Manganese Containing Patents (Class 420/413)
  • Publication number: 20140050608
    Abstract: A method for reducing impurities in magnesium comprises: combining a zirconium-containing material with a molten low-impurity magnesium including no more than 1.0 weight percent of total impurities in a vessel to provide a mixture; holding the mixture in a molten state for a period of time sufficient to allow at least a portion of the zirconium-containing material to react with at least a portion of the impurities and form intermetallic compounds; and separating at least a portion of the molten magnesium in the mixture from at least a portion of the intermetallic compounds to provide a purified magnesium including greater than 1000 ppm zirconium. A purified magnesium including at least 1000 ppm zirconium and methods for producing zirconium metal using magnesium reductant also are disclosed.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: ATI PROPERTIES, INC.
    Inventors: Scott Coffin, Arnel M. Fajardo
  • Patent number: 8475608
    Abstract: Magnesium-based hydrogen storage alloys having metallic magnesium (Mg) and a magnesium-containing intermetallic compound (MgxMy wherein y is 1?x) and containing not less than 60 mass-% of magnesium in total, and having a phase of a primarily crystallized magnesium-containing intermetallic compound in its solidification structure.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: July 2, 2013
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Hidenori Tomioka, Naoyoshi Terashita, Noboru Hayami, Shigeru Tsunokake
  • Patent number: 8435444
    Abstract: Magnesium alloy having the composition Manganese 1.5 to 2.2 Cerium 0.5 to 2.0 Lanthanum 0.2 to 2.0, these figures indicating the weight percent for the alloy, and magnesium and production-related impurities accounting for the remainder of the alloy to 100 wt. %.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 7, 2013
    Assignee: TechMag AG
    Inventor: Peter Stolfig
  • Publication number: 20130089457
    Abstract: Provided is a composite material suitable for forming a part for continuous casting capable of producing cast materials of excellent surface quality for a long period of time and with which a molten metal is inhibited from flowing into a gap between a nozzle and a moving mold. A composite material (nozzle 1) includes a porous body 2 having a large number of pores and a filler incorporated in at least part of a portion that comes into contact with the molten metal, the portion being part of a surface portion of the porous body. The filler incorporated in the porous body 2 is at least one selected from a nitride, a carbide, and carbon.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 11, 2013
    Applicant: Sumitomo Electric Industries Ltd
    Inventors: Michimasa Miyanaga, Takeshi Uchihara, Masatada Numano, Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20120269673
    Abstract: The present invention relates to a magnesium alloy having controlled corrosion resistance properties, which comprises magnesium (Mg) and an alloying element and includes a magnesium phase and a phase composed of magnesium and the alloying element, wherein the difference in electrical potential between the magnesium phase and the phase composed of magnesium and the alloying element is greater than 0 V but not greater than 0.2 V.
    Type: Application
    Filed: December 7, 2010
    Publication date: October 25, 2012
    Inventors: Ja-Kyo Koo, Hyun-Kwang Seok, Seok-Jo Yang, Yu-Chan Kim, Sung-Youn Cho, Jong-Tack Kim
  • Publication number: 20100075162
    Abstract: The present invention provides an implant consisting of a biodegradable magnesium-based alloy or partially applied with the magnesium-based alloy, and a method for manufacturing the same. The implant according to the present invention is biodegradable, in which its biodegradation rate can be easily controlled, and the implant has excellent strength and interfacial strength to an osseous tissue.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 25, 2010
    Inventors: Seok-Jo Yang, Hyun-Kwang Seok, Jung-Gu Kim, Tae-Hong Lim, Kyeong-Ho Baik, Yu-Chan Kim, Ja-Kyo Koo
  • Publication number: 20080304997
    Abstract: Disclosed is a wrought magnesium alloy having excellent strength and extrusion or rolling formability, and a method of producing the same. The wrought magnesium alloy comprises 0.1-1.5 at % group IIIa, 1.0-4.0 at % group IIIb, 0.35 at % or less of one selected from the group consisting of groups IIa, IVa, VIIa, IVb, and a mixture thereof, 1.0 at % or less of group IIb, and a balance of Mg and unavoidable impurities and thus has a second phase composite microstructure. The wrought magnesium alloy of the present invention has high strength, toughness, and formability in addition to the electromagnetic wave shield ability of magnesium. Accordingly, the wrought magnesium alloy is a material useful to portable electronic goods, such as notebook personal computers, mobile phones, digital cameras, camcorders, CD players, PDA, or MP3 players, automotive parts, such as engine room hoods, oil pans, or inner panel of door, or structural parts for airplane.
    Type: Application
    Filed: March 11, 2005
    Publication date: December 11, 2008
    Applicant: PRIMOMETAL CO., LTD.
    Inventor: Kang-Hyung Kim
  • Patent number: 7169240
    Abstract: A magnesium based alloy containing at least 86 wt % Mg; 4.8 to 9.2 wt % aluminum, 0.08 to 0.38 wt % manganese, 0.00 to 0.9 wt % zinc, 0.2 to 1.2 wt % calcium, 0.05 to 1.4 wt % strontium, and 0.00 to 0.8 wt % rare earth elements. The alloy may also comprise up to 0.02 wt % zirconium and up to 0.001 wt % beryllium.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: January 30, 2007
    Assignees: Dead Sea Magnesium Ltd., Volkswagen AG
    Inventors: Boris Bronfin, Eliyahu Aghion, Frank Von Buch, Soenke Schumann
  • Patent number: 6495267
    Abstract: An anodized magnesium piston including a head and skirt for an internal combustion engine. The piston includes a non-fiber-reinforced, magnesium-based alloy including up to 2.5 percent by weight rare earth metals. The piston further includes an external surface, at least a portion of which has a base layer of magnesium fluoride, magnesium oxofluoride, magnesium oxide or a mixture thereof electrochemically anodized thereto.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: December 17, 2002
    Assignee: Briggs & Stratton Corporation
    Inventor: Jerry L. Schenkel
  • Patent number: 6395224
    Abstract: A magnesium alloy of the present invention includes magnesium as a main component, boron of 0.0005 weight % or more, manganese of 0.03 to 1 weight %, and substantially no zirconium or titanium. This magnesium alloy may further include aluminum of 1 to 30 weight % and/or zinc of 0.1 to 20 weight %. Because of appropriate amounts of boron and manganese contained in the magnesium alloy, the grain of the mangnesium alloy is refined.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: May 28, 2002
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Naohisa Nishino, Hiroshi Kawahara, Yoshihiro Shimizu
  • Patent number: 6264762
    Abstract: A magnesium alloy material includes magnesium; more than 1 wt. % manganese; and at least one sp-metal selected from the group consisting of zinc, cadmium, mercury, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, and bismuth, wherein the manganese and the at least one sp-metal together are a maximum of 5 wt. % of the alloy material. The magnesium materials are resistant to corrosion and are especially useful in articles exposed to aqueous electrolytes during use or production.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: July 24, 2001
    Assignee: DaimlerChrysler AG
    Inventors: Heike Bommer, Jürgen Lang, Felix Nitschke
  • Patent number: 5591500
    Abstract: An information recording medium includes a transparent substrate, an interference layer formed on the transparent substrate, a recording layer formed on the interference layer, a reflective layer formed on the recording layer, and a coating resin formed on the reflective layer. The recording layer has a pit region and a mirror region. The reflectivity of the pit portion changes as a thickness of the recording layer changes. The reflectivity characteristic of the mirror region is selectively adjustable from that of the pit region within a range of thicknesses of the interference layer.
    Type: Grant
    Filed: August 18, 1995
    Date of Patent: January 7, 1997
    Assignee: NEC Corporation
    Inventor: Yoshitaka Kawanishi
  • Patent number: 5494538
    Abstract: The invention relates to a hydroreactive magnesium mixture preparation for producing hydrogen. The preparation contains magnesium, causing generation of hydrogen, as catalyst nickel and, possibly, cobalt and/or manganese, and as additional component, zinc, which is employed as a passivating agent.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: February 27, 1996
    Assignee: Magnic International, Inc.
    Inventors: Vladimir I. Kirillov, Alexander N. Vastrebov
  • Patent number: 5342576
    Abstract: The invention provides a magnesium manganese alloy suitable for use in the production of a pellet 10 for administration to a ruminant by dposition in its rumenoreticular sac. A typical pellet 10 comprises a magnesium alloy tube 12 enclosing a degradable core formed of plurality of tablets 14, 16. The magnesium alloy used in the construction comprises at least 90% by weight of magnesium, uyp to 1% zinc and up to 2% of manganese. Preferably the alloy may further include aluminium, silicon or zirconium along with iron and beryllium. When deposited in an animal's rumen the alloy reacts with the rumen juices to form an anodic film over the exposed surface of the tube 12. This prevents corrosion or dissolution of the tube 12 except at its exposed ends where galvanic corrosion by coupling with the electrically conductive core 14, 16 is provided. The normal requirement of a non-degradable exterior coating e.g. resin for the tube exterior is obviated.
    Type: Grant
    Filed: October 25, 1991
    Date of Patent: August 30, 1994
    Assignee: Castex Products Limited
    Inventor: Derek J. Whitehead
  • Patent number: 5326528
    Abstract: A magnesium alloy comprises magnesium, zinc in the amount of 4.0 to 15.0 weight % and silicon in the amount of 0.5 to 3.0 weight %, the weight % being based on the total amount of the alloy. The magnesium alloy further may contain manganese in the range of 0.2 to 0.4 weight %, beryllium in the range of 5 to 20 ppm by weight or rare earth metals in the range of 0.1 to 0.6 weight.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: July 5, 1994
    Assignee: Ube Industries, Ltd.
    Inventors: Kunihiko Makino, Noboru Miyamoto, Kyosuke Kanemitsu
  • Patent number: 4658392
    Abstract: An optically readable, high storage density information carrier usually in the form of a disk, for example, a digitally recorded audio disk (CD) or a video disk (VLP) including a base, and a microstructure on the base which contains the recorded information, and consists of spiral or annular tracks or channels on one or both sides thereof. A reflective layer of a suitable metal or alloy is applied to the side of the information disk carrying the microstructure in at least that portion in which the microstructure exists. The present invention provides an improved reflective layer which, in turn, is covered by a protective layer. The improved reflective layer is a metal alloy selected from one of the following groups of alloys: (1) a Cu-Cr alloy containing from 0.3 to 1.5% chromium, (2) an Al-Mg-Si alloy containing 0.5 to 1.5% each of magnesium and silicon, and (3) an Mg-Mn-Si alloy containing 1.2 to 2% manganese and 0.05 to 0.1% silicon.
    Type: Grant
    Filed: April 26, 1985
    Date of Patent: April 14, 1987
    Assignee: Polygram GmbH
    Inventors: Horst-Christian Langowski, Klaus Schmitz
  • Patent number: 4543234
    Abstract: Magnesium alloys containing up to 12 percent of aluminum, up to 30 percent of zinc, up to 1.5 percent of silicon, not more than 0.15 percent of manganese, and from 0.0025 percent to 0.0125 percent of dissolved beryllium are disclosed. The alloys are resistant to oxidation when they are in a molten state. A method for die casting such alloys is also disclosed.
    Type: Grant
    Filed: September 29, 1982
    Date of Patent: September 24, 1985
    Assignee: N L Industries, Inc.
    Inventor: George S. Foerster