Holographic Process, Composition, Or Product Patents (Class 430/1)
  • Patent number: 9733566
    Abstract: Techniques disclosed herein include methods for creating a directed self-assembly tunable neutral layer that works with multiple different block copolymer materials. Techniques herein can include depositing a neutral layer and then post-processing this neutral layer to tune its characteristics so that the neutral layer is compatible with a particular block copolymer scheme or schemes. Post-processing herein of such a neutral layer can modify a ratio of pi and sigma bonds in a given carbon film or other film to approximate a given self-assembly film that will be deposited on this neutral layer. Accordingly, a generic or single material can be used for a neutral layer and modified to match a given block copolymer to be deposited.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: August 15, 2017
    Assignee: Tokyo Electron Limited
    Inventor: Jeffrey Smith
  • Patent number: 9594345
    Abstract: Hybrid white-light viewable holograms and methods for making them. The holograms are hybrid reflection holograms made using the diffractive structures or gratings of a holographic object such as a transmission hologram or holographic optical element (HOE). The wavefronts of the diffractive structures are converted into a reflection hologram by scanning them with a coherent light source having a profiled narrow beam. The hybrid reflection hologram can exhibit display parameters including the multiple colors, solidity, and color stability of white light reflection holograms, the diffractive color shifting of a white light transmission hologram, three dimensional imaging and a wide variety of dynamic changes. Different areas or images with each of these effects can be combined in a single hologram. These hybrid reflection holograms are ideal for security and forgery prevention applications.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: March 14, 2017
    Assignee: DiARTs AG S.A.
    Inventor: Ken R. Harris
  • Patent number: 9529324
    Abstract: A main object of the present invention is to provide a method of producing a volume hologram laminate which can regenerate a hologram image in an arbitrary wavelength by a simple process. To attain the object, the present invention provides a method of producing a volume hologram laminate using a volume hologram forming substrate which comprises: a substrate, a volume hologram layer formed on the substrate and containing a photopolymerizable material, a resin layer, formed on the substrate so as to contact to the volume hologram layer, containing a resin and a polymerizable compound, characterized in that the producing method comprises processes of: a hologram recording process to record a volume hologram to the volume hologram layer, a substance transit process of transiting the polymerizable compound to the volume hologram layer, and an after-treatment process of polymerizing the polymerizable compound.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 27, 2016
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Minoru Azakami, Koji Eto, Hiroyuki Ohtaki, Yoshihito Maeno, Sakurako Hatori
  • Patent number: 9505652
    Abstract: Provided is a low-emissivity transparent laminate comprising a transparent substrate and a coating layer placed on the transparent substrate, wherein the coating layer has a multilayered structure sequentially comprising a low-emissivity layer, a buffer layer comprising a ZnSe-based composite metal nitride, and a dielectric layer from the transparent substrate.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 29, 2016
    Assignee: LG HAUSYS, LTD.
    Inventors: Ung Kil Kim, Youn Ki Jun, Dae Hoon Kwon
  • Patent number: 9454130
    Abstract: The subject matter of the invention is a method for producing illuminated, holographic media comprising a photopolymer formulation having the adjustable mechanical modulus GUV. A further subject matter of the invention is an illuminated, holographic medium that can be obtained by means of the method according to the invention.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: September 27, 2016
    Assignee: Covestro Deutschland AG
    Inventors: Marc-Stephan Weiser, Thomas Roelle, Friedrich-Karl Bruder, Thomas Fäcke, Dennis Hönel
  • Patent number: 9423770
    Abstract: Technologies are generally described for generating a holographic image on a transparent screen such that a user can view another scenery image though the screen along with the generated holographic image. Example devices may include an ultraviolet light irradiation unit configured to irradiate an ultraviolet light towards a hologram generating unit. The holographic generating unit may be configured to generate a hologram image in response to the received ultraviolet light. Further, the light irradiation unit and the hologram generating unit may be operable to project the hologram image onto a transparent screen coated with a photochromic material. The light transmittance of the photochromic material coated on the transparent screen may change when a light beam with a specific frequency range is irradiated on the photochromic material. The example device may further include a hologram reconstruction light source configured to irradiate a hologram reconstruction light on the transparent screen.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: August 23, 2016
    Assignee: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Eiji Yamaichi
  • Patent number: 9330706
    Abstract: This invention teaches a methodology and an optical apparatus that provides long-term, archival storage using a chemically stable, high-resolution, photosensitive emulsion, such as silver halide, for the long-term, archival storage and retrieval of data, images and text. Multiple state data substantially increasing data density is stored as vertical diffraction gratings in the archival photosensitive emulsion. The data can be read out in parallel, substantially increasing retrieval speeds beyond that of current optical and magnetic techniques.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 3, 2016
    Inventors: Eric Dean Rosenthal, Richard Jay Solomon, Clark Eugene Johnson, Brian David Solomon, Jonathan Michael Smith
  • Patent number: 9316787
    Abstract: A method of fabricating a silicon photonic device and a system including a silicon photonic device are described. The method includes forming a photoresist layer on a silicon layer and patterning a mask formed on the photoresist layer. The patterning defines a primary optical waveguide region, a first evanescent perturbation grating region on a first side of the primary optical waveguide region and a second evanescent perturbation grating region on a second side, opposite the first side, of the primary optical waveguide. The first evanescent perturbation grating region and the second evanescent perturbation grating region are defined as continuous regions along a length of the silicon photonic device. The method also includes etching the photoresist layer and the silicon layer according to a pattern of the patterned mask.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: April 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jason S. Orcutt, Fnu Purnawirman
  • Patent number: 9318667
    Abstract: A method of producing a light-emitting diode includes providing at least one light-emitting diode chip, providing a suspension comprising a solvent and particles of at least one luminescent material, arranging the at least one light-emitting diode chip in the suspension, electrophoretically depositing the particles on an outer face of the at least one light-emitting diode chip, and completing the light-emitting diode.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: April 19, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Ion Stoll, Hans-Christoph Gallmeier, Kirstin Petersen
  • Patent number: 9266371
    Abstract: A display includes a substrate with a light-transmitting property, a relief structure-forming layer disposed on at least one surface of the substrate and including a relief-structured region on a surface thereof opposite to its surface in contact with the substrate, a light-reflecting layer disposed on the surface of the relief structure-forming layer including the relief-structured region, and a printed layer formed on a surface of the substrate opposite to the surface on which the relief structure-forming layer is disposed, or between the relief structure-forming layer and the light-reflecting layer, or on a side of the light-reflecting layer opposite to its surface in contact with the relief structure-forming layer. The relief-structured region is constituted by recessed or protruding portions arranged two-dimensionally, has low reflectivity and low diffusibility under a normal illumination condition, and exhibits a diffracted light-emitting property under a specific condition.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: February 23, 2016
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventors: Toshiki Toda, Akira Nagano, Shingo Maruyama, Seiko Matsuno
  • Patent number: 9261778
    Abstract: The present invention relates to a layer composite comprising an exposed photopolymer film and an adhesive layer which is connected to the photopolymer film at least in certain regions, wherein the photopolymer film comprises crosslinked polyurethane matrix polymers A), crosslinked writing monomers B) and a monomeric fluoroethane additive C), wherein the adhesive layer is in the form of a diffusion barrier for the fluoroethane additive C). The invention also relates to the use of the layer composite for producing chip cards, ID documents or 3D images, as a product protective label, as a label, in banknotes in the form of a strip or window or as holographically optical elements in displays.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 16, 2016
    Assignee: Covestro Deutschland AG
    Inventors: Marc-Stephan Weiser, Sascha Tadjbach, Ute Flemm, Dennis Hönel, Friedrich-Karl Bruder, Thomas Fäcke, Thomas Rölle, Horst Berneth
  • Patent number: 9237749
    Abstract: The present invention relates to combinations of the pyrion compounds sodium pyrithione and 1-hydroxy-2-pyridinone, and polyethyleneimines (PEI) which provide an improved biocidal effect. More particularly, the present invention relates to compositions comprising a combination of a pyrion compound selected from sodium pyrithione and 1-hydroxy-2-pyridinone together with polyethyleneimines; in respective proportions to provide a synergistic biocidal effect. Compositions comprising these combinations are useful for the protection of any living or non-living material, such as crops, plants, fruits, seeds, objects made of wood, thatch or the like, engineering material, biodegradable material and textiles against deterioration due to the action of microorganisms such as bacteria, fungi, yeasts, algae, viruses, and the like.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 19, 2016
    Assignee: Janssen Pharmaceutica N.V.
    Inventors: Dany Leopold Jozefien Bylemans, Miguel F. C. De Bolle
  • Patent number: 9223206
    Abstract: A photosensitive resin composition includes (A) an alkali-soluble resin, (B) a polysiloxane, (C) an ethylenically unsaturated compound, (D) a photo-initiator, (E) a solvent, (F) a black pigment, and (G) a metal chelate. The alkali-soluble resin (A) includes an unsaturated-group-containing resin (A-1) obtained by subjecting a mixture containing (i) an epoxy compound having at least two epoxy groups and (ii) a compound having at least one carboxyl group and at least one ethylenically unsaturated group to polymerization.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 29, 2015
    Assignee: Chi Mei Corporation
    Inventors: Ching-Yuan Tseng, Hao-Wei Liao
  • Patent number: 9207533
    Abstract: A photopolymerizable composition has seven essential components: (a) a photopolymerizable epoxy material, (b) a photoacid generator such as an onium salt, (c) electron acceptor photosensitizer, (d) an electron donor co-initiator having an oxidation potential of 0.1 V to 3 V vs. SCE, (e) metal particles, and in some embodiments, (f) one or more free radically polymerizable compounds, and (g) one or more free radical photoinitiators. This photopolymerizable composition can be applied or printed onto one or both sides of various substrates to form articles that can be used to form electrically conductive materials. Methods for using the photopolymerizable compositions include electroless plating methods that can be carried out in roll-to-roll printing and plating systems once various photocured patterns are formed from the photopolymerizable compositions.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 8, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Mark R. Mis
  • Patent number: 9195139
    Abstract: Methods of and apparatus for performing direct-write lithography in a two-color photoresist layer are disclosed. The method includes exposing the two-color photoresist layer with transducer and inhibition images that respectively define bright spots and dark spots. The transducer image generates excited-state photo-molecules while the inhibition image converts the exited-state photo-molecules to an unexcited state that is not susceptible to conversion to an irreversible exposed state. The dark spots and bright spots are aligned, with the dark spots being smaller than the bright spots so that a portion of the excited-state photo-molecules adjacent the periphery of the bright spots absorb the inhibition radiation and transition to the unexcited state while a portion of the excited photo-molecules at the center of bright spots are not exposed to the inhibition light and transition to an irreversible exposed state. This forms in the two-color photoresist layer a pattern of sub-resolution photoresist pixels.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: November 24, 2015
    Assignee: Periodic Structures, Inc.
    Inventors: David A. Markle, John S. Petersen
  • Patent number: 9104176
    Abstract: The invention relates to a method for the production of a multicolor hologram by means of a capture beam, wherein the utilized capture beam (6) has a plurality of beam bundles of the same wavelength. Advantageously, the multicolor hologram is produced by copying the structure of multiple single-color subholograms of a master hologram (1) in a copy layer (5) which is affixed parallel to the master hologram, by illuminating this copy layer with the single-color capture beam. Each beam bundle appears at a prespecified angle of incidence, wherein the angles of incidence are calculated in such a manner that the structure of a corresponding subhologram is produced in the copy layer. In this way, a falsification is nearly impossible.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: August 11, 2015
    Assignee: Hologram Industries Research GmbH
    Inventors: Guenther Dausmann, Zishao Yang
  • Patent number: 9073296
    Abstract: The present invention relates to a laminate structure comprising a protective layer and an exposed photopolymer layer, the laminate structure being obtainable by reacting at least one radiation-curing resin I), an isocyanate-functional resin II) and a photoinitiator system III), and the radiation-curing resin I) containing ?5% by weight of compounds having a weight-average molecular weight of <500 and ?75% by weight of compounds having a weight-average molecular weight of >1000, the isocyanate-functional resin II) containing ?5% by weight of compounds having a weight-average molecular weight of <500, and the protective layer containing the radiation-curing resin I) at least to an extent of 80% by weight and the isocyanate-functional resin II) at most to an extent of 15% by weight. The invention further provides a process for producing the inventive laminate structure.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: July 7, 2015
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Thomas Fäcke, Friedrich-Karl Bruder, Thomas Rölle, Marc-Stephan Weiser, Dennis Hönel, Horst Berneth, Ute Flemm
  • Patent number: 9057946
    Abstract: The invention relates to compounds, of formula (I) in which X is CH3 or hydrogen, Z is a linear or branched C2 to C4 alkyl radical, R is a linear or branched, optionally heteroatom-substituted aliphatic, aromatic or araliphatic radical, Y in each occurrence is independently hydrogen, methyl, ethyl, propyl, n-butyl, tert-butyl, chlorine, bromine, iodine, methylthio, phenyl or phenylthio, n is from 0 to 4 and m is from 0 to 5. The invention further relates to the use of such a compound as writing monomer in a photopolymer formulation. In addition, a photopolymer formulation comprising as least a polyisocyanate component, a polyol component, a photoinitiator and a compound of formula (I) as writing monomer, and also the use of the photopolymer formulation for producing holographic media, are likewise subjects of the invention.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: June 16, 2015
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Thomas Fäcke, Friedrich-Karl Bruder, Thomas Rölle, Marc-Stephan Weiser, Dennis Hönel, Horst Berneth
  • Patent number: 9025226
    Abstract: A holographic structure, system and method project a grey-scale image in a narrow IR spectral band that is related to a broadband thermal signature of an object. The projected grey-scale image, when integrated over the broadband, forms either a decoy that approximates the thermal signature of the object or a mask that obscures the thermal signature of the object. The projected image is a tuned phase recording of a desired far field projection. In different embodiments, the projected image is a “positive” or a “negative” image of the object's thermal signature, a difference image between the thermal signatures of a false object and the object or a camouflage image of random features having approximately the same spatial frequency as the object's thermal signature. The goal being to confuse or fool, even for a short period of time, the warfighting or surveillance system or human observer that uses a broadband IR sensor to acquire and view thermal images of the scene.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 5, 2015
    Assignee: Raytheon Company
    Inventors: Rigel Quinn Woida-O'Brien, Stephanie Barnes
  • Patent number: 9012110
    Abstract: A method for the production of a holographic sensor which comprises a support medium supporting a reflection hologram wherein the support medium interacts with its physical or chemical environment to create an optical response which is a change in one or more optical properties of the hologram, the method comprising the steps of: a) introducing a colloidal dispersion of a recording material into the support medium; and b) ablating the colloidal particles of the recording material using a pulsed laser to form the holographic element in the support medium. The method of production can be used to introduce a reflection holographic grating into a hydrophobic support medium, in particular, polydimethylsiloxane (PDMS), which possesses an extraordinary ability to swell in the presence of both liquid and/or gaseous low molecular weight hydrocarbons and organic solvents and thus has many applications as a holographic sensor.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: April 21, 2015
    Assignee: Cambridge Enterprise Limited
    Inventors: Christopher Robin Lowe, Colin Alexander Bennett Davidson, Jeffrey Blyth
  • Patent number: 8999608
    Abstract: The invention relates to a photopolymer formulation comprising matrix polymers, writing monomers, and photoinitiators, to the use of the photopolymer formulation for producing optical elements, in particular for producing holographic elements and images, to a method for illuminating holographic media made of the photopolymer formulation, and to special fluorourethanes.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 7, 2015
    Assignee: Bayer MaterialScience AG
    Inventors: Thomas Rölle, Friedrich-Karl Bruder, Thomas Fäcke, Marc-Stephan Weiser, Dennis Honel
  • Patent number: 8993219
    Abstract: A method and an apparatus for forming a surface relief microstructure, especially an optically variable image on a paper substrate are provided, the method comprising the steps of: A) applying a curable composition to at least a portion of the frontside of the paper substrate; B) contacting at least a portion of the curable composition with surface relief microstructure, especially optically variable image forming means; C) curing the composition by using at least one UV lamp (1, 2, 3) which is arranged on the backside of the paper substrate; D) optionally depositing a layer of a transparent high refractive index material and/or a metallic layer on at least a portion of the cured composition, wherein the lamp (1, 2, 3) having emission peak(s) in the UV-A and near VIS range and the curable composition comprises at least a photoinitiator which absorbs in the UV-A region and preferably in the near VIS range.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: March 31, 2015
    Assignee: BASF SE
    Inventors: Michelle Richert, Thomas Bolle, Roland Fleury
  • Patent number: 8982437
    Abstract: A hologram recording film manufacturing method includes the steps of obtaining a laminated structure by alternately laminating M (where M?2) photosensitive material precursor layers including a photosensitive material and at least one (M?1) resin layer on one another, obtaining M photosensitive material layers, where at least two interference fringes with a desired pitch and a desired slant angle are formed on each of the M photosensitive material layers, from the M photosensitive material precursor layers by irradiating the laminated structure with a reference laser light beam and an object laser light beam, and making the slant angles of the M photosensitive material layers different from each other while retaining the pitch value, which is defined on a face of the photosensitive material layer, by irradiating the laminated structure with an energy ray from the laminated structure's one face side, and heating the laminated structure.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventors: Mieko Kuwahara, Takuji Yoshida, Katsuyuki Akutsu
  • Patent number: 8956786
    Abstract: The invention is concerned with a volume hologram medium obtained by multiple recording of holograms, which is improved in terms of just only security for forgery prevention but also aesthetics. A volume hologram medium 29? comprises a reflection hologram in which a stereoscopic image of a three-dimensional object and an image of a plane pattern of a mask plate are recorded by interference of the same reference light beams having the same angle of incidence and the same wavelength with object light beams having mutually different angles of incidence. The stereoscopic image of the three-dimensional object is reconstructed in the form of diffracted light 31 in a singlecolor and in angle relations close to recording conditions, and the image of a plane pattern of the mask plate is reconstructed as diffracted light 32b, 32?b at various angles of incidence of white illumination light 30 and in different colors depending on those angles of incidence.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: February 17, 2015
    Assignee: DAI Nippon Printing Co., Ltd.
    Inventor: Daijiro Kodama
  • Patent number: 8927178
    Abstract: The present invention relates to a process for the preparation of a polymeric relief structure by a) coating a substrate with a first coating composition comprising one or more radiation-sensitive ingredients, d) locally treating the coated substrate with electromagnetic radiation having a periodic or random radiation-intensity pattern, forming a latent image, e) polymerizing and/or crosslinking the resulting coated substrate to a first coating. This process is improved by applying a second coating composition on top of the first coating composition, said second coating composition comprising either an organic compound (Co) of a monomeric nature and wherein Co is also polymerized during the process, or wherein said second coating comprises a dissolved polymer (Cp). As a result a polymeric relief structure is obtained, where a substrate is coated with a functional, stacked, bi-layer, in which each layer exhibits a specific, and from each other differing function.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: January 6, 2015
    Assignee: Stichting Dutch Polymer Institute
    Inventors: Cees C. Bastiaansen, Dirk Jan Broer, Carlos C. Sanchez
  • Patent number: 8921012
    Abstract: The subject matter of the invention is a method for producing illuminated, holographic media comprising a photopolymer formulation having the adjustable mechanical modulus GUV. A further subject matter of the invention is an illuminated, holographic medium that can be obtained by means of the method according to the invention.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 30, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Marc-Stephan Weiser, Thomas Rölle, Friedrich-Karl Bruder, Thomas Fäcke, Dennis Hönel
  • Patent number: 8921011
    Abstract: A method is provided for mastering optically variable devices (OVDs) used to authenticate optical discs. The method generally includes the steps of providing a laser beam recorder (LBR), introducing a substrate to the LBR, and exposing a portion of the substrate to the LBR. The mastering system thus includes the LBR, which has a laser that emits a beam, a processor or computer for programming or otherwise controlling the beam in order to expose the substrate and create the desired optical effect. Depending on the material used for the substrate, the exposure is then developed, if necessary, and processed to generate a master for the OVD. The OVD can then be replicated in order to provide authentic resultant products or articles, such as optical discs.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: December 30, 2014
    Assignee: 3dcd, LLC
    Inventors: Nigel C. Abraham, Holger Hofmann, Raymond L. Keating
  • Patent number: 8900775
    Abstract: A hologram recording material includes a polymerizable monomer (A) that is active in radical polymerization but is substantially inactive in cationic polymerization, a polymerizable monomer (B) that is active in cationic polymerization but is substantially inactive in radical polymerization, and an initiator system (C) that polymerizes at least one of the polymerizable monomer (A) and the polymerizable monomer (B) through irradiation with light. The polymerizable monomer (A) and the polymerizable monomer (B) each have, in its structure, a moiety selected from the group consisting of aromatic rings, halogen atoms other than a fluorine atom, and sulfur atoms not derived from a cyclic sulfide or a mercapto group. A hologram recording medium includes a recording layer composed of the hologram recording material.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 2, 2014
    Assignee: TDK Corporation
    Inventors: Naoki Hayashida, Shohei Fujii, Jiro Yoshinari
  • Patent number: 8889322
    Abstract: The invention relates to a photopolymer formulation comprising matrix polymers, writing monomers, and photo initiators, comprising a combination of at least two different writing monomers. The invention further relates to the use of the photopolymer formulation for producing optical elements, in particular for producing holographic elements and images, to a method for producing the photopolymer formulation and to a method for illuminating holographic media made of the photopolymer formulation.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 18, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Marc-Stephan Weiser, Friedrich-Karl Bruder, Thomas Rölle, Thomas Fäcke, Dennis Hönel, Jörg Hofmann
  • Patent number: 8889321
    Abstract: The invention relates to a method for producing a holographic film, wherein a photopolymer formulation comprising matrix polymers, writing monomers, photoinitiator system, and optionally auxiliary materials and additives is provided, the photopolymer formulation is applied as a film to the surface of a substrate, and the film is dried, wherein a photopolymer formulation having a plateau module G0 of =0.03 MPa is used. The invention further relates to a holographic medium that can be obtained by means of the method according to the invention.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 18, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Friedrich-Karl Bruder, Dennis Hönel, Marc-Stephan Weiser, Thomas Rölle, Thomas Fäcke
  • Patent number: 8877408
    Abstract: The invention relates to a photopolymer formulation comprising matrix polymers, writing monomers and photo initiators, to a method for producing said photopolymer formulation, a photopolymer formulation obtained according to said method, a sheeting, a film, a layer, a layer structure or a moulded body made from said photopolymer formulation and to the use of said photopolymer formulation for producing optical elements, in particular for producing holographic elements and images.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 4, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Thomas Rölle, Friedrich-Karl Bruder, Thomas Fäcke, Marc-Stephan Weiser, Dennis Hönel
  • Patent number: 8852829
    Abstract: The present invention relates to a polyurethane composition comprising A) a polyisocyanate component comprising an exclusively diol-based NCO-terminated polyurethane prepolymer, wherein the NCO groups are bonded in a primary manner, B) an isocyanate-reactive polymer, C) a compound having groups which react by polymerizing with an ethylenically unsaturated compound under the action of actinic radiation (radiation-curing groups) wherein the compound is free of NCO groups, D) a free-radical stabilizer, E) a photoinitiator, F) optionally a catalyst, G) optionally assistants and additives.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: October 7, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Marc-Stephan Weiser, Thomas Rölle, Friedrich-Karl Bruder, Thomas Fäcke, Dennis Hönel, Sebastian Dörr, Nicolas Stöckel
  • Patent number: 8852828
    Abstract: This invention provides a volume hologram photosensitive composition, which can realize a hologram having an excellent brightness and, at the same time, having excellent heat resistance and mechanical strength, and a photosensitive medium for volume hologram recording using the volume hologram photosensitive composition. The volume hologram photosensitive composition comprises at least a photopolymerizable monomer, a photopolymerization initiator, a sensitizing dye for sensitizing the initiator, and a binder resin. The binder resin comprises a heat curing resin, and optionally a thermoplastic resin, and the thermoplastic resin is contained in an amount of 0 to 25% by weight based on the total solid content of the photosensitive composition.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: October 7, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Minoru Azakami, Yoshihito Maeno, Hiroyuki Ohtaki
  • Patent number: 8841046
    Abstract: A system for generating periodic or quasi-periodic patterns on a sample by means of an interference lithography technique includes a photon source, a mask and a sample holder. The mask has a grating for generating a predetermined pattern, wherein the mask is positioned at a first distance from the photon source. The sample holder is disposed at a second distance from the mask on a side facing away from the photon source. The second distance is selected to be where an intensity distribution is substantially stationary and distance-invariant, or the second distance is varied to obtain a desired average intensity distribution on the sample surface.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: September 23, 2014
    Assignee: Eulitha AG
    Inventor: Harun H. Solak
  • Patent number: 8828624
    Abstract: A system for recording multiple volume Bragg gratings (VBGs) in a photo thermo-refractive material is configured to implement a method which provides for irradiating the material by a coherent light through a phase mask. The system has a plurality of actuators operative to displace the light source, phase mask and material relative to one another so as to mass produce multiple units of the material each having one or more uniformly configured VBGs.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: September 9, 2014
    Assignee: IPG Photonics Corporation
    Inventors: Valentin P Gapontsev, Alex Ovtchinnikov, Dmitry Starodubov, Alexey Komissarov
  • Patent number: 8815472
    Abstract: This invention provides, for example, a highly stable and reliable volume hologram optical recording medium which can suppress an intensity variation, for example, in diffraction efficiency after signal recording and can stably develop a high S/N ratio. The volume hologram optical recording medium includes a recording layer containing at least one compound selected from compounds (A1) having a terpenoid structure, compounds (A2) represented by a formula (I), and cyclic or noncyclic compounds (A3) having at least two double bonds two of these double bonds are located at 1,4-position relatively, wherein R1 and R2 each independently represent an organic group having 1 to 20 carbon atoms, and R1 and R2 may combine to form a cyclic structure.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 26, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yasuaki Miki, Naomi Fujimori
  • Patent number: 8808944
    Abstract: A method for storing holographic data, said method comprising: step (A) providing an optically transparent substrate comprising a polymer composition and a light absorbing chromophore, said polymer composition comprising a continuous phase and a dispersed phase, said dispersed phase being less than about 200 nm in size; and step (B) irradiating a volume element of the optically transparent substrate with a holographic interference pattern, wherein the pattern has a first wavelength and an intensity both sufficient to cause a phase change in at least a portion of the dispersed phase within the volume element of the substrate to produce within the irradiated volume element refractive index variations corresponding to the holographic interference pattern, thereby producing an optically readable datum corresponding to the volume element.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: August 19, 2014
    Assignee: General Electric Company
    Inventors: Brian Lee Lawrence, Marc Dubois, Eugene Pauling Boden, William David Richards, Patrick Joseph McCloskey, Azar Alizadeh, Xiaolei Shi
  • Patent number: 8808946
    Abstract: The invention relates to novel specially substituted urethane acrylates based on tris(p-isocyanatophenyl)thiophosphate having a high refractive index and reduced double bond density, and to a method for the production and use thereof.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: August 19, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Thomas Rölle, Friedrich-Karl Bruder, Thomas Fäcke, Marc-Stephan Weiser, Dennis Hönel
  • Patent number: 8808945
    Abstract: A volume hologram layer (2) is formed on a substrate (1), and a cholesteric liquid crystal layer (3) is then formed on the hologram layer (2). After the substrate (1) is peeled off the volume hologram layer (2), an adhesive layer (4) is formed on the surface of the volume hologram layer (2) with the substrate (1) peeled off, and another substrate (5) is then formed on the adhesive layer (4). Finally, a label form of cholesteric liquid crystal medium having a volume hologram is shaped out of the resulting multilayer structure; it is thus possible to fabricate cholesteric liquid crystal media having a volume hologram with efficiency yet without recourse to any complicated steps such as an alignment step.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 19, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Masachika Watanabe, Masanori Umeya, Koji Eto, Tsuyoshi Yamauchi
  • Patent number: 8778568
    Abstract: An optical data storage medium is provided. The optical data storage medium includes a polymer matrix; a reactant capable of undergoing a change upon triplet excitation, thereby causing a refractive index change; and a non-linear sensitizer capable of absorbing actinic radiation to cause upper triplet energy transfer to said reactant. The refractive index change capacity of the medium is at least about 0.005. The non-linear sensitizer comprises a triarylmethane dye.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 15, 2014
    Assignee: General Electric Company
    Inventors: Arunkumar Natarajan, Patrick Joseph McCloskey, Eugene Pauling Boden, Kwok Pong Chan, Matthew Jeremiah Misner, Evgenia Mikhailovna Kim
  • Patent number: 8771903
    Abstract: The invention relates to a method for producing holographic films, in which a photopolymer formulation is provided which comprises as constituents matrix polymers, writing monomers, a photoinitiatior system, optionally a non-photopolymerizable component and optionally catalysts, radical stabilizers, solvents, additives and other auxiliaries and/or additives. The photopolymer formulation is applied in a planar manner and in the form of a film on a support film and the photopolymer formulation is dried on the support film at a temperature 60<T<120 DEG C, wherein only compounds are selected as components for the photopolymer formulation, the TGA 95 values of which are >100 DEG C and are above the temperature T by at least 30 DEG C, and a photopolymer formulation having a plateau module of =0.030 MPa is used.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 8, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Dennis Hönel, Marc-Stephan Weiser, Friedrich-Karl Bruder, Thomas Rölle, Thomas Fäcke
  • Patent number: 8771904
    Abstract: The invention relates to a method for producing holographic media, wherein a photopolymer formulation comprising matrix polymers, writing monomers, a photoinitiator system, and optionally auxiliary materials and additives as components is provided, the photopolymer formulation is applied as a coating on the surface of a carrier film and the photopolymer formulation is dried on the carrier film at a temperature XX<T>YY DEG C, wherein only those compounds having TGA 95 values >100 DEG C. and at least 30 DEG C. above the temperature T are selected as components for the photopolymer formulation. The invention further relates to a holographic medium that can be obtained by means of the method according to the invention.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 8, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Marc-Stephan Weiser, Thomas Rölle, Dennis Hönel, Friedrich-Karl Bruder, Thomas Fäcke
  • Patent number: 8758960
    Abstract: A novel polymerizable high-refractive index compound which is useful as an optical material, and a holographic recording medium using the same, which has high diffraction efficiency, high light transmittance and small rate of shrinkage, are provided. A composition for forming a holographic recording layer containing a reactive compound represented by the following formula 1, a holograph recording material, and a holographic recording medium provided with a recording layer containing the same, are disclosed.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: June 24, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yasuaki Miki, Akiko Yabe, Jun Enda
  • Patent number: 8728685
    Abstract: Articles for recording a holographic image are described. The articles include a holographic recording medium having a plurality of surfaces, having a transparent polymeric binder and a photochemically active dye, the holographic recording medium having a holographic image recorded therein formed by exposed areas of the photochemically active dye and unexposed areas of the photochemically active dye; and a first light-blocking layer or material over a first surface of the holographic recording medium from which surface the holographic image is viewed, the light blocking layer or material absorbing light in the wavelength range to which the photochemically active dye is sensitive and allowing transmission of light in a different wavelength range for viewing the holographic image.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 20, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Andrew A. Burns, Sumeet Jain, Pradeep Jeevaji Nadkarni, Shantaram Narayan Naik, Arunkumar Natarajan, Kiran ArunKumar Puthamane, Michael T. Takemori, Vinodkumar Vasudevan
  • Patent number: 8715887
    Abstract: A method of making a hologram includes recording a first hologram in a holographic recording medium at a first deformation ratio; changing the first deformation ratio to a second deformation ratio that is different from the first deformation ratio; and recording a second hologram in the holographic recording medium at the second deformation ratio to form a recorded holographic medium.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 6, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Michael Teruki Takemori, Amitabh Bansal, Andrew A. Burns, Mark Cheverton, Sumeet Jain
  • Patent number: 8715889
    Abstract: The invention relates to applying novel photo polymers based on special urethane acrylates as writing monomers in printing methods which are suitable for producing holographic media, in particular for the visual display of images.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: May 6, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Thomas Rölle, Friedrich-Karl Bruder, Thomas Fäcke, Marc-Stephan Weiser, Dennis Hönel, Roland Künzel
  • Patent number: 8715888
    Abstract: The invention relates to a method for producing novel photopolymers on the basis of prepolymer-based polyurethane compositions that are suitable for producing holographic media, in particular for the visual display of images.
    Type: Grant
    Filed: January 30, 2010
    Date of Patent: May 6, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Dennis Hönel, Marc-Stephan Weiser, Friedrich-Karl Bruder, Thomas Rölle, Thomas Fäcke
  • Patent number: 8703388
    Abstract: Optical data storage media for bit-wise recording of a microhologram using an incident radiation at a wavelength of about 405 nm are provided. The optical storage medium includes (a) a non-photopolymer polymer matrix; (b) a non-linear sensitizer comprising a phenylethynyl platinum complex, wherein the non-linear sensitizer is capable of triplet-triplet energy transfer from an upper triplet state (Tn) of the non-linear sensitizer to a lower triplet state (T1) of a reactant, wherein “n” is an integer greater than 1; and (c) a reactant capable of undergoing a chemical change upon the triplet-triplet energy transfer from the non-linear sensitizer, thereby causing a refractive index change in the medium to record the microhologram.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 22, 2014
    Assignee: General Electric Company
    Inventors: Arunkumar Natarajan, Riffard Pierre Jean-Gilles, Kwok Pong Chan, Robert James Perry, Victor Petrovich Ostroverkhov, Evgenia Mikhailovna Kim, Julia Lam Lee, Eugene Pauling Boden, Patrick Joseph McCloskey, Brian Lee Lawrence
  • Patent number: 8703363
    Abstract: A method is described for recording a volume reflection holographic image that is viewable when illuminated by light at a wavelength Wv.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 22, 2014
    Assignee: Sabic Innovative Plastic IP B.V.
    Inventors: Michael T. Takemori, Andrew A. Burns, Mark A. Cheverton, Sumeet Jain, Sora Kim
  • Patent number: 8697314
    Abstract: A method of producing a volume hologram laminate which can regenerate a hologram image in an arbitrary wavelength by a simple process. The method uses a volume hologram forming substrate which includes: a substrate, a volume hologram layer formed on the substrate and containing a photopolymerizable material, a resin layer, formed on the substrate so as to contact to the volume hologram layer, containing a resin and a polymerizable compound. The producing method includes processes of: a hologram recording process to record a volume hologram to the volume hologram layer, a substance transit process of transiting the polymerizable compound to the volume hologram layer, and an after-treatment process of polymerizing the polymerizable compound.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 15, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Minoru Azakami, Koji Eto, Hiroyuki Ohtaki, Yoshihito Maeno, Sakurako Hatori