Derived From Transgenic Multicellular Eukaryote (e.g., Plant, Etc.) Patents (Class 424/132.1)
  • Patent number: 11180553
    Abstract: The present invention provides a chimeric antigen receptor (CAR) which binds human CD22, having an antigen-binding domain which comprises a) a heavy chain variable region (VH) having complementarity determining regions (CDRs) with the following sequences: CDR1—NYWIH (SEQ ID No. 1); CDR2—GINPGNNYATYRRKFQG (SEQ ID No. 2) CDR3—EGYGNYGAWFAY (SEQ ID No. 3); and b) a light chain variable region (VL) having CDRs with the following sequences: CDR1—RSSQSLANSYGNTFLS (SEQ ID No. 4); CDR2—GISNRFS (SEQ ID No. 5) CDR3—LQGTHQPYT (SEQ ID No. 6). The present invention also provides a cell comprising such a CAR and the use of such a cell to treat cancer.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 23, 2021
    Assignee: AUTOLUS LIMITED
    Inventors: Shimobi Onuoha, Martin Pulé, Simon Thomas, Shaun Cordoba, Evangelia Kokalaki
  • Patent number: 10780080
    Abstract: The present invention describes compositions, including pharmaceutical compositions, comprising an agent that binds members of the TNFRSF and a benzamide compound and methods for use thereof, for example in the treatment of cancer. In some implementations, the methods for use include methods of treating conditions where enhanced immunogenicity is desired such as increasing tumor immunogenicity for the treatment of cancer.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: September 22, 2020
    Assignee: Translational Drug Development, LLC
    Inventors: Tong Wang, Stephen Gately, Paul Gonzales
  • Patent number: 10775390
    Abstract: This document provides methods and materials involved in identifying and/or treating acute GVHD. For example, methods and materials for detecting elevated levels of nucleic acid expression (e.g., an elevated level of MxA nucleic acid expression or an elevated level of expression of a nucleic acid that encodes a polypeptide listed in Table 2, Table 3, and/or Table 4) in a skin sample to identify a mammal as having acute GVHD are provided.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 15, 2020
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Julia S. Lehman, Alexander Meves
  • Patent number: 10709720
    Abstract: Disclosed are nutritional compositions including human milk oligosaccharides that can be administered to preterm infants, term infants, toddlers, and children for reducing inflammation and the incidence of inflammatory diseases.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: July 14, 2020
    Assignee: Abbott Laboratories
    Inventors: Rachael Buck, Geralyn O. Duska-McEwen, Joseph P. Schaller
  • Patent number: 10294283
    Abstract: Methods of producing a single-domain antibody (sdAb) include causing a bacteria to express the sdAb into cytoplasm of the bacteria, wherein the sdAb is expressed as a fusion protein with the acid tail of ?-synuclein; and then purifying the sdAb, wherein the fusion protein is expressed free of a periplasmic location tag. Such antibodies have the unexpected ability to refold after thermal denaturation.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 21, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel Zabetakis, George P. Anderson, Ellen R. Goldman, Kendrick Turner, P. Audrey Brozozog Lee
  • Patent number: 9296816
    Abstract: The present invention is directed to diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers. The diabody molecules of the invention comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as, but not limited to, disulfide bonding of cysteine residues located within each polypeptide chain. In particular embodiments, the diabody molecules of the present invention further comprise an Fc region, which allows antibody-like functionality to engineered into the molecule.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: March 29, 2016
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 9040041
    Abstract: The present invention relates to Fc variants with optimized Fc receptor binding properties, methods for their generation, Fc polypeptides comprising Fc variants with optimized Fc receptor binding properties, and methods for using Fc variants with optimized Fc receptor binding properties.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 26, 2015
    Assignee: Xencor, Inc.
    Inventors: John R. Desjarlais, Sher Bahadur Karki, Gregory Alan Lazar, John O. Richards, Gregory L. Moore, David F. Carmichael
  • Patent number: 9035026
    Abstract: The present invention relates to binding molecules that specifically bind to the human Fc gamma receptor expressed on the surface of natural killer (NK) cells and macrophages (i.e. Fc?RIIIA), and in particular binding molecules that specifically bind the A form Fc?RIII but do not bind to the B form of Fc?RIII, as well as to the use of such binding molecules in the diagnosis and treatment of disease. The invention further extends to polynucleotides encoding such binding molecules, host cells comprising such polynucleotides and methods of producing binding molecules of the invention using such host cells.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: May 19, 2015
    Assignee: Affimed GMBH
    Inventors: Karin Hoffmann, Sergey Kipriyanov, Stefan Knackmuss, Fabrice Le Gall, Melvyn Little, Uwe Reusch
  • Patent number: 9028815
    Abstract: The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds Fc?RIIIA and/or Fc?RIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by Fc?R is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: May 12, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Jeffrey Stavenhagen, Sujata Vijh, Christopher Rankin, Sergey Gorlatov, Ling Huang
  • Patent number: 8969526
    Abstract: The invention relates to engineered polypeptides comprising Fc variants and their uses. More specifically, Fc variants are described exhibiting reduced effector function. These variants cause a benefit for a patient suffering from a disease which could be treated with an antibody for which it is desirable to reduce the effector function elicited by antibodies.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Roche Glycart AG
    Inventors: Monika Baehner, Stefan Jenewein, Manfred Kubbies, Ekkehard Moessner, Tilman Schlothauer
  • Patent number: 8945546
    Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to IP-10 with high affinity, inhibit the binding of IP-10 to its receptor, inhibit IP-10-induced calcium flux and inhibit IP-10-induced cell migration. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting IP-10 activity using the antibodies of the invention, including methods for treating various inflammatory and autoimmune diseases.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 3, 2015
    Assignee: Medarex, L.L.C.
    Inventors: Shrikant Deshpande, Haichun Huang, Mohan Srinivasan, Josephine M. Cardarelli, Changyu Wang, David Passmore, Vangipuram Rangan, Thomas E. Lane, Hans S. Keirstead, Michael T. Liu
  • Patent number: 8946387
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, more particularly the extracellular domain of Fc?RIIB with greater affinity than said antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA, and block the Fc binding site of Fc?RIIB. The present invention also encompasses the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The present invention also encompasses the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, in combination with other cancer therapies.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: February 3, 2015
    Assignee: MacroGenics, Inc.
    Inventors: Scott Koenig, Maria Concetta Veri, Nadine Tuaillon, Ezio Bonvini
  • Patent number: 8921524
    Abstract: The present invention relates to the manufacture of a diverse repertoire of functional heavy chain-only antibodies that undergo affinity maturation, and uses thereof. The invention also relates to the manufacture and use of a diverse repertoire of class-specific heavy chain-only antibodies and to the manufacture and use of multivalent polypeptide complexes with antibody heavy chain functionality, preferably antibody heavy chain binding functionality, constant region effector activity and, optionally, additional effector functions. The present invention also relates to a method of generation of fully functional heavy chain-only antibodies in transgenic mice in response to antigen challenge. In particular, the present invention relates to a method for the generation of human antigen-specific, high affinity, heavy chain-only antibodies of any class, or mixture of classes and the isolation and expression of fully functional VH antigen-binding domains.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 30, 2014
    Assignee: Erasmus University Medical Centre
    Inventors: Franklin Geradus Grosveld, Richard Willhelm Janssens, Dubravka Drabek, Roger Kingdon Craig
  • Patent number: 8889130
    Abstract: The present invention relates to the treatment of osteoarthritis and pain using IL-1? and IL-1? binding proteins, including anti-IL-1? and anti-IL-1? antibodies and engineered multivalent and multispecific IL-1? and IL-1? binding proteins.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: November 18, 2014
    Assignee: Abbvie Inc.
    Inventor: Rajesh V. Kamath
  • Patent number: 8883973
    Abstract: The present application relates to a variant Fc region comprising at least one modification relative to a wild-type human Fc region, where the modification selected from the group consisting of 434S, 252Y/428L, 252Y/434S, and 428L/434S, and the numbering is according to the EU index.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: November 11, 2014
    Assignee: Xencor, Inc.
    Inventors: Aaron Keith Chamberlain, Bassil I. Dahiyat, John R. Desjarlais, Sher Bahadur Karki, Gregory Alan Lazar
  • Publication number: 20140248261
    Abstract: An antibody against mutant ?-actinin-4 having an amino acid sequence with at least one amino acid residue substitution in the region between position 245 and 263 in the amino acid sequence of ?-actinin-4, wherein the antibody recognizes all or a part of the substituted amino acid residue(s) in the region.
    Type: Application
    Filed: September 9, 2011
    Publication date: September 4, 2014
    Applicants: NATIONAL CANCER CENTER, TRANS GENIC INC.
    Inventors: Shingo Shinagawa, Kazunari Ito, Yoshimi Tokashiki, Tomoaki Miyamoto, Kazufumi Honda, Tesshi Yamada
  • Patent number: 8822645
    Abstract: The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: September 2, 2014
    Assignee: AbbVie Inc.
    Inventors: Tariq Ghayur, Jijie Gu, Peter C. Isakson
  • Patent number: 8815242
    Abstract: The invention is drawn to a composition comprising an isolated mixture of cytotoxic anti-CD20 antibody molecules produced in a transgenic avian. The antibody molecules have a heavy chain and a light chain whose amino acid sequences set forth in SEQ ID NOs: 4 and 5 and exhibit an increased level of cytotoxicity as compared to anti-CD20 antibody molecules produced in CHO cells.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 26, 2014
    Assignee: Synageva BioPharma Corp.
    Inventor: Alex J. Harvey
  • Patent number: 8809503
    Abstract: The present invention relates to optimized Fc variants, methods for their generation, and antibodies and Fc fusions comprising optimized Fc variants.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 19, 2014
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Arthur J. Chirino, Wei Dang, John Desjarlais, Stephen K. Doberstein, Robert J. Hayes, Sher Bahadur Karki, Omid Vafa
  • Patent number: 8778339
    Abstract: The present invention relates to methods of treatment, prevention, management or amelioration of one or more symptoms of diseases or disorders associated with CD20 expression that encompass administration of a combination of: (A) one or more antibodies that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than said antibodies bind Fc?RIIA, and (B) one or more antibodies that specifically bind to CD20. Such methods include methods of treating, preventing, managing or ameliorating one or more symptoms of a B cell related disease or disorder or an inflammatory disorder. The invention also provides pharmaceutical compositions comprising an anti-Fc?RIIB antibody and an anti-CD20 antibody.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 15, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Nadine Tuaillon, Christopher Rankin
  • Publication number: 20140134156
    Abstract: The invention discloses methods for the generation of chimaeric human-non-human antibodies and chimaeric antibody chains, antibodies and antibody chains so produced, and derivatives thereof including fully humanised antibodies; compositions comprising said antibodies, antibody chains and derivatives, as well as cells, non-human mammals and vectors, suitable for use in said methods.
    Type: Application
    Filed: December 20, 2013
    Publication date: May 15, 2014
    Applicant: Kymab Limited
    Inventors: Allan Bradley, E-Chiang Lee, Qi Liang, Wei Wang, Anais Legent, Ian Kirby
  • Patent number: 8697071
    Abstract: The present invention relates to molecules comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds Fc?RIIIA and/or Fc?RIIA with a greater affinity relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are useful in preventing, treating, or ameliorating symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function mediated by Fc?R is desired, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: April 15, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Jeffrey Stavenhagen, Sergey Gorlatov, Christopher Rankin, Nadine Tuaillon
  • Publication number: 20140068796
    Abstract: A transgenic animal is provided. In certain embodiments, the transgenic animal comprises a genome comprising: an immunoglobulin light chain locus comprising: a) a functional immunoglobulin light chain gene comprising a transcribed variable region encoding: i. light chain CDR1, CDR2 and CDR3 regions that are composed of 2 to 5 different amino acids; and ii. a light chain framework; and, operably linked to the functional immunoglobulin light chain gene: b) a plurality of pseudogene light chain variable regions each encoding: i. light chain CDR1, CDR2 and CDR3 regions that are composed of the same 2 to 5 different amino acids as the CDRs of the functional gene; and ii. a light chain framework that is identical in amino acid sequence to the light chain framework of the transcribed variable region.
    Type: Application
    Filed: October 18, 2013
    Publication date: March 6, 2014
    Applicant: CRYSTAL BIOSCIENCE, INC.
    Inventors: William Don Harriman, Robert Etches, Phil Leighton
  • Patent number: 8652466
    Abstract: The present invention relates to methods of treating or preventing cancer and other diseases using molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds an Fc?R that activates a cellular effector (“Fc?RActivating,” such as Fc?RIIA or Fc?RIIIA) and an Fc?R that inhibits a cellular effector (“Fc?RInhibiting,” such as Fc?RIIA) with an altered Ratio of Affinities relative to the respective binding affinities of such Fc?R for the Fc region of the wild-type immunoglobulin. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: February 18, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Jeffrey B. Stavenhagen, Scott Koenig
  • Publication number: 20140041067
    Abstract: The invention relates to the provision of antibody therapeutics and prophylactics that are tailored specifically for human use. The present invention provides libraries, vertebrates and cells, such as transgenic mice or rats or transgenic mouse or rat cells. Furthermore, the invention relates to methods of using the vertebrates to isolate antibodies or nucleotide sequences encoding antibodies. Antibodies, heavy chains, polypeptides, nucleotide sequences, pharmaceutical compositions and uses are also provided by the invention.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Applicant: Kymab Limited
    Inventors: Allan Bradley, Glenn Friedrich, E-Chiang Lee, Mark Strivens, Nicholas England
  • Publication number: 20140037616
    Abstract: The present invention relates to a method for the generation of single chain immunoglobulins in a mammal. In particular, the present invention relates to a method for the generation of single chain camelid VHH antibodies in a mammal which undergo the process of class-switching and affinity maturation found within antibody producing B cells. Single chain antibodies generated using the method of the present invention and the uses thereof are also described.
    Type: Application
    Filed: July 26, 2013
    Publication date: February 6, 2014
    Applicant: Erasmus Universiteit Rotterdam
    Inventor: Frank Grosveld
  • Publication number: 20140023637
    Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn Macdonald, Sean Stevens
  • Publication number: 20140017229
    Abstract: A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
    Type: Application
    Filed: September 25, 2013
    Publication date: January 16, 2014
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: ANDREW J. MURPHY, GEORGE D. YANCOPOULOS, MARGARET KAROW, LYNN MACDONALD, SEAN STEVENS
  • Publication number: 20140017228
    Abstract: Non-human animals, tissues, cells, and genetic material are provided that comprise a modification of an endogenous non-human heavy chain immunoglobulin sequence and that comprise an ADAM6 activity functional in a mouse, wherein the non-human animals express a human immunoglobulin heavy chain variable domain and a cognate human immunoglobulin ? light chain variable domain.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 16, 2014
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn Macdonald, Cagan Gurer, Karolina A. Meagher, Sean Stevens, Andrew J. Murphy
  • Patent number: 8618252
    Abstract: The compositions and methods of the present invention are based, in part, on our discovery that an effector function mediated by an Fc-containing polypeptide can be altered by modifying one or more amino acid residues within the polypeptide (by, for example, electrostatic optimization). The polypeptides that can be generated according to the methods of the invention are highly variable, and they can include antibodies and fusion proteins that contain an Fc region or a biologically active portion thereof.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 31, 2013
    Assignee: Biogen Idec MA Inc.
    Inventors: Graham K. Farrington, Alexey Alexandrovich Lugovskoy, Werner Meier, John K. Eldredge, Ellen Garber
  • Publication number: 20130345405
    Abstract: The present invention relates to the manufacture of a diverse repertoire of functional heavy chain-only antibodies that undergo affinity maturation, and uses thereof. The invention also relates to the manufacture and use of a diverse repertoire of class-specific heavy chain-only antibodies and to the manufacture and use of multivalent polypeptide complexes with antibody heavy chain functionality, preferably antibody heavy chain binding functionality, constant region effector activity and, optionally, additional effector functions. The present invention also relates to a method of generation of fully functional heavy chain-only antibodies in transgenic mice in response to antigen challenge. In particular, the present invention relates to a method for the generation of human antigen-specific, high affinity, heavy chain-only antibodies of any class, or mixture of classes and the isolation and expression of fully functional VH antigen-binding domains.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 26, 2013
    Applicant: Erasmus University Medical Center
    Inventors: Franklin Gerardus Grosveld, Richard Wilhelm Janssens, Dubravka Drabek, Roger Kingdon Craig
  • Publication number: 20130344057
    Abstract: The present invention relates to the manufacture of a diverse repertoire of functional heavy chain-only antibodies that undergo affinity maturation, and uses thereof. The invention also relates to the manufacture and use of a diverse repertoire of class-specific heavy chain-only antibodies and to the manufacture and use of multivalent polypeptide complexes with antibody heavy chain functionality, preferably antibody heavy chain binding functionality, constant region effector activity and, optionally, additional effector functions. The present invention also relates to a method of generation of fully functional heavy chain-only antibodies in transgenic mice in response to antigen challenge. In particular, the present invention relates to a method for the generation of human antigen-specific, high affinity, heavy chain-only antibodies of any class, or mixture of classes and the isolation and expression of fully functional VH antigen-binding domains.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 26, 2013
    Applicant: ERASMUS UNIVERSITY MEDICAL CENTER
    Inventors: Franklin Gerardus Grosveld, Richard Wilhelm Janssens, Dubravka Drabek, Roger Kingdon Craig
  • Publication number: 20130340105
    Abstract: The invention relates generally to compositions and methods of using transgenic non-human animals expressing human SIRP? that are engrafted with a human hematopoietic system. In various embodiments, the human hematopoietic system engrafted, human SIRP? transgenic non-human animals of the invention are useful as systems for the in vivo evaluation of the growth and differentiation of hematopoietic and immune cells, for the in vivo assessment of an immune response, for the in vivo evaluation of vaccines and vaccination regimens, for in vivo production and collection of immune mediators, including human antibodies, and for use in testing the effect of agents that modulate hematopoietic and immune cell function.
    Type: Application
    Filed: September 20, 2011
    Publication date: December 19, 2013
    Applicant: Yale University
    Inventors: Richard A. Flavell, Till Strowig, Elizabeth Eynon, William Philbrick, Markus Manz
  • Patent number: 8609090
    Abstract: Specific binding agents that interact with hepatocyte growth factor (HGF) are described. Methods of treating cancer by administering a pharmaceutically effective amount of a specific binding agent to HGF are described. Methods of detecting the amount of HGF in a sample using a specific binding agent to HGF are described.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: December 17, 2013
    Assignees: Amgen Inc., Amgen Fremont Inc.
    Inventors: Teresa L. Burgess, Angela Coxon, Larry L. Green, Ke Zhang
  • Patent number: 8609817
    Abstract: Monoclonal antibodies are provided that bind to the N-terminus of human hepcidin-25 and are characterized as having high affinity and selectivity for the polypeptide. The antibodies of the invention are useful for increasing serum iron levels, reticulocyte count, red blood cell count, hemoglobin, and/or hematocrit in a human and for the treatment of various disorders, such as anemia, in a human subject. The antibodies of the invention are also useful as analytical tools, such as in sandwich ELISA.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: December 17, 2013
    Assignee: Eli Lilly and Company
    Inventors: Donmienne Doen Mun Leung, Peng Luan, Ying Tang, Derrick Ryan Witcher, Pia Pauliina Yachi
  • Patent number: 8568718
    Abstract: The present invention provides antibodies (such as chimeric and humanized antibodies) specifically bind to an epitope on CD43 and CEA expressed on nonhematopoietic cancer cells. In addition, the present invention also provides use of the antibodies described herein for diagnostic and therapeutic purposes.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: October 29, 2013
    Assignee: Bioalliance C.V.
    Inventors: Shih-Yao Lin, Leewen Lin, Yu-Ying Tsai
  • Patent number: 8530627
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than said antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: September 10, 2013
    Assignee: MacroGenics, Inc.
    Inventors: Scott Koenig, Maria Concetta Veri
  • Patent number: 8524867
    Abstract: Antibodies that target CD19, wherein the antibodies comprise at least one modification relative to a parent antibody, wherein the modification alters affinity to an FcyR or alters effector function as compared to the parent antibody, and methods of using the antibodies.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 3, 2013
    Assignee: Xencor, Inc.
    Inventors: Matthew J. Bernett, Seung Yup Chu, John R. Desjarlais, Sher Bahadur Karki, Gregory Alan Lazar, Erik WeiKing Pong, John O. Richards, Eugene Alexander Zhukovsky
  • Publication number: 20130160153
    Abstract: Non-human animals, tissues, cells, and genetic material are provided that comprise a modification of an endogenous non-human heavy chain immunoglobulin sequence and that comprise an ADAM6 activity functional in a mouse, wherein the non-human animals express a human immunoglobulin heavy chain variable domain and a cognate human immunoglobulin ? light chain variable domain.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 20, 2013
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventor: Regeneron Pharmaceuticals, Inc.
  • Patent number: 8461304
    Abstract: The present invention provides antibodies which bind to an epitope in the extracellular domain of human CC chemokine receptor 4 (CCR4) and which are capable of inhibiting the binding of macrophage-derived chemokine (MDC) and/or thymus and activation regulated chemokine (TARC) to CCR4. Also provided are inter alia immunoconjugates and compositions comprising such antibodies and methods and uses involving such antibodies, particularly in the medical and diagnostic fields.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: June 11, 2013
    Assignee: Affitech Research AS
    Inventors: Lavinia Diana Cicortas Gunnarsson, Didrik Paus
  • Patent number: 8435512
    Abstract: A method of inhibiting alternative complement pathway activation in a mammal includes administering an amount of an antibody and/or fragment thereof that specifically binds to an epitope of the N terminus end of properdin effective to the inhibit alternative complement pathway in the subject.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: May 7, 2013
    Assignee: Novelmed Therapeutics, Inc.
    Inventor: Rekha Bansal
  • Publication number: 20130089539
    Abstract: Compositions and methods for treating Th2- and Th1-mediated disease are provided.
    Type: Application
    Filed: April 4, 2012
    Publication date: April 11, 2013
    Applicant: BIOGEN IDEC MA INC.
    Inventors: Paul Rennert, Patricia McCoon, Veronique Bailly, Alexey Lugovskoy
  • Patent number: 8399618
    Abstract: An Fc variant of a parent Fc polypeptide, wherein said Fc variant exhibits altered binding to one or more Fc?Rs, wherein said Fc variant comprises at least one amino acid insertion in the Fc region of said parent Fc polypeptide.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: March 19, 2013
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Bassil I. Dahiyat, Wei Dang, Sher Bahadur Karki, Omid Vafa
  • Patent number: 8388955
    Abstract: The present invention relates to Fc variants having increased affinity for Fc?RIIb, methods for their generation, Fc polypeptides comprising optimized Fc variants, and methods for using optimized Fc variants.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: March 5, 2013
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Wei Dang, John R. Desjarlais, Sher Bahadur Karki, Omid Vafa, Robert Hayes, Jost Vielmetter
  • Patent number: 8383109
    Abstract: The present invention relates to optimized Fc variants, methods for their generation, and antibodies and Fc fusions comprising optimized Fc variants.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: February 26, 2013
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Arthur J. Chirino, Wei Dang, John R. Desjarlais, Stephen K. Doberstein, Robert J. Hayes, Sher Bahadur Karki, Omid Vafa
  • Patent number: 8367805
    Abstract: The present application relates to a variant Fc region comprising at least one modification relative to a wild-type human Fc region, where the modification selected from the group consisting of 434S, 252Y/428L, 252Y/434S, and 428L/434S, and the numbering is according to the EU index.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 5, 2013
    Assignee: Xencor, Inc.
    Inventors: Aaron Keith Chamberlain, Bassil I. Dahiyat, John R. Desjarlais, Sher Bahadur Karki, Gregory Alan Lazar
  • Patent number: 8362210
    Abstract: The present invention relates to novel Fc variants that comprise at least one novel amino acid residue which may provide for enhanced effector function. More specifically, this invention provides Fc variants that have modified binding affinity to one or more Fc receptor or ligand (e.g., Fc gamma R, C1q). Additionally, the Fc variants have altered complement dependent cytotoxicity (CDC) activity and/or antibody-dependent cell-mediated cytotoxicity (ADCC). The invention further provides methods and protocols for the application of said Fc variants, particularly for therapeutic purposes.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: January 29, 2013
    Assignee: Xencor, Inc.
    Inventors: Gregory A. Lazar, Sher Bahadur Karki, Gregory L. Moore
  • Publication number: 20130004480
    Abstract: Use of CD20 binding molecules, such as anti-CD20 antibodies, for the treatment of chronic obstructive pulmonary disease (COPD).
    Type: Application
    Filed: July 4, 2007
    Publication date: January 3, 2013
    Inventors: Paul Parren, Steen Lisby, Ole Baadsgaard
  • Patent number: 8338574
    Abstract: The present application relates to a variant Fc region comprising at least one modification relative to a wild-type human Fc region, where the modification selected from the group consisting of 434S, 252Y/428L, 252Y/434S, and 428L/434S, and the numbering is according to the EU index.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: December 25, 2012
    Assignee: Xencor, Inc.
    Inventors: Aaron Keith Chamberlain, Bassil I. Dahiyat, John R. Desjarlais, Sher Bahadur Karki, Gregory Alan Lazar
  • Patent number: 8324351
    Abstract: The present application relates to a variant Fc region comprising at least one modification relative to a wild-type human Fc region, where the modification selected from the group consisting of 434S, 252Y/428L, 252Y/434S, and 428L/434S, and the numbering is according to the EU index.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Xencor, Inc.
    Inventors: Aaron Keith Chamberlain, Bassil I. Dahiyat, John R. Desjarlais, Sher Bahadur Karki, Gregory Alan Lazar