Thin Film Media Patents (Class 428/826)
  • Patent number: 10803895
    Abstract: A magnetic recording medium includes: a substrate; a first underlayer; a second underlayer; and a magnetic layer including an alloy having a L10 type crystal structure with a (001) orientation. The substrate, the first underlayer, the second underlayer, and the magnetic layer are stacked in this order. The first underlayer is a crystalline layer that includes Mo as a main component. The second underlayer is a crystalline layer that includes a material containing Mo as a main component and that includes an oxide. The content of the oxide in the second underlayer is in a range of from 2 mol % to 30 mol %. The oxide is an oxide of one or more kinds of elements selected from a group consisting of Cr, Mo, Nb, Ta, V, and W.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: October 13, 2020
    Assignee: SHOWA DENKO K.K.
    Inventors: Takayuki Fukushima, Haruhisa Ohashi, Lei Zhang, Yuji Murakami, Hisato Shibata, Takehiro Yamaguchi, Tetsuya Kanbe
  • Patent number: 10714244
    Abstract: A kind of nano-porous Fe—Pt alloys with strong permanent magnetism and a preparation method therefor. The nano-porous Fe—Pt alloys have the composition of FewCoxPtyPdz and are composed of an ordered hard magnetic L10-FePt phase, and have an integrated doubly-connected nano-porous structure with pore sizes of 10-50 nm, and ligament thicknesses of 20-80 nm. Under an applied magnetic field of 50 kOe, the coercivity, magnetization intensity and remanence of the alloys are 13.4-18.5 kOe, 40.4-56.3 emu/g and 28.3-37.4 emu/g, respectively.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 14, 2020
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Wei Zhang, Yingmin Wang, Yanhui Li, Dianguo Ma
  • Patent number: 10699737
    Abstract: A magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer including an alloy having a L10 type crystal structure whose plane orientation is (001). The substrate, the underlayer, and the magnetic layer are stacked in this order. The underlayer includes a first underlayer. The first underlayer is a crystalline layer that includes a material containing Al, Ag, Cu, W, or Mo as a main component element and includes an oxide of the main component element, a content of the oxide of the main component element in the first underlayer being in a range of from 2 mol % to 30 mol %.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 30, 2020
    Assignee: SHOWA DENKO K.K.
    Inventors: Takayuki Fukushima, Haruhisa Ohashi, Lei Zhang, Yuji Murakami, Hisato Shibata, Takehiro Yamaguchi, Tetsuya Kanbe
  • Patent number: 9985200
    Abstract: A magnetic memory device can include a first electrode and a first magnetic structure that is spaced apart from the first electrode, where the first magnetic structure can include a magnetic pattern therein. An oxidized non-magnetic pattern can be located between the first magnetic structure and the first electrode, where the oxidized non-magnetic pattern can include a non-metallic element having a standard free energy of oxide formation that is less than about that of a standard free energy of oxide formation of Fe.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: May 29, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joonmyoung Lee, Whankyun Kim, Eunsun Noh
  • Patent number: 9424873
    Abstract: A method of manufacturing a perpendicular magnetic recording medium 100 that includes forming a magnetic recording layer 122 on a disk base 110, then forming a resist layer 130 on the magnetic recording layer, and a patterning step of processing the resist layer so as to vary the thickness of the resist layer partially, thereby forming a predetermined pattern having a recessed part and a projected part. Finally, the method includes implanting ions into a plurality of layers including the magnetic recording layer with the resist layer interposed. At the ion implanting step, (1) one or more of said plurality of layers to be implanted with ions is determined by selectively applying an energy amount to implant ions, and (2) a total amount of ions to be implanted into each of said one or more of said plurality of layers is determined by selectively applying said energy amount for a respective time period for said one or more of said plurality of layers.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 23, 2016
    Assignee: WD Media (Singapore) Pte. Ltd
    Inventors: Masanori Aniya, Yoshiaki Sonobe
  • Patent number: 8889274
    Abstract: An apparatus having a recording layer of a magnetic material with a concentration of implanted ions that increases in relation to a thickness direction of the recording layer to provide the recording layer with a continuously varied perpendicular magnetic anisotropy constant.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: November 18, 2014
    Assignee: Seagate Technology International
    Inventors: Seong-yong Yoon, Chee-kheng Lim, Hoo-san Lee, Hoon-sang Oh, Sok-hyun Kong
  • Patent number: 8852762
    Abstract: A synthetic antiferromagnetic device includes a reference layer having a first and second ruthenium layer, a magnesium oxide spacer layer disposed on the reference layer, a cobalt iron boron layer disposed on the magnesium oxide spacer layer and a third ruthenium layer disposed on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0 angstroms to 18 angstroms.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Patent number: 8852677
    Abstract: A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Patent number: 8822047
    Abstract: A method for making a master mold that is used in the nanoimprinting process to make patterned-media disks with patterned data islands uses guided self-assembly of a block copolymer into its components. Conventional or e-beam lithography is used to first form a pattern of generally radial stripes on a substrate, with the stripes being grouped into annular zones or bands. A block copolymer material is then deposited on the pattern, resulting in guided self-assembly of the block copolymer into its components to multiply the generally radial stripes into generally radial lines. Various methods, including conventional lithography, guided self-assembly of a second block copolymer, and e-beam lithography, are then used to form concentric rings over the generally radial lines. After etching and resist removal, the master mold has a pattern of either pillars or holes, depending on the method used.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 2, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Elizabeth Ann Dobisz, Ricardo Ruiz
  • Patent number: 8795763
    Abstract: A track shield structure is disclosed that enables higher track density to be achieved in a patterned track medium without increasing adjacent track erasure and side reading. This is accomplished by placing a soft magnetic shielding structure in the space that is present between the tracks in the patterned medium. A process for manufacturing the added shielding structure is also described.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 5, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Lijie Guan, Kunliang Zhang
  • Patent number: 8785009
    Abstract: A magnetic recording medium includes a plurality of recording tracks magnetically continuous with respect to a recording direction and arranged intermittently in a track width direction, a plurality of recording dots intermittently formed in the recording tracks in the recording direction and a plurality of space dots alternately formed in the recording track with the recording dots in the recording direction and having a magnetic moment per unit area smaller than a magnetic moment per unit area of the recording dots.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: July 22, 2014
    Assignee: Fujitsu Limited
    Inventor: Hiroto Takeshita
  • Patent number: 8771848
    Abstract: A bit patterned magnetic recording medium, comprises a non-magnetic substrate having a surface; a plurality of spaced apart magnetic elements on the surface, each of the elements constituting a discrete magnetic domain or bit; and a layer of a ferromagnetic material for regulating magnetic exchange coupling between said magnetic elements. The layer has a saturation magnetization Ms ranging from about 1 to about 2,000 emu/cm3, preferably below about 400 emu/cm3, more preferably below about 200 emu/cm3, and may overlie, underlie, or at least partially fill spaces between adjacent magnetic elements.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: July 8, 2014
    Assignee: Seagate Technology LLC
    Inventors: Erol Girt, Hans J. Richter, Alexander Y. Dobin
  • Patent number: 8717710
    Abstract: In one embodiment, a magnetic recording medium includes a magnetic recording layer including a magnetic material characterized by having convex and concave portions, the convex portions acting as magnetic regions, a nonmagnetic material positioned within each concave portion of the magnetic material which act as nonmagnetic regions that separate the magnetic regions, an organic material layer which exhibits a corrosion-inhibiting characteristic with respect to cobalt or cobalt alloy positioned on a nonmagnetic region side of each concave portion, and an oxide layer and/or hydroxide layer positioned adjacent the organic material layer on a magnetic region side of each concave portion of the magnetic material. In another embodiment, the magnetic recording medium may be a patterned recording layer having a protective film, and the oxide layer and/or hydroxide layer may be positioned at least in defect portions of the protective film.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: May 6, 2014
    Assignee: HGST Netherlands, B.V.
    Inventors: Qing Dai, Bruno Marchon, Katsumi Mabuchi, Mina Amo
  • Patent number: 8710602
    Abstract: A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, a free layer, at least one insulating layer, and at least one magnetic insertion layer adjoining the at least one insulating layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The at least one insulating layer is adjacent to at least one of the free layer and the pinned layer. The at least one magnetic insertion layer adjoins the at least one insulating layer. In some aspects, the insulating layer(s) include at least one of magnesium oxide, aluminum oxide, tantalum oxide, ruthenium oxide, titanium oxide, and nickel oxide The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xueti Tang, Dmytro Apalkov, Steven M. Watts, Kiseok Moon, Vladimir Nikitin
  • Patent number: 8698259
    Abstract: A magnetic junction is described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The magnetic junction may also include an additional nonmagnetic spacer layer and an additional pinned layer opposing the nonmagnetic spacer layer and the pinned layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer is configured to be switchable using a write current passed through the magnetic junction. The free layer is also configured to be thermally stable in a quiescent state and have a reduced thermal stability due to heating from the write current being passed through the magnetic junction. In some aspects, the free layer includes at least one of a pinning layer(s) interleaved with ferromagnetic layer(s), two sets of interleaved ferromagnetic layers having different Curie temperatures, and a ferrimagnet having a saturation magnetization that increases with temperature between ferromagnetic layers.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mohamad Towfik Krounbi, Dmytro Apalkov, Xueti Tang, Vladimir Nikitin
  • Patent number: 8685546
    Abstract: Provided is a recording medium suitable for use in magnetic transfer of a servo pattern onto a magnetic recording medium. The recording medium includes a substrate including a plurality of servo regions and a plurality of data regions, and a magnetic layer formed on each of the servo regions and patterned in the shape of a servo pattern to be patterned on a magnetic recording medium, wherein the servo regions protrude relative to the data regions.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: April 1, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kyoung-won Na, Myung-bok Lee, Sang-chul Sul, Jin-seung Sohn
  • Publication number: 20140037990
    Abstract: A synthetic antiferromagnetic device includes a reference layer having a first and second ruthenium layer, a magnesium oxide spacer layer disposed on the reference layer, a cobalt iron boron layer disposed on the magnesium oxide spacer layer and a third ruthenium layer disposed on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0 angstroms to 18 angstroms.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Publication number: 20140004387
    Abstract: An apparatus and associated method provides a magnetic writing element that may have at least a write pole tuned to a predetermined first grain size with a cryogenic substrate temperature. A magnetic shield can be formed with a predetermined second grain size that is tuned with the cryogenic substrate temperature.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Venkateswara Rao Inturi, Wei Tian, Huaqing Yin, Michael C. Kautzky, Mark Thomas Kief, Meng Zhu, Eliot Lewis Cuthbert Estrine
  • Patent number: 8609261
    Abstract: There are provided titanium oxide particles capable of manifesting an unprecedented property, a manufacturing method thereof and a magnetic memory as well as a charge storage type memory employing the titanium oxide particles. Unlike-conventional bulk bodies phase-transited between nonmagnetic semiconductors and paramagnetic metals around about 460K, provided are titanium oxide particles 3 capable of manifesting an unprecedented property that Ti3O5 particles do not undergo phase transitions at room temperature and allow a paramagnetic metal property thereof to be consistently maintained in any temperature range.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: December 17, 2013
    Assignee: The University of Tokyo
    Inventors: Shin-ichi Ohkoshi, Tomoyuki Matsuda, Yoshihide Tsunobuchi, Kazuhito Hashimoto, Hiroko Tokoro
  • Patent number: 8535816
    Abstract: There are provided a fine structural body capable of manifesting an unprecedented property; a manufacturing method thereof; and a magnetic memory, a charge storage memory and an optical information recording medium employing such fine structural body. Unlike conventional bulk bodies phase-transited between nonmagnetic semiconductors and paramagnetic metals around about 460K, there can be provided a fine structural body 1 comprised of Ti3O5, but capable of manifesting an unprecedented property in which a paramagnetic metal property thereof is consistently maintained in all temperature ranges without undergoing phase transition to a nonmagnetic semiconductor.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: September 17, 2013
    Assignee: The University of Tokyo
    Inventors: Shin-ichi Ohkoshi, Yoshihide Tsunobuchi, Hiroko Tokoro, Fumiyoshi Hakoe, Kazuhito Hashimoto
  • Publication number: 20130230741
    Abstract: A CoFeB or CoFeNiB magnetic layer wherein the boron content is 25 to 40 atomic % and with a thickness <20 Angstroms is used to achieve high perpendicular magnetic anisotropy and enhanced thermal stability in magnetic devices. A dusting layer made of Co, Ni, Fe or alloy thereof is added to top and bottom surfaces of the CoFeB layer to increase magnetoresistance as well as improve Hc and Hk. Another embodiment includes a non-magnetic metal insertion in the CoFeB free layer. The CoFeB layer with elevated B content may be incorporated as a free layer, dipole layer, or reference layer in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Thermal stability is increased such that substantial Hk is retained after annealing to at least 400° C. for 1 hour. Ku enhancement is achieved and the retention time of a memory cell for STT-MRAM designs is increased.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: Headway Technologies, Inc.
    Inventors: Yu-Jen Wang, Witold Kula, Guenole Jan
  • Patent number: 8513356
    Abstract: A diblock copolymer blend containing a unique combination of an ordered poly(styrene)-b-poly(methyl methacrylate) diblock copolymer and a disordered poly(styrene)-b-poly(methyl methacrylate) diblock copolymer is provided. Also provided are substrates treated with the diblock copolymer blend.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: August 20, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Rahul Sharma, Valeriy V. Ginzburg, Phillip D. Hustad, Jeffrey D. Weinhold
  • Patent number: 8455117
    Abstract: A method of producing bit-patterned media is provided whereby a shell structure is added on a bit-patterned media dot. The shell may be an antiferromagnetic material that will help stabilize the magnetization configuration at the remanent state due to exchange coupling between the dot and its shell. Therefore, this approach also improves the thermal stability of the media dot and helps each individual media dot maintain a single domain state.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: June 4, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Song Xue
  • Publication number: 20130128378
    Abstract: A medium may be provided. The medium includes a servo layer, a data recording layer, and a heat sink layer disposed between the servo layer and the recording layer.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 23, 2013
    Inventors: Zhimin YUAN, Bo LIU, Jianzhong SHI, Weidong ZHOU
  • Patent number: 8445122
    Abstract: A data storage medium includes a carrier substrate having an electrode layer on the surface thereof and a sensitive material layer extending along the electrode layeradapted to be locally modified between two electrical states by the action of a localized electric field. A reference plane extends globally parallel to the sensitive material layer and is configured to accommodate at least one element for application of an electrostatic field in combination with the electrode layer the electrode layer including a plurality of conductive portions having a dimension at most equal to 100 nm in at least one direction parallel to the reference plane and separated by at least one electrically insulative zone, where at least some of the conductive portions are electrically interconnected, the conductive portions defining data write/read locations within the sensitive material layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 21, 2013
    Assignees: Commissariat a l 'Energie Atomique, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Chrystel Deguet, Laurent Clavelier, Franck Fournel, Jean-Sebastien Moulet
  • Publication number: 20130114165
    Abstract: A magnetic media for magnetic data recording having a plurality of magnetic grains protected by thin layers of graphitic carbon. The layers of graphitic carbon are formed in a manner similar to onion skins on an onion and can be constructed as single monatomic layers of carbon. The thin layers of graphitic carbon can be formed as layers of graphene or as fullerenes that either cover or partially encapsulate the magnetic gains. The layers of graphitic carbon provide excellent protection against corrosion and wear and greatly reduce magnetic spacing for improved magnetic performance.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Oleksandr Mosendz, Simone Pisana, Franck D. R. dit Rose, Dieter K. Weller
  • Patent number: 8431256
    Abstract: Provided is a magnetic anisotropy multilayer including a plurality of CoFeSiB/Pt layers used in a magnetic random access memory. The magnetic anisotropy multilayer includes a first Pt/CoFeSiB layer, and a second Pt/CoFeSiB layer formed on the first Pt/CoFeSiB layer.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: April 30, 2013
    Assignee: Korea University Foundation
    Inventors: Young Keun Kim, You-Song Kim, Byong-Sun Chun, Seung-Youb Han, Jang-Roh Rhee
  • Publication number: 20130083422
    Abstract: In one embodiment, a magnetic disk medium includes a nonmagnetic substrate, a magnetic recording layer above the nonmagnetic substrate, a protective layer above the magnetic recording layer, and a lubricant layer above the protective layer, the lubricant layer including a mixture of a compound having one or more cyclophosphazene groups and a lubricant formulated R1-OCH2CF2CF2O(CF2CF2CF2O)mCF2CF2CH2O—R2, wherein R1 and R2 are alkyl chains having at least two hydroxyl groups each, and m is an integer indicating a number of repeating units. According to another embodiment, a magnetic disk medium lubricant includes a mixture of a compound having one or more cyclophosphazene groups and a lubricant formulated as above, such that a magnetic head is provided stable flight above the lubricant layer in conditions having relative humidity of greater than about 40%.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yoshihiko Ooeda, Yuzuru Shimazaki, Mina Amo, Yuichi Aoki, Robert Waltman
  • Publication number: 20130070518
    Abstract: An antiferromagnetic nanostructure according to one embodiment includes an array of at least two antiferromagnetically coupled magnetic atoms having at least two magnetic states that are stable for at least one picosecond even in the absence of interaction with an external structure, the array having a net magnetic moment of zero or about zero, wherein the array has 100 atoms or less along a longest dimension thereof. An atomic-scale structure according to one embodiment has a net magnetic moment of zero or about zero; two or more stable magnetic states; and having an array of atoms that has magnetic moments that alternate between adjacent magnetic atoms along one or more directions. Such structures may be used to store data at ultra-high densities.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Donald M. Eigler, Andreas J. Heinrich, Sebastian Loth, Christopher P. Lutz
  • Patent number: 8394514
    Abstract: A method for producing a magnetic recording medium having a magnetically partitioned magnetic recording pattern on a surface of a nonmagnetic substrate, which comprises the following steps. Step (A) of forming a magnetic layer on a non-magnetic substrate, step (B) of forming a carbon layer on the magnetic layer, step (C) of forming a resist layer on the carbon layer, step (D) of forming a negative pattern of magnetic recording pattern on the resist layer, step (E) of removing the portions of resist layer and carbon layer in regions corresponding to the negative pattern, step (F) of removing at least a surface layer portion of the magnetic layer in the regions corresponding to the negative pattern, and optional step (G) of removing the residual resist layer and carbon layer. The produced magnetic recording medium has a recording/reproducing property equal to or better than conventional ones and exhibits a high recording density.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: March 12, 2013
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Akira Sakawaki, Akira Yamane
  • Patent number: 8377580
    Abstract: A magnetic recording medium 1 includes a substrate 11; and a metallic glassy layer 12 that is arranged on the substrate 11 and has a plurality of convex portions 12A and concave portions 12B. The metallic glassy layer 12 has a chemical composition represented by any one of the formulae (1) to (3): FemPtnSixByPz (wherein, 20<m?60 at %, 20<n?55 at %, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %) (1); Fe55Pt25(SixByPz)20 (wherein, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %) (2); and (Fe0.55Pt0.25Si0.16B0.02P0.02)100-xMx (wherein 0<X?6 at %; and M represents an element or a combination of an two or more of the elements selected from Zr, Nb, Ta, Hf, Ti, Mo, W, V, Cr, Mn, Al, Y, Ag, and rare earth elements.) (3).
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 19, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Akihiro Makino, Akihisa Inoue, Wei Zhang, Hisamichi Kimura
  • Patent number: 8367228
    Abstract: A method for manufacturing a magnetic recording medium for perpendicular magnetic recording includes the steps of forming a first magnetic layer which has magnetic crystal grains exhibiting perpendicular magnetic anisotropy and nonmagnetic substances for magnetically separating the magnetic crystal grains from each other at grain boundaries of the magnetic crystal grains, forming a second magnetic layer which has magnetic grains exchange-coupled to the magnetic crystal grains, a grain boundary width of the magnetic grains being smaller than a grain boundary width of the magnetic crystal grains, and forming separation regions which magnetically separate tracks from each other in regions between the tracks of the magnetic recording medium in at least the second magnetic layer. The separation regions are disposed substantially only in the second magnetic layer of the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: February 5, 2013
    Assignee: WD Media (Singapore) PTE. Ltd.
    Inventors: Yoshiaki Sonobe, Teiichiro Umezawa, Koichi Wago
  • Patent number: 8323808
    Abstract: There is provided a perpendicular magnetic recording medium according to which both the thermal stability of the magnetization is good and writing with a magnetic head is easy, and moreover the SNR is improved. In the case of a perpendicular magnetic recording medium comprising a nonmagnetic substrate 1, and at least a nonmagnetic underlayer 2, a magnetic recording layer 3 and a protective layer 4 formed in this order on the nonmagnetic substrate 1, the magnetic recording layer 3 comprises a low Ku region 31 layer having a perpendicular magnetic anisotropy constant (Ku value) of not more than 1×105 erg/cm3, and a high Ku region 32 layer having a Ku value of at least 1×106 erg/cm3. Moreover, the magnetic recording layer 3 is made to have therein nonmagnetic grain boundaries that contain a nonmagnetic oxide and magnetically isolate crystal grains, which are made of a ferromagnetic metal, from one another.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: December 4, 2012
    Assignees: Fuji Electric Co., Ltd., National University Corporation Tohoku University
    Inventors: Osamu Kitakami, Yutaka Shimada, Satoshi Okamoto, Takehito Shimatsu, Hajime Aoi, Hiroaki Muraoka, Yoshihisa Nakamura, Hiroyuki Uwazumi, Tadaaki Oikawa
  • Patent number: 8318331
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, and a magnetic recording layer formed on the substrate and having patterns of protrusions and recesses corresponding to a servo area and a recording area, in which the magnetic recording layer located in each of the recesses in the recording area has a thickness smaller than two thirds of a thickness of the magnetic recording layer corresponding to each of the protrusions, the magnetic recording layer remaining in each of the recesses in the recording area has a thickness of 1 nm or more, and a difference in height on a surface of the magnetic recording medium is 7 nm or less.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Sakurai, Yoshiyuki Kamata, Satoshi Shirotori
  • Patent number: 8300340
    Abstract: According to one embodiment, a servo area of a magnetic recording medium includes magnetic dots arrayed at a period L0. The magnetic dots include a plurality of magnetic dot regions divided in the cross track direction. A width Wm in the down track direction of the mth magnetic dot region from the innermost circumference and a number Nm of dot rows in the down track direction of the mth region meet a relationship represented by L0{Nm?3/2?0.3}?Wm?L0{Nm?3/2+0.3}??(1).
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: October 30, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Sakurai, Ryosuke Yamamoto, Naoko Kihara, Akiko Yuzawa, Yoshiyuki Kamata
  • Publication number: 20120251845
    Abstract: Approaches to reduce switching field distribution in energy assisted magnetic storage devices involve first and second exchange coupled magnetic elements. The first magnetic elements have anisotropy, Hk1, volume, V1 and the second magnetic elements are magnetically exchange coupled to the first magnetic elements and have anisotropy Hk2, and volume V2. The thermal stability of the exchange coupled magnetic elements is greater than about 60 kBT at a storage temperature of about 300 K. The magnetic switching field distribution, SFD, of the exchange coupled magnetic elements is less than about 200% at a predetermined magnetic switching field and a predetermined assisting switching energy.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Xiaobin Wang, Kaizhong Gao
  • Publication number: 20120225323
    Abstract: Disclosed is a thermal diffusion control film to be used in a magnetic medium for thermally assisted recording, said thermal diffusion control film maintaining a high heat conductivity, and at the same time, having all of a high thermal diffusivity, a smooth surface roughness, and a high heat resistance. The thermal diffusion control film, i.e., an Ag alloy thermal diffusion control film, is composed of an Ag alloy having Ag as a main component, and satisfies a surface roughness (Ra) of 1.0 nm or less, a heat conductivity of 100 W/(m·K) or more, and a thermal diffusivity of 4.0×10?5 m2/s or more.
    Type: Application
    Filed: November 17, 2010
    Publication date: September 6, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Junichi Nakai, Yuki Tauchi
  • Patent number: 8252437
    Abstract: A magnetic recording disk has surface features of elevated lands and recessed grooves, and a planarized upper surface. A chemical-mechanical-polishing (CMP) stop layer is deposited over the lands and into the recesses. An adhesion film, like silicon, is deposited over the CMP stop layer, and fill material containing a silicon oxide (SiOx) is deposited over and in contact with the adhesion film. The adhesion film improves the adhesion of the SiOx fill material and prevents delamination during a subsequent two-step CMP planarizing process.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 28, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Vijay Prakash Singh Rawat, Kurt Allan Rubin
  • Patent number: 8247094
    Abstract: The present invention relates to a perpendicular magnetic recording medium including a nonmagnetic substrate, and at least a soft magnetic layer (SUL), an alignment control layer, a magnetic recording layer and a protective layer formed on the nonmagnetic substrate; wherein the magnetic recording layer is constituted of three or more layers and includes a first magnetic recording layer, a second magnetic recording layer and a third magnetic recording layer from the substrate side, and also includes an exchange coupling reduction layer for reducing exchange coupling of both layers between the second magnetic recording layer and the third magnetic recording layer and, regarding magnetocrystalline anisotropic energy Ku of each magnetic recording layer, the first magnetic recording layer has 4×106 erg/cc or higher, the second magnetic recording layer has 2×106 erg/cc or lower and the third magnetic recording layer has 1×106 erg/cc or lower.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 21, 2012
    Assignee: Showa Denko K.K.
    Inventor: Yuzo Sasaki
  • Publication number: 20120188663
    Abstract: An aspect of the present invention relates to a glass substrate for a magnetic recording medium, which is comprised of glass with a glass transition temperature of equal to or greater than 600° C., an average coefficient of linear expansion at 100 to 300° C. of equal to or greater than 70×10?7/° C., a Young's modulus of equal to or greater than 81 GPa, a specific modulus of elasticity of equal to or greater than 30 MNm/kg, and a fracture toughness value of equal to or greater than 0.9 MPa·m1/2.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 26, 2012
    Applicant: HOYA CORPORATION
    Inventors: Hideki ISONO, Kinobu OSAKABE, Katsuyuki IWATA, Mikio IKENISHI, Naomi MATSUMOTO
  • Publication number: 20120170357
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a plurality of nonmagnetic spacer layers, and a plurality of free layers. The free layers are interleaved with the nonmagnetic spacer layers. A first nonmagnetic spacer layer of the nonmagnetic spacer layers is between the free layers and the pinned layer. Each of the free layers is configured to be switchable between stable magnetic states when a write current is passed through the magnetic junction. Each of the free layers has a critical switching current density. The critical switching current density of one of the free layers changes monotonically from the critical switching current density of an adjacent free layer. The adjacent free layer is between the pinned layer and the one of the plurality of free layers.
    Type: Application
    Filed: February 18, 2011
    Publication date: July 5, 2012
    Applicant: GRANDIS, INC.
    Inventors: Dmytro Apalkov, Xueti Tang, Vladimir Nikitin, Alexander A.G. Driskill-Smith
  • Publication number: 20120155156
    Abstract: A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
    Type: Application
    Filed: February 25, 2011
    Publication date: June 21, 2012
    Applicant: Grandis, Inc.
    Inventors: Steven M. Watts, Zhitao Diao, Xueti Tang, Kiseok Moon, Mohamad Towfik Krounbi
  • Publication number: 20120114976
    Abstract: The present invention provides a sputtering target essentially consisting of cobalt-platinum-copper oxide-oxide (CoPt—CuO-oxide), cobalt-chrome-platinum-copper oxide-oxide (CoCrPt—CuO-oxide), or cobalt-chrome-platinum-boron-copper oxide-oxide (CoCrPtB—CuO-oxide) with addition of CuO. The sputtering target is applied to a recording material of a magnetic recording medium. The thickness of the oxide grain boundary in the sputtering target is reduced, resulting from the decreased amount of oxide in the sputtering target, to allow a sputtering process utilizing the same to become more stable. Further, the volume of the magnetic grains per unit area is increased, whereby a better thermal stability and a high recording density are acquired.
    Type: Application
    Filed: October 14, 2011
    Publication date: May 10, 2012
    Applicant: Solar Applied Materials Technology Corp
    Inventors: Sheang-Hsien Rou, Wen-Tsang Liu, Shou-Hsien Lin
  • Publication number: 20120114975
    Abstract: Disclosed is a sputtering target and its application to the recording material of hard disks wherein the sputtering target comprises cobalt-platinum (CoPt), cobalt-chrome-platinum (CoCrPt) or cobalt-chrome-platinum-boron (CoCrPtB) and a combination of oxides. A recording material is formed by the sputtering target through the sputtering process as a high areal recording density hard disk, which essentially has silica oxide (SiO2) and Cr2O3, wherein the amount of silica oxide (SiO2) ranges from 4 to 8 atomic % and the amount of chromium oxide (Cr2O3) ranges from 0.8 atomic % to 5 atomic %. The present invention is characterized by Cr2O3 as an oxygen supplier during sputtering process to donate oxygen to the oxygen defects. The sputtering target containing the combination of oxides is used to form a recording material applied as a recording layer of magnetic recording medium of hard disks, resulting in enhancement of the areal recording density of medium storage.
    Type: Application
    Filed: October 14, 2011
    Publication date: May 10, 2012
    Applicant: Solar Applied Materials Technology Corp.
    Inventors: Wen-Tsang Liu, Shou-Hsien Lin
  • Publication number: 20120099220
    Abstract: In one embodiment, a perpendicular magnetic recording medium includes a crystalline seed layer having a pseudo-hcp structure with stacking faults formed above a soft magnetic underlayer, a first interlayer comprising Ru and one of W, Ta, Mo, and Nb formed above the crystalline seed layer, a second interlayer formed above the first interlayer, and a magnetic recording layer formed above the second interlayer. The first interlayer has a W concentration between about 32 at % and 50 at %, Mo in a concentration between about 36 at % and 52 at %, Ta in a concentration between about 20 at % and 30 at %, or Nb in a concentration between about 7 at % and 30 at %. In another embodiment, a system includes a recording medium as described above, a magnetic head for reading from and/or writing to the medium, a head slider for supporting the head, and a control unit coupled to the head.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B. V.
    Inventors: Ichiro Tamai, Yotsuo Yahisa, Akemi Hirotsune
  • Publication number: 20120082865
    Abstract: A method for forming magnetic media is provided. The method of forming the magnetic media includes forming a plurality of regions of resist material on a top surface of a substrate which defines a plurality of regions of exposed substrate on the top surface of the substrate between adjacent ones of the plurality of regions of resist material. The method also includes forming magnetic material on the plurality of regions of resist material and the plurality of regions of exposed substrate and depositing material over the magnetic material, the material encapsulating a portion of the magnetic material formed on the plurality of regions of exposed substrate. A magnetic recording medium formed in accordance with the method is also provided.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Jie DENG, Yunjie CHEN, Jianzhong SHI, Baoyu ZONG, Tianli HUANG, Siang Huei LEONG
  • Patent number: 8147996
    Abstract: A recording medium having a substrate, a first soft magnetic underlayer, a second soft magnetic underlayer and a perpendicular magnetic recording layer without a spacer layer between the first and second soft magnetic underlayers is disclosed.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: April 3, 2012
    Assignee: Seagate Technology LLC
    Inventors: Qixu Chen, Charles Frederick Brucker, Chung-Hee Chang, Thomas Patrick Nolan, Samuel Dacke Harkness, IV
  • Patent number: 8139303
    Abstract: A method for the production of a magnetic recording medium includes the steps of forming a magnetic layer on a nonmagnetic substrate, injecting atoms into portions of the magnetic layer to cause the portions to be demagnetized or allowed to acquire amorphousness, thereby forming a magnetically separated magnetic recording pattern, the step of injecting atoms including the steps of applying to a surface of the formed magnetic layer an SOG film as a resist, partly removing or thinning the resist, and irradiating the surface with atoms, thereby partly injecting atoms into the magnetic layer through the portions of the magnetic layer from which the resist is removed or in which the resist is thinned.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: March 20, 2012
    Assignee: Showa Denko K.K.
    Inventors: Akira Sakawaki, Masato Fukushima
  • Publication number: 20120064373
    Abstract: A technique for manufacturing hit pattern media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing bit pattern media. The method may comprise forming an intermediate layer comprising a modified region and a first region adjacent to one another, where the modified region and the first region may have at least one different property; depositing magnetic species on the first region of the intermediate layer to form an active region; and depositing non-ferromagnetic species on the modified region of the intermediate layer to form a separator.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES,INC.
    Inventors: Frank SINCLAIR, Julian G. Blake
  • Patent number: 8097351
    Abstract: A magnetic recording apparatus has a magnetic recording media including a substrate and a magnetic layer containing magnetic patterns on the substrate, the magnetic layer including data zones to constitute recoding tracks and servo zones, the magnetic patterns of the servo zones being used as address bits, and a magnetic head configured to read signals from the magnetic recording media while flying over the magnetic recording media, in which, in a case where two magnetic patterns used as address bits on the servo zones corresponding to two adjacent recording tracks are arranged in such a manner that one corner of one magnetic pattern is closest to one corner of the other magnetic pattern, the corners of the two magnetic patterns are substantially separated from each other.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: January 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Okino, Seiji Morita, Yoshiyuki Kamata, Satoshi Shirotori, Masatoshi Sakurai, Hiroaki Nakamura