Carbon Monoxide Component Patents (Class 423/246)
  • Patent number: 11364483
    Abstract: A method for making a catalyst for ozone decomposition includes: adding a reducing agent into a water solution of a permanganate salt to obtain a first reaction liquid, and heating the first reaction liquid under continuous stirring to form a birnessite-type manganese dioxide; and adding the birnessite-type manganese dioxide into a water solution of an ammonium salt to obtain a second reaction liquid, and heating the second reaction liquid under continuous stirring to form the catalyst.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: June 21, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Peng-Yi Zhang, Ran-Ran Cao, Yang Liu
  • Patent number: 10944119
    Abstract: The invention relates to a process for generating hydrogen, comprising decomposing in a reaction vessel aqueous alkali formate in the presence of a transition metal-containing catalyst system dissolved in one or more organic solvent(s), characterized in that said organic solvent(s) comprise at least one solvent which is water-immiscible, thereby releasing hydrogen and forming bicarbonate in the aqueous phase, and separating the catalyst-containing organic solvent(s) from said bicarbonate. Also disclosed are apparatuses for carrying out hydrogen generation.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: March 9, 2021
    Assignees: Yissum Research Development Company of the Hebrew University of Jerusalem Ltd., Energystoredge Ltd.
    Inventors: Yoel Sasson, Judith Toubiana, Ariel Givant, Sorel Rothschild
  • Patent number: 10207921
    Abstract: The invention provides a process for the production of hydrogen, comprising catalytically decomposing a concentrated aqueous solution of potassium formate in a reaction vessel to form bicarbonate slurry and hydrogen, discharging the hydrogen from said reaction vessel, and treating a mixture comprising the bicarbonate slurry and the catalyst with an oxidizer, thereby regenerating the catalyst. Pd/C catalysts useful in the process are also described.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 19, 2019
    Assignee: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD.
    Inventors: Yoel Sasson, Harold Wiener, Ariel Givant
  • Patent number: 8828339
    Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
  • Patent number: 8784617
    Abstract: A non-thermal, repetitively-pulsed gliding discharge reactor includes a high-voltage power source configured to provide a pulsed high-voltage potential; a gas inlet; a liquid sorbent inlet; a product outlet; a plurality of first electrodes connected to the high-voltage power source; a plurality of second electrodes that are grounded; and a trough; the plurality of first electrodes being separated from the plurality of second electrodes by a discharge region.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 22, 2014
    Assignee: EVOEnergy, LLC
    Inventors: Yury N. Novoselov, Alexey I. Suslov, Oleg P. Kutenkov
  • Patent number: 8758713
    Abstract: The invention provides a method for oxidizing carbon monoxide present in an oxygen-containing gas phase to carbon dioxide which comprises: adsorbing the carbon monoxide onto porous silica; and irradiating the porous silica with ultraviolet ray. In the invention, mesoporous silica or amorphous silica is used as the porous silica. In particular, silica gel that is amorphous silica is preferably used.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 24, 2014
    Assignee: The Honjo Chemical Corporation
    Inventors: Gohei Yoshida, Yuuichi Hayashi
  • Patent number: 8753108
    Abstract: A method and apparatus for treatment of unburnts in a flue stream 9 of a chemical looping combustion system. Unburnts present in the flue stream 9 are treated after CO2 is removed from the flue stream in a gas processing unit 13. As shown in FIG. 2, oxidation of the unburnts occurs primarily in an air reactor 2 in the presence of air 1, allowing the system to maintain CO2 capture effectiveness and removing the need for creation of enriched or pure oxygen 11.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 17, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Marc Ajhar, Jörgen Grubbström
  • Patent number: 8741239
    Abstract: A power generating apparatus including a gas turbine engine combusting a fuel in air to produce shaft power and producing a flow of exhaust gases including oxides of nitrogen (NOx), carbon monoxide (CO) and hydrocarbons (HC). An emissions treatment apparatus includes in the exhaust gas flowpath a CO oxidation catalyst disposed at a location with an exhaust gas temperature for which the CO oxidation catalyst advantageously limits NO2 production. The emissions treatment apparatus further includes an ammonia injection apparatus, a mixing section, and a selective catalytic reduction element disposed downsteam of the ammonia injection apparatus and adapted for reduction of NOx.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventor: Gilbert O. Kraemer
  • Patent number: 8679441
    Abstract: The invention relates to a method for controlling a fume treatment center (FTC) (23), scrubbing the baking fumes from a rotary baking furnace (1), in which the fumes are drawn in through at least one suction manifold (11) of the baking furnace (1) and collected in a duct (20, 20?) that conveys said fumes to the fume treatment center (23). The fume treatment center includes a tower (24) which sprays water into the fumes in order to cool same and a least one reactor (25) for the physico-chemical neutralization of the fumes, comprising contact with a reagent powder, such as alumina, followed by filtering (36) of the loaded reagent and the fume dust and recycling in the reactor (25) of at least one fraction of the filtered reagent and mixing of the same with fresh reagent.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 25, 2014
    Assignees: Solios Environnement, Solios Carbone
    Inventors: Pierre Mahieu, Thierry Malard
  • Publication number: 20140076106
    Abstract: A hot oxygen stream containing radicals is fed into an offgas stream from a steelmaking vessel to convert carbon monoxide in the offgas to carbon dioxide.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 20, 2014
    Inventors: Kuang Tsai Wu, Euan John Evenson
  • Patent number: 8628741
    Abstract: This invention relates to a method and apparatus for treating a flue gas stream containing oxygen containing greenhouse gases. In particular, the method comprises reacting a flue gas steam with a molten aluminum or aluminum alloy bath, creating alumina and elemental carbon, elemental sulfur, and molecular nitrogen. The apparatus includes a reaction vessel for carrying out the reaction, as well as other equipment necessary for capturing and removing the reaction products. Further, the process can be used to cogenerate electricity using the excess heat generated by the process.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: January 14, 2014
    Inventors: Ronald G. Presswood, Jr., Ian C. Bishop
  • Patent number: 8618020
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 31, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 8591767
    Abstract: A functional fluid for the removal of contaminates such as but not limited to, acid causing components in gas, sulfur components and carbon oxides from fluid streams, and removal and treatment of NOX & SOX from post combustion emissions. Also described is the manufacturing process to produce the functional fluid both in a batch atmospheric process system as well as a closed system capable of operating at above or below atmospheric conditions.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: November 26, 2013
    Assignee: Specialist Process Technologies Limited
    Inventors: Theodore E. Dickinson, David John Parkinson, Kevin E. Collier
  • Patent number: 8551436
    Abstract: The invention concerns in particular a method for purifying an input mixture comprising carbon dioxide (CO<SUB>2</SUB>) and carbon monoxide (CO), to eliminate the carbon monoxide contained in said mixture, which consists in contacting, at a temperature higher than room temperature, the input mixture with a purifying material comprising at least one metal oxide, so as to bring about the reduction of the purifying material by the input mixture, leading to oxidization of at least part of the CO of the input mixture into CO<SUB>2</SUB>. The invention also concerns a gaseous chilling method and installation integrating such a purifying operation.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: October 8, 2013
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Daniel Gary, Florent Chaffotte, Florence Gouhinec, Martina Ridlova
  • Patent number: 8529856
    Abstract: The present invention is directed to methods to sequester oxides of carbon to prevent them from entering the atmosphere as gases. More specifically, this invention is directed to methods of chemical reactions and process to decompose carbon oxides by combustion of a metal fuel with carbon oxides using a regeneration process to recover the metal fuel. The process can optionally and beneficially be coupled to other useful chemical processes for the industrial purpose of sequestering carbon oxides into useful commercial chemicals and elements like carbon, chlorine, and sodium bicarbonate.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: September 10, 2013
    Inventor: David R. Smith
  • Patent number: 8518356
    Abstract: A feed gas comprising CO2, H2S and H2 is treated to produce an H2-enriched product and an H2S-lean, CO2 product. The feed gas is separated to provide the H2-enriched product and a stream of sour gas. The stream of sour gas is divided into two parts, one of which is processed in an H2S removal system to form one or more streams of sweetened gas, and the other of which bypasses the H2S removal system, the stream(s) of sweetened gas and the sour gas bypassing the H2S removal system then being recombined to form the H2S-lean, CO2 product gas. The division of the sour gas between being sent to and bypassing the H2S removal system is adjusted responsive to changes in the H2S content of the sour gas, so as to dampen or cancel the effects of said changes on the H2S content of the H2S-lean, CO2 product gas.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: August 27, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Charles Linford Schaffer, Andrew David Wright, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton
  • Patent number: 8518854
    Abstract: Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 27, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: John T. Brady, Marvin E. Jones, Larry A. Brey, Gina M. Buccellato, Craig S. Chamberlain, John S. Huberty, Allen R. Siedle, Thomas E. Wood, Badri Veeraraghavan, Duane D. Fansler
  • Patent number: 8501133
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Patent number: 8445402
    Abstract: An improved catalyst suitable as a preferential oxidation catalyst is obtained by adding platinum, copper, and iron to a support.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 21, 2013
    Assignee: BASF Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Patent number: 8425870
    Abstract: A hot oxygen stream containing radicals is fed into a gas stream, such as a catalyst regenerator flue gas stream, that contains carbon monoxide to convert carbon monoxide to carbon dioxide.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 23, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Kuang-Tsai Wu, Lee Rosen, David Lenhert, Christopher Leger
  • Publication number: 20130095019
    Abstract: The invention is directed to methods and equipment for generating an activated sorbent from a sorbent precursor with the addition of certain chemicals that enhance the effectiveness of the activated sorbent. The invention is also directed to the methods and equipment for generating some of the chemicals that are added to the raw carbonaceous material or activated sorbent to enhance its effectiveness. The invention is also directed to methods and equipment for generating certain chemicals that can be added to a gas stream to convert a given gaseous pollutant to a form that is more easily removed from the gas stream. The invention is also directed to methods and equipment for adding an activated sorbent and various chemicals for a gas stream having one or more gaseous pollutants.
    Type: Application
    Filed: August 20, 2012
    Publication date: April 18, 2013
    Inventors: Ramsay Chang, Yongqi Lu, Massoud Rostam-Abadi
  • Patent number: 8314048
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 20, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Publication number: 20120213684
    Abstract: A hot oxygen stream containing radicals is fed into an offgas stream from a steelmaking vessel to convert carbon monoxide in the offgas to carbon dioxide.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Inventors: Kuang Tsai Wu, Euan John Evenson
  • Patent number: 8246922
    Abstract: Provided are catalyst articles, emission treatment systems and methods for simultaneously remediating the carbon monoxide, nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The emission treatment system of specific embodiment effectively treats diesel engine exhaust with a single catalyst article.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 21, 2012
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterle
  • Publication number: 20120183448
    Abstract: A method and a device for increasing the temperature of an exhaust gas or process gas with an oxidizable share, in particular a carbon monoxide-containing nitrogen oxide flue gas, before a catalytic flue gas denitrification is performed, wherein an exhaust gas or flue gas duct is in communication with at least one hot gas duct designed as a combustion chamber which hot gas duct is assigned with a combustion device, so that the oxidizable share, in particular the carbon monoxide share, of the exhaust gas or flue gas conducted through the hot gas duct is oxidized at least partially in particular to carbon dioxide.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 19, 2012
    Inventor: Rainer Maierhofer
  • Patent number: 8221687
    Abstract: A system and a method are provided for removing greenhouse gases, particulates and pollutants from the atmosphere utilizing a greenhouse gas collection apparatus. An atmospheric mixture is collected and progressively treated in first, second and third tube furnaces and a scrubber to produce an effluent for treatment in a chemical processing plant. The first tube furnace oxidizes hydrocarbons, the second tube furnace oxidizes any remaining nitrous and nitric oxides, and the third tube furnace oxidizes sulfur dioxide. The scrubber precipitates carbon dioxide as calcium carbonate. A vacuum pump draws the atmospheric mixture through tube furnaces and the scrubber.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 17, 2012
    Inventor: Ernest John Shearing
  • Publication number: 20120171093
    Abstract: The present invention generally relates to compositions comprising and methods for forming functionalized carbon-based nanostructures.
    Type: Application
    Filed: November 3, 2011
    Publication date: July 5, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, William R. Collins, Wiktor Lewandowski, Ezequiel Schmois, Stefanie Sydlik, Joseph Walish, John B. Goods
  • Patent number: 8197778
    Abstract: Sulfur dioxide (SO2) is removed from a carbon dioxide feed gas by maintaining the feed gas at elevated pressure(s) in the presence of oxygen (O2), water and NOx for a period of time sufficient to convert SO2 to sulfuric acid and NOx to nitric acid and produce SO2-depleted, NOx-lean carbon dioxide gas. The invention resides in separating the sulfuric and nitric acids from said SO2-depleted, NOx-lean carbon dioxide gas, and then neutralizing the acids by reaction with an alkaline sorbent in an acid/sorbent reactor system to produce sorbent-derive sulfate. The method has particular application in the removal of SO2 and NOx from flue gas produced by oxyfuel combustion of a carbonaceous fuel.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 12, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Kevin Boyle Fogash, Francis Peter Petrocelli
  • Patent number: 8193114
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. A dual oxidation catalyst generally comprises an alkali component, a transition metal, and a metal oxide support. This catalyst is also substantially free from precious metal components and effective for substantially simultaneously oxidizing ammonia (NH3) and carbon monoxide (CO) when placed in an exhaust gas stream. The catalyst is effective to provide low ammonia to nitrogen oxides selectivity.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: June 5, 2012
    Assignee: BASF Catalysts LLC
    Inventors: Ahmad Moini, Gerald S. Koermer, Pascaline Harrison Tran, Jacqueling S. Curran
  • Publication number: 20120020859
    Abstract: The present invention relates to a method for capturing carbon oxides, in particular for recovering carbon oxides from an industrial facility, and specifically to a method for capturing CO2 contained in a gas flow with a view to storing said CO2, said method including placing said gas flow in contact with a solvent including an organometallic compound, such that said solvent captures said carbon oxides to form an enriched solvent. The present invention relates in particular to the use of said capture method in post-combustion or pre-combustion processes.
    Type: Application
    Filed: February 16, 2010
    Publication date: January 26, 2012
    Inventors: Georges Fremy, Dominique Plee
  • Publication number: 20120015266
    Abstract: The present invention relates to a catalyst for producing gaseous hydrogen current or hydrogen-rich currents through hydrocarbon reforming with water vapor. Said catalyst comprises at least one support, an active phase and at least two promoting agents, and is characterized in that it is a metal-type-supported solid in which the active phase comprises at least one transition metal chosen from group VIII, and at least one promoting agent chosen from the alkaline-earth or transition metals; and the support comprises at least one mixed oxide with a basic nature, and at least one promoting agent chosen from among the lanthanides group. The invention also has as an object the process for preparing the catalyst, as well as its use in the process for obtaining the hydrogen or hydrogen-rich gas from hydrocarbons, in different operating conditions and using various types of hydrocarbons.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Inventors: Francisco Vicente MELO FAUS, Natalia MORLANES SÁNCHEZ, Isidoro MORALES OSORIO, Belén SARMIENTO MARRÓN, Marianela MARTÍN BETANCOURT
  • Patent number: 8092573
    Abstract: A process for the production of a purified PGM selected from the group consisting of platinum and rhodium from an impure PGM source, the process comprising (a) obtaining an anhydrous PGM halide from the impure PGM source; (b) treating the PGM halide with carbon monoxide at an effective temperature; pressure and time to form the PGM carbonyl halide; and (c) (i) wherein the PGM is platinum, heating the platinum carbonyl halide at an effective platinum decomposition temperature to produce the purified platinum; (ii) wherein the PGM is rhodium, heating the rhodium halide at an effective rhodium decomposition temperature to produce the purified rhodium; and (iii) wherein the platinum carbonyl carbonyl halide and the rhodium carbonyl halide are in a gaseous mixture, effecting step (i) at a temperature lower than the rhodium effective decomposition temperature prior to effecting step (ii). The process is of particular value in the recovery and recycle of PGM materials from vehicle exhaust catalytic converters.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 10, 2012
    Assignee: CVMR Corporation
    Inventors: Dmitri Terekhov, Nanthakumar Victor-Emmanuel, Olujide Olurin, Kamran Khozan
  • Patent number: 8093178
    Abstract: Disclosed in a catalyst which enables to reduce the carbon monoxide concentration in a product gas to 5 ppm by volume or less when carbon monoxide in a raw material gas containing hydrogen and carbon monoxide is selectively oxidized. The catalyst comprises a support of an inorganic oxide and ruthenium loaded thereon, and the relative loading depth X(Ru) of ruthenium in the radial direction in a redial cross-section of the catalyst satisfies the requirement defined by the following formula (1) X(Ru)?15??(1).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Patent number: 8080225
    Abstract: A functional fluid for the removal of contaminates such as but not limited to, acid causing components in gas, sulfur components and carbon oxides from fluid streams, and removal and treatment of NOX & SOX from post combustion emissions. Also described is the manufacturing process to produce the functional fluid both in a batch atmospheric process system as well as a closed system capable of operating at above or below atmospheric conditions.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: December 20, 2011
    Assignee: Specialist Process Technologies Limited
    Inventors: Theodore E. Dickinson, David J. Parkinson, Kevin E. Collier
  • Patent number: 8066963
    Abstract: The exhaust gas of internal combustion engines operated with a predominantly stoichiometric air/fuel mixture contains, as well as the gaseous hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NOx) pollutants, also ultrafine particulates. There is disclosed a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. Both layers contain alumina. The first layer contains palladium. The second layer contains rhodium. The latter is disposed above the first layer.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 29, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Patent number: 7993616
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 9, 2011
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Patent number: 7972582
    Abstract: An apparatus for treating an exhaust gas that includes a pre-treatment section that removes a powdery component, a water-soluble component or a hydrolytic component from the exhaust gas. The exhaust gas contains a fluorine compound and CO. A heating oxidative decomposing section performs heating oxidative decomposition of at least one of the fluorine compound and CO to detoxify the exhaust gas. The apparatus also has a post-treatment section for post-treating an acid gas such as HF which has been produced by the heating oxidative decomposition.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: July 5, 2011
    Assignee: Ebara Corporation
    Inventors: Toyoji Shinohara, Yoichi Mori, Yasuhiko Suzuki, Hiroshi Aono, Yuji Shirao
  • Patent number: 7955570
    Abstract: Highly active, low pressure drop catalyst systems. Catalytically active material is provided on at least a portion of the channel sidewalls of a body comprising one or more flow-through channels. The channel sidewalls preferably bear a charge, e.g., an electrostatic or electret charge, to help adhere the catalytically active material to the sidewall. The catalytically active material preferably includes gold provided on a particulate support, and PVD techniques are used to deposit catalytically active gold onto the support. Optionally, the gold-bearing particulates may be charged as well in a manner to facilitate attraction between the particulates and the sidewalls.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: June 7, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas I. Insley, Larry A. Brey, Gina M. Buccellato, Duane D. Fansler, Marvin E. Jones, Badri Veeraraghavan, Thomas E. Wood
  • Patent number: 7943108
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: May 17, 2011
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20110033355
    Abstract: The present invention is directed to methods to sequester oxides of carbon to prevent them from entering the atmosphere as gases. More specifically, this invention is directed to methods of chemical reactions and process to decompose carbon oxides by combustion of a metal fuel with carbon oxides using a regeneration process to recover the metal fuel. The process can optionally and beneficially be coupled to other useful chemical processes for the industrial purpose of sequestering carbon oxides into useful commercial chemicals and elements like carbon, chlorine, and sodium bicarbonate.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 10, 2011
    Inventor: David R. Smith
  • Patent number: 7850937
    Abstract: A catalytic system for CO removal includes a gold (Au) catalyst and a co-catalyst in contact with an aqueous phase, and a fuel cell system using the same. The catalytic system is relatively very simple compared to a common CO removal system, and can highly efficiently remove CO at low temperature without side reaction. In addition, water contacted in the catalytic system can act as a buffer for the rise and fall of temperature, and thus, can cope with an accidental temperature change. Further, the catalytic system shows a low operation temperature, and thus, can be operated over a broad operation range considering the activity and/or selectivity of the gold catalyst, etc.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: December 14, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-chul Lee, Soon-ho Kim, Yulia Potapova, Eun-duck Park, Eun-yong Ko
  • Publication number: 20100303696
    Abstract: A method is described for treating a gas stream containing either fuel only or both fuel and oxidant gases, such as hydrogen, nitrous oxide or a hydrocarbon gas. The gas stream is conveyed through a vacuum pumping arrangement comprising a plurality of pumping stages. Either immediately before or immediately after the final pumping stage, the steps of adding a gaseous oxidant to the gas stream and oxidising the fuel gas are performed. By treating the gas stream in this manner, the risk of uncontrolled combustion of the fuel gas can be minimised.
    Type: Application
    Filed: December 2, 2008
    Publication date: December 2, 2010
    Inventors: James Robert Smith, Gareth David Stanton
  • Patent number: 7842264
    Abstract: A multiple stage apparatus and process using aerodynamic reactors and aero-coalescers in sequence for the selective capture and removal of purified carbon dioxide gas, the sequential capture and removal of mercury, metal and particulate aerosols by a recycling chemical generation-regeneration system using alkali metal chloride solution following multiple oxidations of mercury vapor, and nitric oxide in sequence, selective capture and removal of sulfur dioxide and nitrogen dioxide by two stage absorption by a recycling chemical generation-regeneration system using alkali metal hydroxide-carbonate-bicarbonate solution together with sequential oxidation to alkali metal sulfate and alkali metal nitrate compounds through evaporation and crystallization. Carbon dioxide capture and recovery is achieved in sequence by selective thermal decarbonation from an alkaline liquid followed by recovery as a purified gas stream.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 30, 2010
    Assignee: Cefco, LLC
    Inventors: Hal B. H. Cooper, Robert E. Tang, Donald E. Degling, Thomas K. Ewan, Sam M. Ewan
  • Patent number: 7837953
    Abstract: Provided are improved carbon monoxide removal articles and processes for treating hydrogen gas streams to achieve very low threshold levels of carbon monoxide. The articles have a substrate with an inlet end, an outlet end, a length extending between the inlet end to the outlet end, wall elements and a plurality of cells defined by the wall elements. A first layer is deposited on the wall elements from the inlet end and extending at least partially toward the outlet end. The first layer has a preferential carbon monoxide oxidation catalyst. A second layer contains a methanation catalyst, and is deposited on at least part of the first layer from the outlet end. The second layer has a length that is about 10-70% of the substrate length.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 23, 2010
    Assignee: BASF Corporation
    Inventor: Lawrence Shore
  • Patent number: 7837974
    Abstract: By means of a method and a system for heating and partial oxidation of not separately pre-heated, pre-reformed steam/natural gas mixture for an NH3 synthesis gas, whereby energy is supplied to the gas stream (raw synthesis gas), in the direction of flow, after a primary reformer, a solution is to be created, with which soot formation is to be prevented as much as possible, whereby the possibility of the addition of variable amounts, for example of N2 and O2 or mixtures thereof, is also supposed to be possible. This is achieved, according to the method, in that the energy is supplied directly after the primary reformer, by way of at least one pore burner positioned in the gas discharge line of the primary reformer.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 23, 2010
    Assignee: UHDE GmbH
    Inventors: Hartmut Hederer, Joachim Johanning, Evgeni Gorval
  • Patent number: 7824455
    Abstract: A method of reducing the amount of carbon monoxide in process fuel gas in a feed stream for a fuel cell. The method includes introducing a hydrocarbon feed stream into a primary reactor and reacting the hydrocarbon feed stream in effective contact with a reforming catalyst forming primary reactor products containing hydrogen, carbon monoxide, carbon dioxide, and methane; placing a high activity water gas shift catalyst system into a water gas shift converter, introducing the primary reactor products into the water gas shift converter in effective contact with the high activity water gas shift catalyst system, and reacting the carbon monoxide and water to form carbon dioxide and hydrogen using a water gas shift reaction forming the feed stream for the fuel cell; and introducing the feed stream into the fuel cell. The high water gas shift catalyst system includes a noble metal, a support comprising a mixed metal oxide of cerium oxide and at least one of zirconium oxide or lanthanum oxide.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: November 2, 2010
    Assignee: General Motors Corporation
    Inventors: Anca Faur-Ghenciu, Nathan Edward Trusty, Mark Robert Feaviour, Jessica Grace Reinkingh, Phillip Shady, Paul Joseph Andersen
  • Patent number: 7824639
    Abstract: A catalyst system comprises a gold catalyst capable of oxidizing CO; a hydrocarbon oxidation catalyst; and a hydrocarbon adsorbing material.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 2, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Boris L'vovich Moroz, Karl C. Kharas, Mikhail Yurievich Smirnov, Alexander Sergeevich Bobrin, Valerii Ivanovich Bukhtlyarov
  • Publication number: 20100202949
    Abstract: The present invention provides a biomass dryer/burner having an air cleaning apparatus adapted to accept emissions from the biomass dryer/burner and to convert said emissions to clean air to meet government emission standards. The biomass dryer/burner unit includes a dryer adapted to dry biomass, such as demolition waste or cut trees. The biomass dryer/burner unit optionally including a burner adapted to burn biomass. The biomass dryer/burner further producing emissions requiring cleaning before exhausting to the atmosphere. The air cleaning apparatus including a spray scrubber fluidly connected to the biomass dryer/burner adapted to moisten emissions, a recirculation tank in fluid communication with a collection tank, and the recirculation tank further having a sensor adapted to measure contaminant levels contained within the recirculation air filtration system. The sensor contained within the recirculation tank measures levels of carbon monoxide.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 12, 2010
    Inventor: Peter Valente
  • Patent number: 7727931
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: June 1, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 7666379
    Abstract: A process and apparatus is provided for the purification of binary halide fluid. The process and apparatus purifies the binary halide fluid by selectively removing Bronsted acid impurities and/or volatile oxygen containing impurities present in the binary halide. A regenerable adsorbent polymer is utilized to remove the Bronsted acid impurities from the binary halide fluid and a volatile oxide adsorbent having a specific adsorption capacity for the volatile oxide impurity is utilized to remove the volatile oxide from the binary halide when in gaseous form.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: February 23, 2010
    Assignee: Voltaix, Inc.
    Inventors: Leisl Dukhedin-Lalla, German Shekk, John P. de Neufville, Michael Pikulin