Determination Of Communication Parameter Patents (Class 398/25)
  • Patent number: 11936424
    Abstract: The techniques described within this disclosure are directed to an in-line adaptor or coupling device of a PON that detects incoming optical signals (e.g., of different services) being delivered over the PON on different bands of wavelengths supported by an incoming optical fiber of the PON, converts (if necessary) any optical signals to suitable wavelength signals, and transmits the converted optical signals to a last mile termination unit via suitable output interfaces. At least a portion of the incoming optical signals are not converted by the in-line adaptor, and instead are passed-through the in-line adaptor to the last mile termination unit via an optical output interface. The in-line adaptor further includes one or more wireless interfaces via which information pertaining to the received optical signals and/or other information related to the in-line adaptor is transmitted to one or more recipient devices.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: March 19, 2024
    Assignee: FRONTIER COMMUNICATIONS HOLDINGS, LLC
    Inventor: John Valdez
  • Patent number: 11929784
    Abstract: A wavelength dispersion compensating apparatus, including: a signal light generating unit which generates, from predetermined signal light, signal light having a phase correlation centered on a degenerate frequency of a phase sensitive amplifier; a dispersion compensation transmission path which compensates for a wavelength dispersion of the predetermined signal light included in the signal light; a filter which compensates for a residual wavelength dispersion after compensation by the dispersion compensation transmission path of the predetermined signal light included in the signal light; a phase sensitive amplifier which amplifies the signal light input via the dispersion compensation transmission path and the filter; a residual wavelength dispersion calculating unit which calculates a residual wavelength dispersion amount based on a measurement result of output light amplified by the phase sensitive amplifier; and a filter control unit which controls the filter so as to add a wavelength dispersion that can
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: March 12, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shimpei Shimizu, Takushi Kazama, Takayuki Kobayashi, Yutaka Miyamoto
  • Patent number: 11923896
    Abstract: A test and measurement device has a connection to allow the test and measurement device to connect to an optical transceiver, one or more processors, configured to execute code that causes the one or more processors to: initially set operating parameters for the optical transceiver to average parameters, acquire a waveform from the optical transceiver, measure the acquired waveform and determine if operation of the transceiver passes or fails, send the waveform and the operating parameters to a machine learning system to obtain estimated parameters if the transceiver fails, adjust the operating parameters based upon the estimated parameters, and repeat the acquiring, measuring, sending, and adjusting as needed until the transceiver passes.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: March 5, 2024
    Assignee: Tektronix, Inc.
    Inventors: Evan Douglas Smith, John J. Pickerd, Williams Fabricio Flores Yepez, Heike Tritschler
  • Patent number: 11876882
    Abstract: A method and a system for optoelectronic matching are disclosed. The method comprises the steps of: S1, enabling an electrical port of a first optoelectronic device to auto-negotiate with a first electrical port to obtain the highest supported speed of the first electrical port, and enabling an electrical port of a second optoelectronic device to auto-negotiate with a second electrical port to obtain the highest supported speed of the second electrical port; S2, encapsulating, by an optical port of an optoelectronic device, a current speed and the negotiated highest supported speed of an opposite end in a transmission protocol, and sending the same to an optical port of another optoelectronic device; S3, obtaining a target speed based on the highest supported speed of the first electrical port and the highest supported speed of the second electrical port; S4, determining whether the current speed is equal to the target speed, respectively.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: January 16, 2024
    Assignee: Motorcomm Electronic Technology Co., Ltd.
    Inventor: Yanyan Zhang
  • Patent number: 11870553
    Abstract: A fiber-optic communication apparatus includes an optical monitor that monitors a WDM signal in which optical signals of multiple channels are multiplexed, a processor that calculates a control value for controlling an optical power of the WDM signal, based on a power spectrum detected by the optical monitor, in a unit interval of frequency narrower than a channel bandwidth of the WDM signal, and an optical power adjusting mechanism that adjusts the optical power of the WDM signal in the unit interval of frequency based on the control value.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: January 9, 2024
    Assignee: FUJITSU LIMITED
    Inventors: Makoto Hasegawa, Atsushi Kodama, Norifumi Shukunami, Tomoaki Takeyama
  • Patent number: 11860376
    Abstract: Provided is a polarization decomposition device. The polarization decomposition device includes a polarization beam splitter configured to split an optical signal into a first polarized light having a first polarization direction and a second polarized light having a second polarization direction different from the first polarized light, a phase shifter configured to delay a phase of the first polarized light, a polarization rotator configured to rotate the second polarized light so that the polarization direction of the second polarized light is changed, and an interference beam splitter configured to allow the first polarized light in which the phase is delayed and the second polarized light in which the polarization direction is rotated to interfere with each other and split them into a third polarized light and a fourth polarized light.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: January 2, 2024
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Kap-Joong Kim, Chun Ju Youn, Heasin Ko, Byung-Seok Choi, Joong-Seon Choe
  • Patent number: 11855704
    Abstract: A communication network includes a coherent optics transmitter, a coherent optics receiver, an optical transport medium operably coupling the coherent optics transmitter to the coherent optics receiver, and a coherent optics interface. The coherent optics interface includes a lineside interface portion, a clientside interface portion, and a control interface portion.
    Type: Grant
    Filed: May 30, 2022
    Date of Patent: December 26, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Luis Alberto Campos, Zhensheng Jia, Matthew D. Schmitt
  • Patent number: 11791894
    Abstract: This application provides an example wireless center device and an example wireless device for delay measurement, and an example wireless communication system. The example wireless center device includes a delay measurement circuit, configured to obtain a first clock signal of the wireless center device, and a modem configured to send a first optical wave and a second optical wave to the wireless device through a fiber link, where the first optical wave carries the first clock signal, receive the second optical wave that is sent by the wireless device and that carries a second clock signal, receive a second sub optical wave reflected by the wireless device to obtain the second clock signal carried by the second optical wave and a first clock signal carried by the second sub optical wave, and send the second clock signal and the first clock signal to the delay measurement circuit.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: October 17, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Zhaoyu Hu
  • Patent number: 11762069
    Abstract: A method is provided that transmits a beam of co-propagating, cross-polarized light to a target. The method receives return light reflected from the target, which includes a first polarization and a second polarization. The method splits the return light into a first output corresponding to the first polarization and a second output corresponding to the second polarization using a first beam splitter. The method directs the first output to a first detector and directs the second output to a second detector. The method generates, by the first detector, a first electrical signal corresponding to the first polarization, and generates, by the second detector, a second electrical signal corresponding to the second polarization. The method determines an orientation of the target based on the first electrical signal and the second electrical signal, and generates a point cloud based on the orientation of the target.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: September 19, 2023
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11750358
    Abstract: An optical transmission device of each node simultaneously sends a plurality of signals having different wavelengths as delay measurement signals to a transmission path. The optical transmission device determines a delay value that reflects a propagation delay calculated based on an arrival time difference between a plurality of wavelengths in a signal received from another node, and determines a waiting time amount based on the delay value and the propagation delay. The optical transmission device notifies the other node of the delay value. Each optical transmission device outputs the received signal from the other node with a delay of the waiting time amount. The optical transmission device generates an optical intermittent signal obtained by selecting and multiplexing any of time information, the delay measurement signal, and communication information. A reception side extracts a desired multiplexed signal from the received optical intermittent signals.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: September 5, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masahiro Nakagawa, Kaoru Arai, Hiroki Sakuma, Shunichi Tsuboi
  • Patent number: 11750955
    Abstract: The present invention provides a novel computer-implemented routing method for a dynamic wavelength-division multiplexing (WDM) optical network having wavelength continuity constraints. The method is more efficient than the existing methods, in terms of number of wavelengths, and due to the fixed routing strategy used, its implementation is simple, and its online operation is very fast.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: September 5, 2023
    Assignee: UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA
    Inventors: Reinaldo Antonio Vallejos Campos, Nicolás Jara Carvallo
  • Patent number: 11751159
    Abstract: In an embodiment, a user equipment (UE) receives, from a fixed reference node, at least one round-trip propagation time (RTT) ranging scheduling message indicating a set of downlink (DL) ranging resource assignments and a set of uplink (UL) ranging resource grants, receives one or more DL ranging signals from the fixed reference node on a first set of resources identified by the set of DL ranging resource assignments, and transmits one or more UL ranging signals to the fixed reference node on a second set of resources identified by the set of UL ranging resource grants.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: September 5, 2023
    Assignee: QUALCOMM INCORPORATED
    Inventors: Libin Jiang, Jubin Jose, Junyi Li, Urs Niesen
  • Patent number: 11736192
    Abstract: A cell site includes a tower, a multi-service terminal mounted to the tower and a base transceiver station in communication with the multi-service terminal. The multi-service terminal includes a housing and a plurality of adapters mounted to the housing. Each of the adapters includes an outer port accessible from outside the housing and an inner port accessible from inside the housing.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: August 22, 2023
    Assignee: CommScope Technologies LLC
    Inventors: M'hamed Anis Khemakhem, Scott C. Kowalczyk, Nicholas Torman, Dominic J. Louwagie
  • Patent number: 11716138
    Abstract: The disclosed systems and methods for monitoring, by a coherent optical monitor (OPM), generalized optical signal-to-noise ratio (gOSNR) of an optical channel, the method comprising: i) receiving, by an input port of the coherent OPM, a first signal and a second signal, wherein: the first signal and the second signal include same data, the first signal is an optical signal received from the optical channel, and the first signal is affected by a noise; ii) processing, by a digital signal processor (DSP) of the coherent OPM, the first signal and the second signal and extract the data from the first signal and the second signal; iii) computing, by the DSP, a first correlation between the data from the first signal and the data from the second digital signal; and iv) computing, by the DSP, a first gOSNR based on the first correlation.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: August 1, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zhiping Jiang, Choloong Hahn
  • Patent number: 11689286
    Abstract: A skew compensation system for a coherent optical communication network includes a transmitter and a receiver in operable communication with an optical transport medium of a coherent optical network. The transmitter includes a first transmitter-side tunable delay line configured to delay transmission of a first signal by a first skew amount, thereby producing a pre-compensated first signal. The receiver includes a first receiver-side tunable delay line configured to delay transmission of the pre-compensated first signal to a digital signal processor (DSP) of the receiver by a second skew amount, thereby producing a final signal that is both pre-compensated and post-compensated (i.e., fully compensated).
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: June 27, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11656268
    Abstract: Various technologies described herein pertain to a testing apparatus that enables an analog frequency response of a device under test to be analyzed. The testing apparatus includes a laser source and an optical resonator. The laser source is optically injection locked to the optical resonator. The testing apparatus also includes a modulator configured to apply a time-varying voltage to the optical resonator. The time-varying voltage causes the laser source optically injection locked to the optical resonator to generate a frequency modulated optical signal that can include time-varying chirps. The testing apparatus further includes an interferometer (e.g., variable delay, fixed length) configured to receive the frequency modulated optical signal from the laser source optically injection locked to the optical resonator. The interferometer outputs an optical test signal having a range of frequencies. The frequencies in the optical test signal are based at least in part on the time-varying chirps.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: May 23, 2023
    Assignee: GM CRUISE HOLDINGS LLC
    Inventors: Vladimir Ilchenko, Ayan Chakrabarty, Scott Singer, Richard Kalantar Ohanian
  • Patent number: 11646791
    Abstract: A passive optical network system includes an optical line terminator (OLT) configured to detect signal strength and a phase of a burst-mode uplink signal from each of optical network units (ONUs) to control the ONUs so as to equalize signal strengths of signals received from the ONUs and configured to control the ONUs so as to adjust a phase of each of the signals received from the ONUs, and the ONUs are each configured to control signal strength and phase of an burst-mode uplink signal and transmit a resultant burst-mode uplink signal under control of the OLT.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: May 9, 2023
    Assignee: DZS Inc.
    Inventors: Seung Dong Lee, Jae Goo Kim
  • Patent number: 11641251
    Abstract: A decoder for determining an estimate of a vector of information symbols carried by optical signals propagating along a multi-core fiber in an optical fiber transmission channel according to two or more cores is provided. The decoder is implemented in an optical receiver. The optical signals are encoded using a space-time coding scheme and/or scrambled by at least one scrambling device arranged in the optical fiber transmission channel according to a predefined scrambling function. The decoder comprises a processing unit configured to adaptively: determine, in response to a temporal condition, one or more channel quality indicators from the optical signals; determine a decoding algorithm according to a target quality of service metric and on the one or more channel quality indicators; update the predefined scrambling function and/or the space-time coding scheme depending on the target quality of service metric and on the one or more channel quality indicators.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: May 2, 2023
    Assignee: INSTITUT MINES-TELECOM
    Inventors: Ghaya Rekaya, Akram Abouseif, Yves Jaouen
  • Patent number: 11632176
    Abstract: Techniques for negotiating optical configuration parameters of transceivers are disclosed. In one example, a method may include outputting, by a first optical node to a second optical node, a negotiation request message that specifies a configuration parameter setting for optical transceivers, the setting comprising one of a speed, a forward error correction (FEC) scheme, a modulation type, a transmission power, a minimum central frequency, a maximum central frequency, a minimum input power, a maximum input power, or a signal-to-noise ratio threshold; receiving, by the first optical node from the second optical node, in response to the negotiation request message, a negotiation response message including an indication of support for the configuration parameter setting; and configuring, by the first optical node, in response to the indication of support, a configuration parameter of an optical transceiver for the first optical node with the configuration parameter setting for the configuration parameter.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: April 18, 2023
    Assignee: Juniper Networks, Inc.
    Inventors: Venu J B, Prasanth Kemparaj, Shankarrao Janakiram
  • Patent number: 11626930
    Abstract: A polarization recovery apparatus, a method thereof and an optical receiver. The method includes: performing adaptive equalization processing and polarization recovery on a received signal, wherein a polarization state of the received signal, after the adaptive equalization processing and polarization recovery being performed, is aligned with a principal axis of polarization of an optical receiver.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 11, 2023
    Assignee: FUJITSU LIMITED
    Inventors: Jingnan Li, Yangyang Fan, Zhenning Tao
  • Patent number: 11589034
    Abstract: Some embodiments of a method may include defining a triggering area, the triggering area having a border with the border being arranged, at least partially, within a positioning zone for observing a multi view content displayed on a display based on a position of a viewer; and when the viewer position is located within the triggering area, triggering one or more incentive effects. Some embodiments of an apparatus may include a processor; and a memory-storing device storing instructions operative, when executed by the processor, to cause the apparatus to: define a triggering area, the triggering area having a border with the border being arranged, at least partially, within a positioning zone, for observing a multi view content displayed on a display based on a position of a viewer; and when the viewer position is located within the triggering area, trigger one or more incentive effects.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 21, 2023
    Assignee: Interdigital Madison Patent Holdings, SAS
    Inventors: Tristan Langlois, Paul Kerbiriou, Valerie Allie
  • Patent number: 11588568
    Abstract: A packet processing method includes receiving a first packet by a first receiving interface of a media conversion module of a first network device, where the first packet includes a first alignment marker (AM), sending a second packet by a first sending interface of the media conversion module, where the second packet includes the first AM, and where the second packet is the first packet processed by the media conversion module, and calculating a time interval T1 between a time at which the media conversion module receives the first packet and a time at which the media conversion module sends the second packet, where the T1 is used to compensate for a first timestamp at which the first network device receives or sends the third packet.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: February 21, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jinhui Wang, Liqing Chen, Hongwei Niu, Yunlei Qi
  • Patent number: 11539639
    Abstract: Apparatus and associated methods relate to selection of an operating baud rate for a building automation system that communicates over a Master-Slave Token-Passing (MS/TP) BACnet. A server (or router or gateway) connected to the MS/TP BACnet is programmed to iteratively select operating baud rates from a series of available operating baud rates. Each iteration, the server broadcasts a frame indicating baud rate selection to a plurality of building automation devices connected to a MS/TP BACnet. Each of the plurality of building automation devices connected to the MS/TP BACnet then iteratively sets its baud rate so as to match the baud rate selected by the server. The server monitors communications conducted over the MS/TP BACnet so as to determine reliability or unreliability of the communications conducted over the MS/TP BACnet using the baud rates iteratively selected. A highest reliable baud rate is then used by the building automation system.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 27, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Rohan Ajinkya Mehta, Mani Teja Vaddi
  • Patent number: 11539432
    Abstract: A skew compensation system for a coherent optical communication network includes a transmitter modulator having a first driver input for receiving a first signal from a first channel, a second driver input for receiving a second signal from a second channel, a source input for receiving a continuous wave source signal, and a modulation output in communication with an optical transport medium of the network. The system further includes a tunable delay line disposed between the second channel and the second driver input for inserting a pre-determined training sequence onto the second signal prior to the second driver input, and a processor for determining a skew amount between the second signal at the second driver input and the first signal at the first driver input, calculating a pre-compensation value corresponding to the skew amount, and reducing the skew amount at the modulation output according to the pre-compensation value.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Luis Alberto Campos, Haipeng Zhang, Junwen Zhang, Zhensheng Jia
  • Patent number: 11425474
    Abstract: Provided are a ranging method and a communication method for an optical network, an Optical Line Terminal (OLT), an Optical Network Unit (ONU), and an optical network system. The OLT sends a broadcast message to the ONU, the broadcast message being used to indicate an uplink bandwidth allocated to the ONU. The OLT opens a quiet window for the ONU in a predetermined region. The OLT receives an uplink signal sent by the ONU at the quiet window.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 23, 2022
    Assignee: ZTE CORPORATION
    Inventors: Dan Geng, Mingsheng Li, Jinsong Bei, Liquan Yuan, Yong Guo
  • Patent number: 11418945
    Abstract: An information processing method for a RF device and a mobile terminal are provided. The method applied to a first RF device includes: transmitting RFFE data to a second RF device; transmitting an RFFE trigger instruction to the second RF device when transmission of the RFFE data is completed, to enable the second RF device to execute command information included in the REFE data and written to a register according to the RFFE trigger instruction.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: August 16, 2022
    Assignee: VIVO MOBILE COMMUNICATION CO., LTD.
    Inventor: Dingqiu Liu
  • Patent number: 11388493
    Abstract: A data communication network includes a plurality of network nodes coupled together via optical links and a network controller. Each network node includes a reflectometry analyzer that provides a characterization of physical properties of the optical links coupled to the associated network node. The characterization for each particular optical link provides a unique fingerprint of the physical properties of the particular optical link.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: July 12, 2022
    Assignee: Dell Products L.P.
    Inventors: Rowland Shaw, Qing Ye, Said Tabet
  • Patent number: 11385483
    Abstract: An optical Mach-Zehnder superstructure modulator and method that can simultaneously linearize in-phase and quadrature components of optically modulated optical signals and reduce the modulated optical insertion loss (MOIL) by in-phase addition of the in-phase and quadrature components of an amplitude and/or phase modulated optical signal using two high-speed phase modulators embedded in the optical Mach-Zehnder superstructure modulator.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: July 12, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventors: Suhas P. Bhandare, Daniel Mahgerefteh
  • Patent number: 11368390
    Abstract: A first network device is configured with a rule preventing network traffic from travelling from the first network device to one or more other network devices. The first network device is configured to receive and distribute network traffic to the one or more other network devices. A second network device receives and distributes network traffic to the one or more other network devices. The first network device determines that the second network device has failed. In response to determining that the second network device has failed, the first network device removes the rule so that the first network device receives and distributes network traffic to the one or more other network devices.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: June 21, 2022
    Assignee: Arista Networks, Inc.
    Inventors: Bharathram Pattabhiraman, Swati Patel
  • Patent number: 11368214
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: June 21, 2022
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Joseph F. Ahadian, Vahid Nazer, Sandra Skendzic, Charles B. Kuznia, Richard J. Weiss
  • Patent number: 11349573
    Abstract: A communication network includes a coherent optics transmitter, a coherent optics receiver, an optical transport medium operably coupling the coherent optics transmitter to the coherent optics receiver, and a coherent optics interface. The coherent optics interface includes a lineside interface portion, a clientside interface portion, and a control interface portion.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: May 31, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Luis Alberto Campos, Zhensheng Jia, Matthew D. Schmitt
  • Patent number: 11349575
    Abstract: Two photons in an entangled state of polarization is created by parametric down conversion of a pump light. A first photon of the two photons is sent to a sender while a second photon of the two photons is sent to a receiver. The second photon is divided into a first component and a second component. The receiver makes the first component interact with an isotropic nonlinear optical medium. The sender selects the angle of a polarizer according to a signal that he wants to transmit to the receiver and measures the first photon after it passes the polarizer. The receiver mixes the first component and the second component by a half beam splitter. The receiver knows the signal by measuring the probability of photon detection of two output lights from the half beam splitter.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: May 31, 2022
    Inventor: Narumi Ohkawa
  • Patent number: 11349564
    Abstract: A crosstalk estimation system includes: a light source unit that generates a polarization-multiplexed light, which is a polarized light having multiplexed polarizations, of each wavelength in a sideband of a modulated signal and emits the polarization-multiplexed light of each wavelength; a multiplexer that multiplexes the modulated signal with the polarization-multiplexed light for each core, which is associated with one of the wavelengths; a transmission line that transmits the modulated signal multiplexed with the polarization-multiplexed light of each wavelength through a different core; a separation unit that separates the polarization-multiplexed light from the modulated signal multiplexed with the polarization-multiplexed light for each core; a measurement unit that generates light intensity data on the polarization-multiplexed light of each wavelength; and an estimation unit that estimates a crosstalk between the cores based on a difference in light intensity between the polarization-multiplexed light
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: May 31, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akira Isoda, Takayuki Mizuno, Koki Shibahara, Takayuki Kobayashi, Yutaka Miyamoto
  • Patent number: 11342990
    Abstract: A state estimating device includes a pre-processing unit and an estimating unit. The pre-processing unit acquires data representing at one or more of a phase of a signal transmitted from a transmission unit of a transmission device and received at a reception unit of another transmission device via a transmission path, a reception strength, a reception quality, a voltage after conversion into an electric signal, and a signal processing parameter used in reception processing, and processes the acquired data into feature data to be used for state estimation. The estimating unit estimates a state of the transmission path, an abnormal state of the transmission unit, or an abnormal state of the reception unit, on the basis of the feature data.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 24, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Seiki Kuwabara, Wataru Kawakami, Hideki Nishizawa, Seiji Okamoto, Akira Hirano, Shokei Kobayashi, Tetsuro Inui, Takuya Oda, Fumikazu Inuzuka, Takafumi Tanaka
  • Patent number: 11277206
    Abstract: A transmitter maps an N-bit sequence to a point selected from a four-dimensional (4D) constellation consisting of 2N points which form a subset of a Cartesian product of first and second two-dimensional (2D) constellations, the first constellation consisting of M1 points divided into first, second, and third points, and the second constellation consisting of M2 points divided into fourth, fifth, and sixth points, wherein M1, M2?5, and wherein log2(M1×M2)>N. The subset includes any 4D point that is generated by combining any one of the M1 points and any one of the fourth points; includes any 4D point that is generated by combining any one of the first points and any one of M2 points; and excludes any 4D point that is generated by combining any third point and any sixth point. An optical signal representing the selected point is transmitted to a receiver.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 15, 2022
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Michael Andrew Reimer, James St. Leger Harley
  • Patent number: 11277207
    Abstract: Methods and apparatuses for IQ time skew calibration in a coherent transceiver are described. A four-channel signal is received. A set of inputs is constructed for a 4×8 MIMO equalizer by converting the four-channel signal into four complex inputs that each have a phase shift corresponding to an estimated carrier frequency offset. The set of inputs further includes conjugate replicas of the four complex inputs. Using output from the 4×8 MIMO equalizer, equalizer coefficients are calculated by minimizing error between the MIMO output and a reference signal. Receiver and transmitter IQ skew are estimated using the equalizer coefficients, by converting the equalizer coefficients form the time domain to the frequency domain to determine receiver and transmitter IQ differential phase responses, which are indicative of respective receiver and transmitter IQ skew in the time domain. Skew compensation is then performed.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 15, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Wing Chau Ng, Xuefeng Tang, Zhuhong Zhang
  • Patent number: 11245483
    Abstract: A packet processing method includes receiving a first packet by a first receiving interface of a media conversion module of a first network device, where the first packet includes a first alignment marker (AM), sending a second packet by a first sending interface of the media conversion module, where the second packet includes the first AM, and the second packet is the first packet processed by the media conversion module, and calculating a time interval T1 between a time at which the media conversion module receives the first packet and a time at which the media conversion module sends the second packet, where the T1 is used to compensate for a first timestamp at which the first network device receives or sends the third packet.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: February 8, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jinhui Wang, Liqing Chen, Hongwei Niu, Yunlei Qi
  • Patent number: 11233568
    Abstract: A receiver is configured to detect, at a communication interface, a received signal that suffers from degradations incurred over a communication channel. The receiver applies an adaptive filter to a series of received blocks of a digital representation of the received signal, thereby generating respective filtered blocks.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: January 25, 2022
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Ramin Babaee, Martin Bouchard, Kim B. Roberts
  • Patent number: 11233574
    Abstract: Real-time systems and methods prevent duplication of independent signal streams in a coherent receiver subject to source separation controlled by multiplicative coefficients under adaptive feedback control. In various embodiments, this is achieved by first obtaining a first set of coefficients associated with a first signal stream and a second set of coefficients associated with a second signal stream. In response to the sets of coefficients satisfying a condition, the first set modified into a set of coefficients that is mutually orthogonal with respect to and replaces the second set of coefficients. The resulting series of coefficient values may then be used to perform source separation of independent signal streams without duplicating independent signal streams.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: January 25, 2022
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Charles Razzell, Edem Ibragimov
  • Patent number: 11223421
    Abstract: A skew compensation system for a coherent optical communication network includes a transmitter and a receiver in operable communication with an optical transport medium of a coherent optical network. The transmitter includes a first transmitter-side tunable delay line configured to delay transmission of a first signal by a first skew amount, thereby producing a pre-compensated first signal. The receiver includes a first receiver-side tunable delay line configured to delay transmission of the pre-compensated first signal to a digital signal processor (DSP) of the receiver by a second skew amount, thereby producing a final signal that is both pre-compensated and post-compensated (i.e., fully compensated).
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: January 11, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11201671
    Abstract: A communication system includes: a plurality of cameras that generate image data by capturing images; a server that stores the image data generated by each of the plurality of cameras; and a plurality of transmission devices in one-to-one correspondence with the plurality of cameras. Each of the plurality of transmission devices transmits light including, as a visible light communication signal, information related to communication for accessing a storage location at which the image data generated by a corresponding one of the plurality of cameras is stored in the server.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 14, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Nobuhiko Hashida
  • Patent number: 11190306
    Abstract: A system for determining a channel margin of a data transmission channel (DTC) using error correction under real-world channel conditions is described. The system includes a monitoring unit, an operating state determining unit and a data processing unit. The monitoring unit monitors data transmission along the DTC and estimates a statistical distribution of errors (H) in the transmission of data. The operating state determining unit determines a current value of an operating state parameter for the DTC. The data processing unit determines a reference channel margin associated with said current value of the operating state parameter for a reference channel and the error correction scheme employed, provides a statistical distribution of errors (HR) associated with said reference channel for said current value of said operating state parameter, compute a deviation of H and HR, and computes a reduction of the reference channel margin.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 30, 2021
    Assignee: XIEON NETWORKS S.a.r.l.
    Inventor: Stefano Calabró
  • Patent number: 11146339
    Abstract: A method of operating a quantum information processing system. The quantum information processing system includes an array of connected qubits. The method of operating the quantum information processing system uses a linear network coding solution to performing an operation between the quantum states of two or more qubits of the array.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: October 12, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Jonathan Robert Niel de Beaudrap, Steven Herbert
  • Patent number: 11128553
    Abstract: Technologies for switching network traffic include a network switch. The network switch includes one or more processors and communication circuitry coupled to the one or more processors. The communication circuitry is capable of switching network traffic of multiple link layer protocols. Additionally, the network switch includes one or more memory devices storing instructions that, when executed, cause the network switch to receive, with the communication circuitry through an optical connection, network traffic to be forwarded, and determine a link layer protocol of the received network traffic. The instructions additionally cause the network switch to forward the network traffic as a function of the determined link layer protocol. Other embodiments are also described and claimed.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: September 21, 2021
    Assignee: Intel Corporation
    Inventors: Matthew Adiletta, Aaron Gorius, Myles Wilde, Michael Crocker
  • Patent number: 11109123
    Abstract: It is difficult to improve the usage efficiency of an optical communication network due to the passband narrowing effect in a wavelength selection process in an optical communication network using a wavelength division multiplexing system; therefore, an optical network management apparatus according to an exemplary aspect of the present invention includes wavelength selection information generating means for generating wavelength selection information on a wavelength selection process through which an optical path accommodating an information signal goes, with respect to each optical path; and wavelength selection information notifying means for notifying an optical node device through which the optical path goes of the wavelength selection information.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: August 31, 2021
    Assignee: NEC CORPORATION
    Inventors: Hitoshi Takeshita, Shinsuke Fujisawa, Tomoyuki Hino, Akio Tajima
  • Patent number: 11095366
    Abstract: The present disclosure discloses a visible light communication apparatus, a lock device, and a visible light communication method. The visible light communication method includes: transmitting, by at least two transmitting devices, visible light carrying respective corresponding information; and sending, by a receiving device, an instruction for correct matching upon determining, according to received superposed visible light, that the superposed visible light meets a preset condition; where the corresponding information includes at least one of a frequency, luminance, and a color of the visible light transmitted by the transmitting devices and a relative position of the transmitting devices to the receiving device. The method can improve security of visible light communication.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: August 17, 2021
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Wei Cao
  • Patent number: 11088766
    Abstract: Methods and apparatuses for IQ time skew calibration in a coherent transceiver are described. A four-channel signal is received. A set of inputs is constructed for a 4×8 MIMO equalizer by converting the four-channel signal into four complex inputs that each have a phase shift corresponding to an estimated carrier frequency offset. The set of inputs further includes conjugate replicas of the four complex inputs. Using output from the 4×8 MIMO equalizer, equalizer coefficients are calculated by minimizing error between the MIMO output and a reference signal. Receiver and transmitter IQ skew are estimated using the equalizer coefficients, by converting the equalizer coefficients form the time domain to the frequency domain to determine receiver and transmitter IQ differential phase responses, which are indicative of respective receiver and transmitter IQ skew in the time domain. Skew compensation is then performed.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 10, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Wing Chau Ng, Xuefeng Tang, Zhuhong Zhang
  • Patent number: 11038722
    Abstract: One example includes an equalizer system. The system includes a filter system configured to receive digital sample blocks associated with an input signal and to provide equalized digital sample blocks associated with the respective digital sample blocks based on adaptive tap weights. Each of the digital sample blocks includes samples and each of the equalized digital sample blocks includes equalized samples. The system also includes a sample set selector to select a subset of equalized samples from each of the equalized digital sample blocks at the output of the filter and an error estimator configured to implement an error estimation algorithm on the subset of the equalized samples to determine a residual error associated with the equalized samples. The system further includes a tap weight generator configured to generate the adaptive tap weights in response to the residual error and to provide the adaptive tap weights to the filter.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: June 15, 2021
    Assignee: ViaSat, Inc.
    Inventors: Sameep Dave, Fan Mo, Yuri Zelensky, Murat Arabaci
  • Patent number: 10972178
    Abstract: A parameter analysis method executable by a computer, the method includes training a model configured to output an index value relating to a characteristic of an optical signal, and changing the characteristic of the optical signal usable for training the model.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: April 6, 2021
    Assignee: FUJITSU LIMITED
    Inventor: Takahito Tanimura
  • Patent number: 10965380
    Abstract: Various example embodiments relate to an apparatus and method for nonlinear equalization based on an absolute operation, and may be configured to generate coefficients and compensate for nonlinear distortions by using an absolute operation for an input signal based the coefficients.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: March 30, 2021
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hoon Kim, Yukui Yu