. Staver, Peter A. Budni, John C. Wikman
  • Patent number: 8971373
    Abstract: Nanolaser for generating coherent electromagnetic radiation, comprising at least one nanoparticle of metal, preferably silver, or semiconductor, at least one exciting element, preferably a quantum dot, for exciting plasmon resonance of the at least one nanoparticle, wherein the at least one nanoparticle and the at least one exciting element are embedded in a matrix of Photonic or Polaritonic Band-gap (PGB)-material, preferably Silica Carbide (SiC).
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: March 3, 2015
    Assignee: King Saud University
    Inventor: Talal Ghannam
  • Patent number: 8964798
    Abstract: A laser system for semiconductor inspection includes a fiber-based fundamental light source for generating fundamental light that is then converted/mixed by a frequency conversion module to generate UV-DUV laser light. The fundamental light source includes a nonlinear chirp element (e.g., a Bragg grating or an electro-optic modulator) that adds a nonlinear chirp to the seed light laser system prior to amplification by the fiber amplifier(s) (e.g., doped fiber or Raman amplifiers). The nonlinear chirp includes an x2 or higher nonlinearity and is configured to compensate for the Self Phase Modulation (SPM) characteristics of the fiber-based amplifiers such that fundamental light is generated that has a spectral E95 bandwidth within five times that of the seed light. When multiple series-connected amplifiers are used, either a single nonlinear chirp element is provided before the amplifier string, or chirp elements are included before each amplifier.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: February 24, 2015
    Assignee: KLA-Tencor Corporation
    Inventor: J. Joseph Armstrong
  • Patent number: 8958447
    Abstract: Disclosed is a surgical laser system. The system includes a laser generator to generate laser radiation to cause water absorption levels that approximate water absorption levels achieved with a C02 laser, and one or more fibers coupled to the laser generator to deliver the generated laser radiation. In some embodiments, the laser generator is configured to generate radiation at multiple possible wavelengths in a range of between about 2.4 ?m to about 2.75 ?m.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: February 17, 2015
    Assignee: Lumenis Ltd.
    Inventors: Asa Fein, Alon Goldring
  • Patent number: 8953648
    Abstract: The invention is an apparatus and method for free space pumping of active double-clad fiber based lasers and amplifiers. The apparatus comprises a laser emitting a signal laser beam; an active double-clad fiber having a core defining an optical axis of the apparatus and a pump cladding defining a cone of numerical aperture; an optical arrangement directing the signal laser beam along the optical axis through the core of the active double-clad fiber; at least one pump source emitting a pump beam; at least one delivery means coupling the pump beam to the pump cladding of the active double-clad fiber; and an optical arrangement coupling the amplified signal laser beam exiting the active double-clad fiber out of the apparatus.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 10, 2015
    Assignee: Ben-Gurion University of the Negev Research & Development Authority
    Inventors: Amiel Ishaaya, Boris Shulga
  • Patent number: 8897333
    Abstract: Efficient laser diode excited Thulium (Tm) doped solid state systems, directly matched to a combination band pump transition of Carbon Dioxide (CO2), have matured to the point that utilization of such in combination with CO2 admits effectively a laser diode pumped CO2 laser. The laser diode excited Tm solid state pump permits Continuous Wave (CW) or pulsed energy application. Appropriate optical pumping admits catalyzer free near indefinite gas lifetime courtesy of the absence of significant discharge driven dissociation and contamination. As a direct consequence of the preceding arbitrary multi isotopologue CO2, symmetric and asymmetric, gas mixes may be utilized without significant degradation or departure from initial mix specifications. This would admit, at raised pressure, a system continuously tunable from approximately 9 ?m to approximately 11.5 ?m, or sub picosecond amplification.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 25, 2014
    Inventor: Robert Neil Campbell
  • Patent number: 8891563
    Abstract: A two-chip OPS laser includes first and second OPS-chips each emitting the same fundamental wavelength in first and second resonators. The first and second resonators are interferometrically combined on a common path terminated by a common end-mirror. The interferometric combination provides for automatic wavelength-locking of the laser, which can eliminate the need for a separate wavelength selective device in the laser.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: November 18, 2014
    Assignee: Coherent, Inc.
    Inventor: Qi-Ze Shu
  • Patent number: 8885684
    Abstract: A CO2 gas laser device according to the present invention amplifies CO2 laser light that oscillates repeatedly in short pulses having a pulse width of 100 ns or less, and cools a CO2 laser gas which is excited by continuous discharge by circulating the CO2 laser gas by means of forced convection. Therein, an angle ? defined by the optical axis of the amplified CO2 laser beam and the flow direction of the CO2 laser gas caused by the forced convection is determined by both a discharge cross sectional area and a discharge length of a volume in which the CO2 laser gas is excited by discharge, whereby increasing the gain of pulsed laser to achieve pulsed laser light having an extremely high average output power.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoichi Tanino, Junichi Nishimae, Tatsuya Yamamoto, Shuichi Fujikawa
  • Patent number: 8831060
    Abstract: The invention relates to a laser (1) for emitting laser light in the visible spectral range. A rare earth doped anisotropic crystal (2) comprising a 5d-4f transition is arranged within a laser resonator (7, 8), and a pumping light source (3) pumps the crystal (2) for generating laser light in the visible spectral range by using the 5d-4f transition. The 5d-4f transition of the rare earth doped anisotropic crystal comprises an absorption band extending over several nm. Thus, pump light having a wavelength within a relatively broad wavelength range can be used. This reduces the requirements with respect to the wavelength accuracy of the pumping light source and, thus, more pumping light sources of an amount of produced pumping light sources can be used for assembling the laser, thereby reducing the amount of rejects.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 9, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ulrich Weichmann, Matthias Alexander Wilhelm Fechner, Fabian Reichert, Herbert Walter Klaus Petermann, Gunter Huber
  • Patent number: 8817837
    Abstract: An exemplary laser system is disclosed which includes a pump laser diode array and laser gain material, in which the array generates optical radiation having a predetermined total linewidth approximately 20 nm wide constructed from a plurality of individual wavelengths with a linewidth of up to 8 nm, the center wavelength of radiation being for example within the absorption band of laser gain material used at the center point of the operating temperature of the array. The system can include a highly reflecting plane mirror with periodic transmitting patches placed between the laser diode array and the laser gain material, the size of the transmitting patches being such that minimal pump radiation is lost.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 26, 2014
    Assignee: Selex ES Ltd
    Inventors: John Barr, Andrew White, Stephen Moore
  • Patent number: 8804786
    Abstract: An optically pumped sulfur monoxide (SO) molecular laser is presented. A near infrared pump light source generates a pump light at wavelengths that match wavelengths of a Q-branch or R-branch absorption transition of a b 1?+ excited electronic state of the SO molecule. The pump light is directed to a vessel containing a laser gain medium including gaseous SO and a buffer gas. The gaseous gain medium may be flowed through the region of output light extraction to remove waste heat deposited in the medium. In some examples output light is generated from any of the R-branch, Q-branch, or P-branch emission transitions between the v=0 vibrationless b 1?+ electronic state and the v=1 vibrational x 3?? ground electronic state. In some other examples, output light is generated from P-branch emission transitions between the v=0 vibrationless b 1?+ electronic state and the v=0 vibrationless x 3?? ground electronic state.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: August 12, 2014
    Inventor: William F. Krupke
  • Patent number: 8804779
    Abstract: A system, apparatus, and method may provide laser beams of two or more wavelengths from diode pumped solid-state laser sources (220, 222, 224). The beam paths of these laser beams with different wavelengths, which are generated by the laser sources (220, 222, 224), may be aligned along a common optical axis 280 by an optical configuration, to treat at least one target area. Frequency-doubled laser beams, output from a plurality of diode pumped solid state laser cavities, may be passed through fold mirrors (M2, M5, M8), and combined on a common optical axis 280, using one or more combiner mirrors (M10, M11, M12), to unify the beam paths. Selected laser beams may be delivered to a target using one or more delivery systems.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: August 12, 2014
    Assignee: Lumenis Ltd.
    Inventors: David Haydn Mordaunt, Steven Scott Christensen, Allison Albrecht Ferro, David A. Dewey
  • Patent number: 8768108
    Abstract: A solid state light source comprising a light pump outputting light energy; a waveguide optically coupled to the light pump source for receiving the light energy; and a down-converter for converting the light energy from the waveguide to a lesser light energy.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Pei-Cheng Ku, Max Shtein
  • Patent number: 8761222
    Abstract: A light source, e.g., for optical excitation of a laser device, includes a diode laser having a large number of emitters and a light-guiding device, the light-guiding device including a large number of optical fibers. Each fiber has a first end and a lateral surface, the first ends being arranged relative to the emitters in such a manner that light generated by the emitters is coupled into the first ends of the optical fibers, the optical fibers being arranged in abutting relationship along their lateral surfaces at least in the region of their first ends. The optical fibers are connected in the region of their first ends to a fiber support.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Stoppel, Werner Herden, Hans-Jochen Schwarz, Andreas Letsch
  • Patent number: 8755415
    Abstract: An optical fiber laser or amplifier comprising an optical fiber and a pump radiation source configured to generate pump radiation which is received through an input end of the optical fiber. The optical fiber may include a doped core which is configured to guide the pump radiation and to generate or amplify and guide signal radiation when pump radiation passes through it. The optical fiber laser or amplifier may include a first reflector configured to reflect pump radiation and further comprises a second reflector configured to selectively reflect a portion of pump radiation. The selection of the portion of pump radiation to be reflected by the second reflector depends upon one or more of: the spatial position of the pump radiation, the direction of the pump radiation, and the polarization of the pump radiation.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Laser Quantum Inc.
    Inventor: Alan Cox
  • Patent number: 8743925
    Abstract: A laser system having an acoustic stimulator and amplifier section adjacent to the acoustic stimulator is disclosed. The stimulator is configured to apply acoustic energy to the amplifier section whereby luminescent output is produced in the amplifier section. This luminescent output may be concentrated to form a high intensity light output.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: June 3, 2014
    Assignee: The Boeing Company
    Inventor: Mark J. Clemen, Jr.
  • Patent number: 8731011
    Abstract: The invention relates to a precision optical frequency tunable laser. The laser includes: a laser gain medium, an intracavity collimating lens, an active optical phase modulator, a tunable acousto-optic filter and an intracavity total reflection mirror all arranged sequentially in a laser cavity, and the tunable laser further includes an active polarization rotator, a polarization beam splitter, two etalons, a temperature control system attached to the etalons, two total reflection mirrors, a radio frequency signal source, a laser pumping source, an active optical phase modulator drive source, an active polarization rotator drive source and a laser drive control circuit. Through the temperature control system attached to the etalons, stable laser output and the precision optical frequency tuning less than 1 GHz within a wide spectrum range can be realized, thereby greatly reducing the bandwidth requirements in achieving narrowband filtering for the tunable acousto-optic filter.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: May 20, 2014
    Assignee: GP Photonics Inc.
    Inventor: Peiliang Gao
  • Patent number: 8693513
    Abstract: An optical system includes an electrically pumped laser light source and an optically pumped laser light source. An optical switch is located in a light path of the electrically pumped laser light source such that when the optical switch is in a first position light from the electrically pumped laser light source is directed toward the optically pumped laser light source and when the optical switch is in a second position light from the electrically pumped laser light source is directed away from the optically pumped laser light source.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: April 8, 2014
    Assignee: Photodigm, Inc.
    Inventors: Martin Achtenhagen, John Edward Spencer
  • Publication number: 20140072008
    Abstract: A resonant cavity, including a gain medium and a color center formed in the gain medium, is to be used for lasing in a system. The color center includes a lower laser level based on a plurality of spin states that are affected by a magnetic field. A gain associated with the system depends on the plurality of spin states. The system is to produce light based on lasing by the resonant cavity in response to application of pump energy to pump the color center. An intensity of the produced light is affected by the magnetic field in the presence of microwaves.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Inventors: Andrei Faraon, Charles M. Santori, Raymond G. Beausoleil
  • Publication number: 20140064319
    Abstract: Nanolaser for generating coherent electromagnetic radiation, comprising at least one nanoparticle of metal, preferably silver, or semiconductor, at least one exciting element, preferably a quantum dot, for exciting plasmon resonance of the at least one nanoparticle, wherein the at least one nanoparticle and the at least one exciting element are embedded in a matrix of Photonic or Polaritonic Band-gap (PGB)-material, preferably Silica Carbide (SiC).
    Type: Application
    Filed: December 19, 2012
    Publication date: March 6, 2014
    Inventor: Talal GHANNAM
  • Patent number: 8665915
    Abstract: A laser apparatus uses a dysprosium doped chalcogenide glass fiber. The glass fiber has a laser pump operatively connected to it. The chalcogenide glass fiber is located in a laser cavity including one or more reflective elements such as a Bragg grating, a Bragg minor, a grating, and a non-doped fiber end face. The apparatus provides laser light output at a wavelength of about 4.3 ?m to about 5.0 ?m at a useful power level using laser light input at a wavelength of from about 1.7 ?m to about 1.8 ?m. Also disclosed is a method for providing laser light output at a wavelength of about 4.3 ?m to about 5.0 ?m using the apparatus of the invention.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 4, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Shyam S. Bayya, Ishwar D. Aggarwal
  • Patent number: 8649403
    Abstract: When an output instruction is input to a control unit, the control unit controls a seed laser light source and a pumping light source to be either in a pre-pumped state or in an output state. In the pre-pumped state, the pumping light source outputs, for a predetermined period, pumping light with an intensity determined based on the duration of the period of time from when the output state prior to the input of the output instruction to the control unit comes to an end till when the output instruction is input to the control unit. In the output state, to cause the output unit to output laser light, the seed laser light source outputs laser light, and the pumping light source outputs pumping light.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Fujikura Ltd.
    Inventors: Yasuhiro Oba, Michihiro Nakai
  • Patent number: 8649412
    Abstract: The closed cycle solid state optically pumped gas hybrid (chemical recovery) system utilizes a laser diode excited solid state, fiber or bulk, laser as a pump for a molecular gas, or gas mix, medium. The existence of efficient high power laser diode excited solid state fiber or bulk lasers, output spectrally matched to suitable principle and excited level 1st and 2nd overtones of relevant gases, is the enabling system technology. The utilization of such in combination with suitable gases introduces a range of viable, in principle sourcing on laser diodes and thus effectively laser diode pumped, gas laser systems with access to the approximately 3.5 ?m to approximately 5.2 ?m and approximately 9 ?m to approximately 11 ?m spectral regions. Continuous wave or pulsed operation, with significant energy capability courtesy of solid state storage, is admitted.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 11, 2014
    Inventor: Robert Neil Campbell
  • Patent number: 8634441
    Abstract: A master oscillator may include: a pumping laser that outputs pumping light; a seed laser that is oscillated by the pumping light; an amplifier that amplifies the pulsed laser light outputted by the seed laser using the pumping light; at least one optical shutter disposed in the optical path between the seed laser and the amplifier; and a controller that causes the pumping laser to oscillate continuously at a predetermined repetition rate and that controls the optical shutter to open and close.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 21, 2014
    Assignee: Gigaphoton Inc.
    Inventors: Takashi Onose, Shinji Ito
  • Publication number: 20130322475
    Abstract: A spherical laser includes a transparent or semi-transparent outer spherical vessel having an internal cavity, an amplifying medium in the cavity, and means to excite the amplifying medium. The sphere is provided with a partially reflective coating to act as a spherical optical resonator. The spherical resonator includes a plurality of optically different regions containing alternative optical media from the cavity medium differing in bulk optical parameters utilized for mode tailoring. The optically different regions work collectively to exclude the whispering gallery modes from those supported by the spherical cavity. Excitation of the amplifying medium produces an optical gain. When the gain exceeds cavity losses and threshold conditions are met, lasing is supported. This creates a three-dimensional, spherically radiating emission, emulating a point source. The sphere is enclosed within a mirrored ellipse to image the output to a point, or within a mirrored parabola to columinate the emission.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Inventor: Ronald LaComb