Having Composition, Density, Or Hardness Gradient Patents (Class 428/610)
  • Patent number: 11655544
    Abstract: A layered stack that can be used as an oxidation and chemical barrier with superalloy substrates, including Ni, Ni—Co, Co, and Ni-aluminide based substrates, and methods of preparing the layered stack. The layer system can be applied to a substrate in a single physical vapor deposition process with no interruption of vacuum conditions.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: May 23, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Jürgen Ramm, Beno Widrig, Malko Gindrat
  • Patent number: 11414743
    Abstract: Provided is a multilayered zinc alloy plated steel material comprising a base iron and multilayered plated layers formed on the base iron, wherein each of the multilayered plated layers is any one of a Zn-plated layer, a Mg-plated layer, and a Zn—Mg alloy-plated layer, and the ratio of the weight of Mg contained in the multilayered plated layers is 0.13-0.24 on the basis of the total weight of the multilayered plated layers.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: August 16, 2022
    Assignee: POSCO
    Inventors: Young-Jin Kwak, Woo-Sung Jung, Tae-Yeob Kim
  • Patent number: 11279112
    Abstract: An object of the invention is to provide a coating laminated body in which coatings not containing hexavalent chromium which is an environmental concern material, and excellent in corrosion resistance and wear resistance are laminated on a base material, and to provide a method for producing the same. The coating laminated body according to the invention is a laminated body in which a multiple-layer coating is laminated on a base material. The multiple-layer coating includes: a plurality of layers of S-containing Ni alloy coatings; and a sulfur concentrated layer that is formed between the plurality of layers of S-containing Ni alloy coatings and has an S concentration higher than an S concentration of the S-containing Ni alloy coatings. Each of the plurality of layers of S-containing Ni alloy coatings has a Ni concentration of 90% or more by mass, and a difference in Ni concentration between the coatings is within 1% by mass.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: March 22, 2022
    Assignee: Hitachi, Ltd.
    Inventors: Toshinori Kawamura, Hiroshi Kanemoto
  • Patent number: 11279998
    Abstract: The technique relates to a method for preparing a nanomesh metal membrane 5 transferable on a very wide variety of supports of different types and shapes comprising at least one step of de-alloying 1 a thin layer 6 of a metal alloy deposited on a substrate 7, said method being characterized in that said thin layer 6 has a thickness less than 100 nm, and in that said de-alloying step 1 is carried out by exposing said thin layer 6 to an acid vapor in the gas phase 8, in order to form said nanomesh metal membrane 5.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: March 22, 2022
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, Nantes University
    Inventors: Abdel-Aziz El Mel, Pierre-Yves Tessier, Adrien Chauvin
  • Patent number: 11248299
    Abstract: Disclosed is a combined treatment method for improving corrosion resistance of metal component in chlorine-containing solution. First, the metal component is placed in the chlorine-containing solution. Large-area overlapping laser shock peening without an absorbing layer is used, when laser pulses are irradiated on the target metal component, the metal matrix surface absorbs the laser energy, vaporizes and expands to form a high-temperature and high-pressure plasma, a chlorine-containing passivation film is formed, to improve the surface corrosion resistance of the metal component. After that, the surface layer of the metal component is subjected to surface polishing, followed by large-area overlapping laser shock peening with an absorbing layer at room temperature, to further improve the corrosion resistance of the metal component.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: February 15, 2022
    Assignees: Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, JiangSu University
    Inventors: Yao Xue, Kaiyu Luo, Haifei Lu, Jinzhong Lu
  • Patent number: 11131010
    Abstract: A titanium alloy of the present invention includes aluminum at a ratio of 28.0 at % or more and 38.0 at % or less, iron at a ratio of 2.0 at % or more and 6.0 at % or less, and titanium and inevitable impurities as the balance or includes aluminum at a ratio of 28.0 at % or more and 38.0 at % or less, manganese at a ratio of 4.0 at % or more and 8.0 at % or less, and titanium and inevitable impurities as the balance. Further, the titanium alloy of the present invention may include silicon at a ratio of 0.3 at % or more and 1.5 at % or less.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 28, 2021
    Assignees: National Institute for Materials Science, Citizen Watch Co., Ltd.
    Inventors: Toshimitsu Tetsui, Masahiro Satoh, Takayuki Ogawa
  • Patent number: 11053603
    Abstract: A method of producing a complex product includes designing a three dimensional preform of the complex product, creating a three dimensional preform of the complex product using the model, depositing a material on the preform, and removing the preform to complete the complex product. In one embodiment the system provides a complex heat sink that can be used in heat dissipation in power electronics, light emitting diodes, and microchips.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: July 6, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Andrew J. Pascall, Hannah Grace Coe, Julie A. Jackson, Susant K. Patra
  • Patent number: 11021806
    Abstract: A Sn-plated steel sheet according to the present invention includes a steel sheet, a Sn-plated layer that is provided on at least one surface of the steel sheet, and a film that is provided on a surface of the Sn-plated layer and includes zirconium oxide and tin oxide, in which an amount of the zirconium oxide in the film is 0.2 mg/m2 to 50 mg/m2 in terms of metal Zr amount, in a depth direction analysis by X-ray photoelectron spectroscopy, a depth position A at which an element concentration of Zr present as the zirconium oxide is maximum is positioned closer to a surface of the film than a depth position B at which an element concentration of Sn present as the tin oxide is maximum, and a distance between the depth position A and the depth position B in a depth direction is 0.5 nm or more.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 1, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shintaro Yamanaka, Shigeru Hirano, Masakazu Noda, Yasuhiko Sato
  • Patent number: 11008974
    Abstract: This piston for internal combustion engines, which is capable of achieving high heat shielding properties and high durability, comprises: a base that is formed from aluminum or an aluminum alloy; a composite material part which is formed in a first region of the surface of the base, and which is formed from a composite material that is reinforced with inorganic fibers or whiskers; and an alumite coating film that is formed on the composite material part and a second region of the surface of the base, said second region being different from the first region.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: May 18, 2021
    Assignee: ISUZU MOTORS LIMITED
    Inventor: Tateoki Iizuka
  • Patent number: 10964344
    Abstract: According to one embodiment, a magnetic disk device includes a disk including a first region and a second region different from the first region, a head that writes data on the disk and reads data from the disk, an actuator that positions the head on the disk, and a controller which positions the head by driving the actuator and writes data in the first region and the second region with the head, a skew angle of the head with respect to a circumferential direction of the disk varying within a first angle in the first region, and varying, in the second region, from a second angle larger than the first angle to a third angle larger than the first angle and the second angle.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: March 30, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Daisuke Sudo, Tatsurou Sasamoto, Takeyori Hara, Akihiko Takeo, Kazuo Chokki, Tatsuo Nitta
  • Patent number: 10941463
    Abstract: The present invention relates to a HEA foam prepared by selective dissolution of a second phase within a two-phase separating alloy comprising the HEA and a manufacturing method thereof. The manufacturing method of the HEA foam of the present invention has the effect of preparing a novel HEA foam, which was not available in the past, by leaving only a first phase after manufacturing a two-phase separating alloy comprising a first phase by HEA, wherein at least 3 metal elements act as a common solvent. Furthermore, the HEA foam of the present invention has a structure, wherein pores are distributed inside the HEA, in which at least 3 metal elements act as a common solvent. By adding a functional characteristic of low heat conductivity, etc., to the existing high strength characteristic of HEA, the HEA foam of the present invention can exhibit a complex effect by the combination of the two particular effects, thereby being capable of exhibiting excellent physical characteristics.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: March 9, 2021
    Assignee: SEOUL NATIONAL UNIVERSITY R & DB FOUNDATION
    Inventors: Eun Soo Park, Kooknoh Yoon, Khurram Yaqoob, Je In Lee, Jin Yeon Kim
  • Patent number: 10826203
    Abstract: The present invention provides metallic materials for electronic components, having low degree of whisker formation, low adhesive wear property and high durability, and connector terminals, connectors and electronic components using such metallic materials.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: November 3, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yoshitaka Shibuya, Kazuhiko Fukamachi, Atsushi Kodama
  • Patent number: 10704133
    Abstract: A system and method described herein relate to applying an overlay metal-based coating to a metal-based substrate. An article is provided, which includes a metal-based substrate having an overlay metal-based coating disposed on the substrate at an interface. The interface is configured such that a crack formed within the overlay metal-based coating and approaching the interface has a propagation path that is more energetically favorable along the interface than through the interface and into the metal-based substrate.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 7, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Joseph Detor, Richard DiDomizio, James Anthony Ruud, Soumya Nag
  • Patent number: 10640844
    Abstract: A method for laser shock peening (LSP) to uniformly strengthen metallic components uses varied square-spot LSP with stagger multiple-layer. Each layer is subjected to square-spot LSP treatment, without overlapping. The length of square-spot in the first layer is larger than those in the second layer and third layers, and the length of square-spot in the second layer is equal to that in the third layer. The first layer treated by LSP is used to reduce deeper localized compressive residual stress, and the second and third layers imparted by square-spot LSP with staggered distance are used to eliminate of the boundary effect and decrease surface roughness.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: May 5, 2020
    Assignee: JIANGSU UNIVERSITY
    Inventors: Jinzhong Lu, Yue Liu, Kaiyu Luo, Zhilong Wang
  • Patent number: 10594066
    Abstract: The present invention provides metallic materials for electronic components, having low degree of whisker formation, low adhesive wear property and high durability, and connector terminals, connectors and electronic components using such metallic materials.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: March 17, 2020
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yoshitaka Shibuya, Kazuhiko Fukamachi, Atsushi Kodama
  • Patent number: 10549378
    Abstract: The invention relates to a method for producing a nickel aluminide coating on a metal substrate. The method includes the following steps: a) coating the substrate with a nickel deposit; b) applying an aluminum sheet onto the nickel deposit from step a) so as to form an assembly made up of the substrate coated with the nickel deposit and the aluminum sheet; and c) subjecting said assembly to heat treatment at a temperature that is lower than the melting point of aluminum, and at a low pressure so as to induce a reaction between the aluminum and the nickel and thus form a ?-NiAl nickel aluminide layer mounted on a nickel layer. The invention is particularly of use for protecting the materials used in turbines of aircraft engines.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: February 4, 2020
    Assignee: Office National D'Etudes et de Recherches Aérospatiales
    Inventors: Pascal Bilhe, Marie-Pierre Bacos, Pierre Josso
  • Patent number: 10538852
    Abstract: A plated steel sheet including an alloy plating layer formed on a surface of the steel sheet consisting of, in mass %, Cr: 5 to 91%, Fe: 0.5 to 10%, and the balance: Ni and unavoidable impurities, the Ni concentration gradually decreases from an outermost surface of the alloy plating layer to a side of the steel sheet, Ni/Cr>1 in an area extending 300 nm or more from the outermost surface of the alloy plating layer, the Fe concentration in the alloy plating layer gradually decreases from the side of the steel sheet to the outermost surface, the Fe concentration in the outermost surface 0.5% or less, the total thickness of an alloy layer formed in the alloy plating layer and containing Cr and Fe is 500 to 2000 nm, and the total amount of the alloy plating layer deposited to the steel sheet is 4.5 to 55.5 g/m2.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: January 21, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Akinobu Kobayashi, Yasuto Goto, Takashi Futaba, Kenichiro Matsumura
  • Patent number: 10530084
    Abstract: The present invention provides metallic materials for electronic components, having low degree of whisker formation, low adhesive wear property and high durability, and connector terminals, connectors and electronic components using such metallic materials.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: January 7, 2020
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yoshitaka Shibuya, Kazuhiko Fukamachi, Atsushi Kodama
  • Patent number: 9957599
    Abstract: Powder compositions are described having, as constituents: an aluminum donor powder, an aluminum-containing activator powder comprising at least 50 wt. % KAlF4, and an inert filler powder. Related methods and coatings are also described.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: May 1, 2018
    Assignee: ENDURANCE TECHNOLOGIES, INC.
    Inventor: Eugene Medvedovski
  • Patent number: 9824788
    Abstract: Provided is a metal wire. The metal wire includes a copper layer, and at least one barrier layer. The barrier layer is disposed on at least one of an upper part and a lower part of the copper layer. The barrier layer includes an alloy including copper, nickel, and zinc.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: November 21, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Su Hyoung Kang, Sang Woo Sohn, Chang Oh Jeong, Gwang Min Cha
  • Patent number: 9789232
    Abstract: Disclosed is a medical instrument coating, being coated on the surface of a nickel-titanium alloy component of a medical instrument. The medical instrument coating comprises an elementary copper phase, an amorphous titanium-containing substance and a transition layer comprising a copper-nickel intermetallic phase. Also mentioned is a preparation method for the medical instrument coating.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 17, 2017
    Assignee: Lifetech Scientific (Shenzhen) Co. Ltd.
    Inventors: Hengquan Liu, Lihua Dong
  • Patent number: 9707739
    Abstract: Disclosed herein is an article comprising a plurality of domains fused together; wherein the domains comprise a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal being chemically different the second metal. Disclosed herein too is a method comprising rolling a sheet in a roll mill; the sheet comprising a first metal and having disposed upon each opposing face of the sheet a first layer that comprises a second metal; the second metal being chemically different from the first metal; cutting the sheet into a plurality of sheets; stacking the plurality of sheets; and rolling the stacked sheets in the roll mill to form a blank.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 18, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Randall V. Guest, Michael H. Johnson, Zhiyue Xu
  • Patent number: 9656358
    Abstract: A method for attaching a porous metal layer to a dense metal substrate, wherein the method is particularly useful in forming orthopedic implants such as femoral knee components, femoral hip components, and/or acetabular cups. The method, in one embodiment thereof, comprises providing a solid metal substrate; providing a porous metal structure; contouring a surface of the porous metal structure; placing the porous structure against the substrate such that the contoured surface of the porous metal structure is disposed against the substrate, thereby forming an assembly; applying heat and pressure to the assembly in conjunction with thermal expansion of the substrate in order to metallurgically bond the porous structure and the substrate; and removing mass from the substrate after the porous structure is bonded to the substrate, thereby finish processing the assembly.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: May 23, 2017
    Assignee: Zimmer, Inc.
    Inventors: Steven Charlebois, Leslie N. Gilbertson, Michael E Hawkins, Dana Medlin, H. Ravindranath Shetty, Steven Zawadzki
  • Patent number: 9577133
    Abstract: Provided are novel Building Integrable Photovoltaic (BIPV) modules having one or more connectors that are movable between extended and retracted positions. Connector adjustment may be performed in the field, for example, during installation of a module. In certain embodiments, a connector includes a connector body and extension body. The extension body flexibly attaches the connector body to the module and allows the connector body to move with respect to the module edge. In an extended position, the connector body is positioned closer to the edge and is configured to make electrical connections to a joiner connector for interconnecting with an adjacent module. In a retracted positioned, the connector body is positioned further from the edge and is configured to make electrical connections to a jumper for interconnecting the conductive elements of the connector. In certain embodiments, a jumper does not protrude beyond the edge when connected to the connector body.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: February 21, 2017
    Assignee: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD.
    Inventor: Adam C. Sherman
  • Patent number: 9528177
    Abstract: A novel FeMnAlC alloy, comprising 23˜34 wt. % Mn, 6˜12 wt. % Al, and 1.4˜2.2 wt. % C with the balance being Fe, is disclosed. The as-quenched alloy contains an extremely high density of nano-sized (Fe,Mn)3AlCx carbides (??-carbides) formed within austenite matrix by spinodal decomposition during quenching. With almost equivalent elongation, the yield strength of the present alloys after aging is about 30% higher than that of the optimally aged FeMnAlC (C?1.3 wt. %) alloy systems disclosed in prior arts. Moreover, the as-quenched alloy is directly nitrided at 450˜550° C., the resultant surface microhardness and corrosion resistance in 3.5% NaCl solution are far superior to those obtained previously for the optimally nitrided commercial alloy steels and stainless steels, presumably due to the formation of a nitrided layer consisting predominantly of AlN.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 27, 2016
    Assignee: Apogean Metal Incorporation
    Inventor: Tzeng-Feng Liu
  • Patent number: 9528187
    Abstract: A steel sheet for containers that has excellent film adhesion qualities, and has a Zr compound film formed thereupon by immersion in or electrolytic treatment with a solution containing Zr ions, F ions, and hydroxylic acid, the Zr compound film being applied in an amount such that the metal Zr content is 0.1-100 mg/m2 and the F content is no more than 0.1 mg/m2.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: December 27, 2016
    Assignee: JFE STEEL CORPORATION
    Inventors: Takeshi Suzuki, Norihiko Nakamura, Yuka Miyamoto, Yoichi Tobiyama
  • Patent number: 9482302
    Abstract: There are provided: a seamless steel pipe formed from a cylindrical steel material billet through a hot isostatic extrusion step, wherein a depth of a contiguous flaw formed on an inner periphery surface and an outer periphery surface of the steel pipe is 50 ?m or less; a hollow spring obtained by forming a hollow body in a shape of a coil or a bar or a bar with curved part from the seamless steel pipe made of spring steel and applying a surface treatment to the hollow body so that the hollow body has compressive residual stress; and a method for producing seamless steel pipe including: a billet molding step; a first heating step; a hot isostatic extrusion step; a second heating step; an extension step; a third heating step; and a pickling step.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 1, 2016
    Assignees: SHINKO METAL PRODUCTS CO., LTD., NHK SPRING CO., LTD.
    Inventors: Kotaro Toyotake, Koji Iwaya, Tomoyuki Minami, Noritoshi Takamura
  • Patent number: 9469891
    Abstract: Provided is a press-forming product manufacturing method of manufacturing a forming product having satisfactory formability for a drawing process by press-forming a metal sheet using a press-forming tool with high productivity, including: heating the metal sheet to a transformation temperature Ac1 or more; cooling the metal sheet to 600° C. or lower; forming the metal sheet by a forming tool; ending the forming process at a martensite transformation start temperature Ms or more; taking out the metal sheet from the forming tool; and cooling the metal sheet.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 18, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Keisuke Okita, Junya Naitou, Shushi Ikeda
  • Patent number: 9440850
    Abstract: The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: September 13, 2016
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Athanasios Bourlinos, Theodore Steriotis, Athanasios Stubos, Michael A Miller
  • Patent number: 9412711
    Abstract: The present invention provides an electronic device that is able to achieve an improvement in yield or an electronic device that is able to prevent a sealing resin from exfoliating from a sub-electrode. The electronic device is provided with an electronic element and a wire bonded to the electronic element. The electronic element includes a bonding pad to which the wire is bonded. The bonding pad includes a Pd layer that directly contacts the wire.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: August 9, 2016
    Assignee: ROHM CO., LTD.
    Inventors: Kenji Fujii, Satoshi Kageyama
  • Patent number: 9366144
    Abstract: An airfoil includes a leading edge, a trailing edge, a suction surface, a pressure surface, a cooling passageway, and a plurality of oblong pedestals. The suction surface and the pressure surface both extend axially between the leading edge and the trailing edge, as well as radially from a root section to a tip section of the airfoil. The cooling passageway is located between the suction surface and the pressure surface. The oblong pedestals connect the suction surface to the pressure surface at the trailing edge of the airfoil.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: June 14, 2016
    Assignee: United Technologies Corporation
    Inventors: Gary A. Zess, Brandon W. Spangler, Dominic J. Mongillo, Jr.
  • Patent number: 9283650
    Abstract: A method for providing a surface treatment along the surface of a work piece, using a burnishing tool having a tool head comprising a bearing for supporting a rolling element and an encasement for supporting the bearing. The bearing is formed from a polymer or polymer resin such as, but not limited to, polytetrafluoroethylene based resin, ultra-high-molecular-weight polyethylene based resin.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: March 15, 2016
    Assignee: Sunface Technology Holdings, Ltd.
    Inventors: Michael Prevey, Paul S. Prevey, III
  • Patent number: 9093977
    Abstract: The present disclosure relates to an on-chip electrostatic discharge (ESD) protection circuit that may be reused for a variety of integrated circuit (IC) applications. Both inductor-capacitor (LC) parallel resonator and shunt inductor (connected to ground) are used as ESD protection circuits and also as a part of an impedance matching network for a given IC application. The ESD LC resonator can be designed with a variety of band pass filter (BPF) topologies. On-chip ESD protection circuit allows for co-optimization ESD and BPF performance simultaneously, a fully on-chip ESD solution for integrated passive device (IPD) processes, eliminates a need for active ESD device protection, additional processes to support off-chip ESD protection, reduces power consumption, and creates a reusable BPF topology.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: July 28, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jun-De Jin, Ming Hsien Tsai, Tzu-Jin Yeh
  • Patent number: 9085703
    Abstract: A coating that includes a polyisocyanate compound and at least one metal inclusion selected from the group consisting of tungsten and tungsten carbide. The metal inclusions range between about five percent by weight to about fifty percent by weight. A downhole tool that includes a body, a shank positioned at one end of the body, at least one cutter coupled to the body, and a coating coupled to at least a portion of one or more of the body or the shank. The coating includes a polyisocyanate compound and at least one metal inclusion selected from the group consisting of tungsten, tungsten carbide, and aluminum. The metal inclusions range between about five percent by weight to about fifty percent by weight. An intermediate coating is optionally disposed between at least a portion of the coating and at least one of the body or the shank.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: July 21, 2015
    Assignee: VAREL INTERNATIONAL IND., L.P.
    Inventors: William W. King, Vamsee Chintamaneni
  • Patent number: 9062659
    Abstract: A thermal conditioning system for an off-shore wind turbine is provided. The thermal conditioning system comprises channels for circulating ambient air from an inlet area located in the outside of the wind turbine nacelle to an outlet area located in the outside of the wind turbine preventing that the ambient air enters inside the wind turbine nacelle. The ambient air channels are arranged to cool conductively or convectively the air inside the wind turbine nacelle.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 23, 2015
    Assignee: GAMESA INNOVATION & TECHNOLOGY, S.L.
    Inventor: Arunvel Thangamani
  • Publication number: 20150147586
    Abstract: Methods for electrochemical deposition of a metal coating on a metal substrate are described. The method may use an ionic liquid as an electrolyte, and the substrate may comprise a first metallic element. Method steps may include pretreating the substrate by etching in an ionic liquid containing metal ions of a second metallic element, removing metal ions of the first metallic element from the substrate, wherein the metal ions of the first metallic element are received by the ionic liquid, depositing a transition layer on the substrate from the ionic liquid, wherein metal ions of the first and second metallic elements are incorporated in the transition layer, and depositing a coating on the transition layer by electrochemical deposition from an ionic liquid containing ions of the second metallic element.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 28, 2015
    Inventors: Joost Remi Margueritte De Strycker, Philippe Jose Gaston Hubert Verpoort, Eva Diaz Gonzales, Krista Godelieve Oscar Van Den Bergh, Robbie Van De Coevering
  • Publication number: 20150140353
    Abstract: An article and method of forming the article are disclosed. The article includes a substrate, an overlay bond coat deposited over the substrate and a topcoat deposited over the bond coat. The bond coat of the article includes a plasma affected region proximate to an interface between the bond coat and the topcoat, and the plasma affected region includes an elongated intergranular phase. The method of depositing includes adjusting the plasma spray conditions so as to form the plasma affected region proximate to an interface between the bond coat and the topcoat, and elongated intergranular phases in the plasma affected regions.
    Type: Application
    Filed: August 31, 2012
    Publication date: May 21, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Shankar Sivaramakrishnan, James Anthony Ruud, Curtis Alan Johnson, Larry Steven Rosenzweig
  • Publication number: 20150123259
    Abstract: A thermal interface sheet includes a peripheral portion, in a surface direction, configured to have a melting point higher than the melting point of a central portion in the surface direction.
    Type: Application
    Filed: October 27, 2014
    Publication date: May 7, 2015
    Inventor: Naoaki Nakamura
  • Patent number: 9018605
    Abstract: A nuclear fusion reactor first wall component includes a copper alloy element, an intermediate metal layer made from niobium and a beryllium element, directly in contact with the intermediate metal layer. The intermediate niobium layer is further advantageously associated with a mechanical stress-reducing layer formed by a metal chosen from copper and nickel. This mechanical stress-reducing layer is in particular arranged between the intermediate niobium layer and the copper alloy element. Furthermore, when the mechanical stress-reducing layer is made from pure copper, a layer of pure nickel can be inserted between the niobium and the pure copper before diffusion welding. Such a component presents the advantage of having an improved thermal fatigue behavior while at the same time preventing the formation of intermetallic compounds at the junction between the beryllium and the copper alloy.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Pierre-Eric Frayssines, Philippe Bucci, Jean-Marc Leibold, Emmanuel Rigal
  • Publication number: 20150111370
    Abstract: A method for producing gallium nitride material, comprising the steps of: a) providing a substrate and forming a metal layer over the substrate; b) forming a transition layer over the metal layer, the transition layer being compositionally graded such that the composition of the transition layer at a depth (z) thereof is an Al concentration function f(z) of that depth; and c) forming a layer of gallium nitride material over the transition layer; wherein the Al compositional grading function f(z) of the transition layer grown in step b) has a profile including two plateaux at respective depths z1 and z2 where df(z1)/dz=df(z2)/dz=0, wherein the function decreases continuously between z1 and z2 with z2>z1.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventor: Wang Nang Wang
  • Patent number: 9012030
    Abstract: A substrate processing chamber component comprising a chamber component structure having an yttrium-aluminum coating. The yttrium-aluminum coating comprises a compositional gradient through a thickness of the coating.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 21, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Nianci Han, Li Xu, Hong Shih
  • Patent number: 9011620
    Abstract: The invention is directed to effective means for joining materials having dissimilar coefficients of thermal expansion, such as advanced ceramics with metallic compounds. Moreover, the present invention relates to furnace tubes and methods of fabricating a joint between two different materials, which is compositionally graded to provide a substantially graded coefficient of thermal expansion between the joint materials.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 21, 2015
    Assignee: Technip Process Technology, Inc.
    Inventors: John Andrew Fernie, Martyn David Roberts, Yong Wang, Narayanan Rajesh Kavilveedu, David J. Brown
  • Publication number: 20150072165
    Abstract: A bonding member that includes a plating film containing a Cu—Ni alloy as its main constituent. In this plating film, the Cu mass ratio Cu/(Cu+Ni) is increased and decreased between 0.7 and 0.97 in the film thickness direction. In addition, the amplitude between the increase and decrease in the Cu mass ratio is larger than 0.1. Therefore, when the plating film containing the Cu—Ni alloy as its main constituent and Sn-based solder material or the like are joined by soldering, an intermetallic compound layer with a high melting point is formed. In addition, the plating film has a layer with a slow reaction rate, and thus can slow the reaction rate of alloying reaction between the Cu—Ni alloy and a Sn-based metal.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 12, 2015
    Inventors: Tomohiro Sunaga, Daisuke Megumi, Yoshihiko Takano, Hidekiyo Takaoka
  • Patent number: 8912126
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Patent number: 8911875
    Abstract: A sliding element, particularly a piston ring for an internal combustion engine, includes a substrate, and a wear-protection layer, obtained by thermal spraying of a powder comprising the element proportions 2-50 percent by weight iron, FE; 5-60 percent by weight tungsten, W; 5-40 percent by weight chrome, Cr; 5-25 percent by weight nickel, Ni; 1-5 percent by weight molybdenum, Mo; 1-10 carbon, C and 0.1-2 percent by weight silicon, Si; and a running-in layer, obtained by thermal spraying of a powder comprising the element proportions 60-95 percent by weight nickel; 5-40 percent by weight carbon.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 16, 2014
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Marcus Kennedy, Michael Zinnabold, Marc-Manuel Matz
  • Patent number: 8871363
    Abstract: Provided is a resistor film comprising vanadium oxide as a main component, wherein metal-to-insulator transition is indicated in the vicinity of room temperature in temperature variations of electric resistance, there is no hysteresis in a resistance change in response to temperature variations or the temperature width is small at less than 1.5K even if there is hysteresis, and highly accurate measurement can be provided when used in a bolometer. Upon producing the resistor film comprising vanadium oxide as a main component by treating a coating film of an organovanadium compound via laser irradiation or the like, a crystalline phase and a noncrystalline (amorphous) phase are caused to coexist in the resistor film.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 28, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Tetsuo Tsuchiya, Masami Nishikawa, Tomohiko Nakajima, Toshiya Kumagai, Takaaki Manabe
  • Patent number: 8846216
    Abstract: A method for producing a cast metal piece and a cast metal piece are provided. An information element includes at least one piece of information. The information element is produced from a magnetizable material and the information is deposited n the magnetizable material and is cast into the information element during casting of the price, the casting temperature being above the Curie temperature of the magnetizable material of the information element.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: September 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Richard Matz, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 8841001
    Abstract: A device housing having an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order is provided. The corrosion resistant layer is an Al—C—N gradient layer implanted with iridium ions by ion implantation process. The atomic percentages of N and C in the Al—C—N gradient layer both gradually increase from the area near the aluminum layer to the area away from aluminum or aluminum alloy substrate. Therefore the device housing has a high corrosion resistance. A method for making the device housing is also provided.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: September 23, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Publication number: 20140272451
    Abstract: A metal matrix composite article that includes at least first and second regions, first and second reinforcement materials, a metal matrix composite material occupying the second region of the body and comprising a metal matrix material and the second reinforcement component, a preform positioned in the first region of the body and infiltrated by at least the metal matrix material of the metal matrix composite material. The article further includes a transition region located proximate an outer surface of the preform that includes a distribution of the second reinforcement component comprising a density increasing according to a second gradient in a direction toward the outer surface of the preform.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Inventors: Adam R. Loukus, Josh E. Loukus
  • Patent number: 8808871
    Abstract: A sintered cermet of a rotary tool has a hard phase with a first hard phase and a second hard phase comprising a carbide, a nitride, and a carbonitride of at least one of group 4, 5, and 6 metals of the periodic table of which metals the metal titanium is a main component. The result of an X-ray diffraction measurement in a surface region of the sintered cermet provides a first peak intensity Ib on a high angle side that is attributable to a (220) plane of the first hard phase and a second peak intensity Ia on a low-angle side that is attributable to a (220) plane of the second hard phase, and an intensity ratio Ib/Ia of the first peak intensity Ib to the second peak intensity Ia is in the range of 0.5 to 1.5.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: August 19, 2014
    Assignee: Kyocera Corporation
    Inventors: Hideyoshi Kinoshita, Katsuhiro Hanaki