Actinide Base; Singly Or In Combination Patents (Class 420/2)
  • Patent number: 10580543
    Abstract: A neutron sealed source holds cermet wire sources, such as Californium-252/Palladium wires, in separate blind apertures within a stainless steel block. The stainless steel block is part of an inner encapsulation and includes blind apertures arranged in rotational symmetry for receiving the cermet wire sources. The cermet wire sources are separated from each other and the fission and decay heat is rejected through the stainless steel block.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: March 3, 2020
    Assignee: QSA GLOBAL, INC.
    Inventor: Mark Vose
  • Patent number: 9121807
    Abstract: A method and device for the real-time, in-situ monitoring of Plutonium content in U—Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U—Pu alloy within said interior of said crucible. The U—Pu alloy comprises metallic uranium and plutonium. The U—Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U—Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U—Pu alloy is cooled, the temperature of the U—Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U—Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U—Pu alloy is then determined from the determined solidification temperature signature.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: September 1, 2015
    Assignee: U.S. Department of Energy
    Inventors: Shelly Xiaowei Li, Brian Robert Westphal, Steven Douglas Herrmann
  • Publication number: 20150125338
    Abstract: Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: March 12, 2012
    Publication date: May 7, 2015
    Inventors: Heather Murdoch, Christopher A. Schuh
  • Publication number: 20140348203
    Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Heather A. Murdoch, Christopher A. Schuh
  • Publication number: 20130266475
    Abstract: The present invention describes a method for purification of 225Ac from irradiated 226Ra-targets provided on support, comprising a leaching treatment of the 226Ra-targets for leaching essentially the entirety of 225Ac and 226Ra with nitric or hydrochloric acid, followed by a first extraction chromatography for separating 225Ac from 226Ra and other Ra-isotopes and a second extraction chromatography for separating 225Ac from 210Po and 210Pb. The finally purified 225Ac can be used to prepare compositions useful for pharmaceutical purposes.
    Type: Application
    Filed: May 13, 2013
    Publication date: October 10, 2013
    Inventors: Josue Manuel MORENO BERMUDEZ, Andreas TURLER, Richard HENKELMANN, Eva KABAI, Ernst HUENGES
  • Publication number: 20100104467
    Abstract: The invention relates to a process for producing 228Th from a natural thorium salt, which comprises in succession: a) the separation of the radium from the other radioelements present in this salt, by at least one coprecipitation of the radium by barium sulphate, this coprecipitation comprising: i) the addition of sulphuric acid and a barium salt to an aqueous solution of said natural thorium salt in order to form a barium-radium sulphate coprecipitate and ii) the separation of the coprecipitate from the medium in which it has formed; b) the extraction of the thorium 228 coming from the decay of radium 228 from the coprecipitate thus separated; and, optionally c) the purification and concentration of the 228Th thus extracted. Applications: manufacture of radiopharmaceutical products useful in nuclear medicine, in particular in radioimmunotherapy for the treatment of cancers and AIDS.
    Type: Application
    Filed: March 18, 2008
    Publication date: April 29, 2010
    Applicant: Areva NC
    Inventors: Gilbert Andreoletti, Michel Belieres, Pascal Nardoux, Jean-Paul Moulin, Anne Montaletang, Patrick Bourdet
  • Patent number: 6760396
    Abstract: The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.
    Type: Grant
    Filed: February 4, 1946
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Ernest R. Boller, Lowell D. Eubank
  • Patent number: 6623712
    Abstract: The present invention relates to a process to dissolve plutonium or a plutonium alloy, by placing it in contact with an aqueous dissolution mixture, wherein said dissolution mixture comprises nitric acid, a carboxylic acid with complexing properties with respect to plutonium, and a compound comprising at least one —NH2 radical such as urea. The invention also relates to a process to convert plutonium or a plutonium alloy into plutonium oxide and to manufacture nuclear fuel from said oxide. The invention particularly applies to the dismantling of plutonium contained in nuclear weapons with a view to its use in civilian nuclear reactors, particularly in the form of MOX fuel.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: September 23, 2003
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Marc Adnet, Jacques Bourges, Pascal Bros, Philippe Brossard
  • Patent number: 6528541
    Abstract: The present invention relates to a method for supplying bioavailable methionine to a cow which comprises supplying to the cow an ester of methionine or methionine amide and/or an ester of the hydroxy analogue of methionine or a salt thereof.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: March 4, 2003
    Inventors: Jean-Claude Robert, Robert Bennett, Georges Gros
  • Patent number: 5112534
    Abstract: To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.
    Type: Grant
    Filed: March 5, 1990
    Date of Patent: May 12, 1992
    Assignee: The United States of America as represented by The United States Department of Energy
    Inventors: Jerold Guon, LeRoy F. Grantham, Eugene R. Specht
  • Patent number: 4929275
    Abstract: This invention relates to novel permanent magnet alloy compositions and high energy permanent magnets comprising from about 0.5 to about 27 atomic percent R wherein R is at least one rare earth element including Y and Sc, from about 0.1 to about 53 atomic percent A wherein A is at least one actinide element, and the balance being at least one metal wherein at least about 50 weight percent of the balance is at least one metal selected from the group consisting of Fe, Co, Ni, and Mn. Preferably, R is from about 12 to about 18 atomic percent and R is a rare earth element selected from the group consisting of Sm, Nd, Pr, and Dy. It is also preferred that A is from about 1.5 to about 5.1 atomic percent and A is an actinide element selected from the group consisting of Ac, Th, Pa and U. The balance is preferably at least about 90 weight percent of Fe and/or Co, and further comprises from about 0.1 to about 10 weight percent of Zr and/or Cu.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: May 29, 1990
    Assignee: SPS Technologies, Inc.
    Inventor: Yakov Bogatin
  • Patent number: 4814046
    Abstract: A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).
    Type: Grant
    Filed: July 12, 1988
    Date of Patent: March 21, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Terry R. Johnson, John P. Ackerman, Zygmunt Tomczuk, Donald F. Fischer
  • Patent number: 4764228
    Abstract: A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.
    Type: Grant
    Filed: November 28, 1986
    Date of Patent: August 16, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Gary L. Silver