Involving Nucleic Acid Patents (Class 435/6.1)
  • Patent number: 11932846
    Abstract: A system for expressing a chloramphenicol split protein is disclosed. Uses thereof are also disclosed.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 19, 2024
    Assignee: Technology Innovation Momentum Fund (Israel) Limited Partnership
    Inventor: Gali Prag
  • Patent number: 11931737
    Abstract: Disclosed herein are platforms, systems, and methods including a cell culture system that includes a cell culture container comprising a cell culture, the cell culture receiving input cells, a cell imaging subsystem configured to acquire images of the cell culture, a computing subsystem configured to perform a cell culture process on the cell culture according to the images acquired by the cell imaging subsystem, and a cell editing subsystem configured to edit the cell culture to produce output cell products according to the cell culture process.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: March 19, 2024
    Assignee: CELLINO BIOTECH, INC.
    Inventors: Matthias Wagner, Suvi Aivio, Mariangela Amenduni, Catherine Pilsmaker, Arnaldo Pereira, Ananya Zutshi, Ozge Whiting, George Harb, Steven Nagle, Anthia Toure, Matthew Sullivan, Maya Berlin-Udi, Lukas Vasadi, Alexander Stange, Sangkyun Lee, Stefanie Morgan, Nick Seay, Scott Luro
  • Patent number: 11926824
    Abstract: Methods for diagnosis and treatment of cancers by use of exosomes comprising miRNAs and precursors thereof. For example, in some aspects, a cancer may be diagnosed or evaluated by determining the miRNA content of exosomes in a sample from a subject or by detecting miRNA processing in exosomes.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 12, 2024
    Assignees: Board of Regents, The University of Texas System, Beth Israel Deaconess Medical Center, Inc.
    Inventors: Raghu Kalluri, Sónia Melo
  • Patent number: 11919006
    Abstract: A generic point of care based portable device and method thereof as a platform technology for detecting pathogenic infection via nucleic acid based testing achieving sample-to-result integration, comprising the following interconnected stand-alone modules: a thermal unit for executing piece-wise isothermal reactions in a pre-programmable concomitant fashion without necessitating in-between operative intervention; a colorimetric detection unit seamlessly interfaced with smartphone-app based analytics for detecting the target analyte.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 5, 2024
    Assignee: INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
    Inventors: Nandita Kedia, Sujay Kumar Biswas, Saptarshi Banerjee, Aditya Bandopadhyay, Arindam Mondal, Suman Chakraborty
  • Patent number: 11920181
    Abstract: Some aspects of this disclosure provide strategies, methods, and reagents for determining nuclease target site preferences and specificity of site-specific endonucleases. Some methods provided herein utilize a novel “one-cut” strategy for screening a library of concatemers comprising repeat units of candidate nuclease target sites and constant insert regions to identify library members that can been cut by a nuclease of interest via sequencing of an intact target site adjacent and identical to a cut target site. Some aspects of this disclosure provide strategies, methods, and reagents for selecting a site-specific endonuclease based on determining its target site preferences and specificity. Methods and reagents for determining target site preference and specificity are also provided.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Vikram Pattanayak
  • Patent number: 11921103
    Abstract: A sequence of polymer units in a polymer (3), eg. DNA, is estimated from at least one series of measurements related to the polymer, eg. ion current as a function of translocation through a nanopore (1), wherein the value of each measurement is dependent on a k-mer being a group of k polymer units (4). A probabilistic model, especially a hidden Markov model (HMM), is provided, comprising, for a set of possible k-mers: transition weightings representing the chances of transitions from origin k-mers to destination k-mers; and emission weightings in respect of each k-mer that represent the chances of observing given values of measurements for that k-mer. The series of measurements is analysed using an analytical technique, eg. Viterbi decoding, that refers to the model and estimates at least one estimated sequence of polymer units in the polymer based on the likelihood predicted by the model of the series of measurements being produced by sequences of polymer units.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 5, 2024
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, James Anthony Clarke, Andrew John Heron
  • Patent number: 11920151
    Abstract: Provided are: a composition for DNA double-strand breaks (DSBs), comprising (1) a cytosine deaminase and an inactivated target-specific endonuclease, (2) a guide RNA, and (3) a uracil-specific excision reagent (USER); a method for producing DNA double-strand breaks by means of a cytosine deaminase using the composition; a method for analyzing a DNA nucleic acid sequence to which base editing has been introduced by means of a cytosine deaminase; and a method for identifying (or measuring or detecting) base editing, base editing efficiency at an on-target site, an off-target site, and/or target specificity by means of a cytosine deaminase.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 5, 2024
    Assignees: TOOLGEN INCORPORATED, SEOUL NATIONAL UNIVERSITY R&Db FOUNDATION, INSTITUTE FOR BASIC SCIENCE
    Inventor: Daesik Kim
  • Patent number: 11920201
    Abstract: Provided herein are methods of determining one or more modification(s) of the nucleic acid sequence of at least one nucleic acid and at least one epigenetic alteration of the at least one nucleic acid in a sample of a subject. The sample is derived from a body fluid of the subject. The methods link the one or more modification(s) to a specific cell type.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 5, 2024
    Assignee: Siemens Healthcare GMBH
    Inventors: Carsten Dietrich, Andreas Emanuel Posch
  • Patent number: 11912999
    Abstract: An aptamer-N-heterocyclic-carbene metal complex conjugate (aptamer-NHCM conjugate) or an aptamer-bis-N-heterocyclic-carbene metal complex conjugate (aptamer-bis-NHCM conjugate) includes an aptamer coupled through a hydrolytically stable bond to an N-heterocyclic-carbene metal complex (NHCM) or a bis-N-heterocyclic-carbene metal complex (bis-NHCM). The aptamer-NHCM conjugate is prepared where the chosen aptamer displays selective binding to a cell specific receptor, such that the cytotoxic NHCM can be directed specifically to cells responsible for a target disease (e.g., a specific cancer type). A method of preparing the aptamer-N-heterocyclic-carbene metal complex conjugate involves installing a coupling group to an N-heterocyclic-carbene metal complex that can specifically bond with a functional group on an aptamer; the bond, covalent or non-covalent, is stable hydrolytically in the absence of an environment that promotes intentional cleavage of the bond.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: February 27, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Adam S. Veige, Mary E. Garner, Weijia Niu
  • Patent number: 11896669
    Abstract: Provided herein are branched oligonucleotides exhibiting efficient and specific tissue distribution, cellular uptake, minimum immune response and off-target effects, without formulation.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: February 13, 2024
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Anastasia Khvorova, Matthew Hassler, Julia Alterman, Bruno Miguel da Cruz Godinho
  • Patent number: 11898129
    Abstract: A pressure regulator module for a chip-based microfluidic platform is provided. The module includes a microfluidic channel for passing flowable material from the inlet region through the outlet region and into a downstream compartment; one or more microvalves fluidly connected to the microfluidic channel and upstream of the outlet region; and one or more reservoirs fluidly connected to the microvalves, for receiving flowable material diverted by the microvalves, where a flow of flowable material passing from the inlet region toward the downstream compartment is at least partially diverted by the microvalves into the reservoirs as a result of a pressure increase in the microfluidic channel. In some versions, the microvalves are capillary burst valves. A microfluidic chip containing the module and a method of using the module are provided.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of California
    Inventors: Abraham P. Lee, Xiaolin Wang, Duc Phan, Christopher C. W. Hughes, Steven C. George
  • Patent number: 11901041
    Abstract: In certain aspects, methods of the invention involve performing modification state specific enzymatic reaction of nucleic acid in a sample, determining a value associated with efficiency of the modification state specific enzymatic reaction based on a control, determining an amount of target nucleic acid in the sample, and normalizing the amount of target nucleic acid based on the efficiency value. Based on the normalized amount of target nucleic acid, the method further includes determining whether the normalized amount of target nucleic acid is indicative of a condition.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: February 13, 2024
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Michael Samuels, Jeffrey Olson, Darren R. Link
  • Patent number: 11891632
    Abstract: A DNA polymerase in which a mutation is induced at a specific amino acid position to increase gene mutation specificity, a nucleic acid sequence encoding the polymerase, a vector comprising the nucleic acid sequence, and a host cell transformed with the vector are disclosed. Provided are a method for in vitro detecting one or more gene mutations or SNPs in one or more templates by using a DNA polymerase having increased gene mutation specificity, a composition for detecting a gene mutation or SNP comprising the DNA polymerase, and a PCR kit comprising said composition. Furthermore, provided are a PCR buffer composition for increasing the activity of a DNA polymerase having increased gene mutation specificity and a PCR kit for detecting a gene mutation or SNP comprising the PCR buffer composition and/or the DNA polymerase having increased gene mutation specificity.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 6, 2024
    Assignee: GENECAST CO., LTD
    Inventors: Byung Chul Lee, Il Hyun Park, Huy Ho Lee
  • Patent number: 11884921
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods provide signal boost upon detection of target nucleic acids of interest in less than one minute and in some instances instantaneously at ambient temperatures down to 16° C. or less, without amplification of the target nucleic acids yet allowing for massive multiplexing, high accuracy and minimal non-specific signal generation.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: January 30, 2024
    Assignee: VedaBio, Inc.
    Inventors: Anurup Ganguli, Ashish Pandey, Ariana Mostafa, Jacob Berger
  • Patent number: 11884963
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 30, 2024
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Patent number: 11878991
    Abstract: Provided herein are methods and compositions for synthesizing 5?Capped RNAs wherein the initiating capped oligonucleotide primers have the general form m7 Gppp[N2?Ome]n[N]m wherein m7G is N7-methylated guanosine or any guanosine analog, N is any natural, modified or unnatural nucleoside, “n” can be any integer from 0 to 4 and “m” can be an integer from 1 to 9.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: January 23, 2024
    Assignee: TriLink BioTechnologies, LLC
    Inventors: Richard I. Hogrefe, Alexandre Lebedev, Anton P. McCaffrey, Dongwon Shin
  • Patent number: 11879126
    Abstract: Provided herein are examples of mRNA treatment nanoparticles and methods of using them to treat a patient. An mRNA treatment nanoparticle may include one or more mRNAs encoding a tumor-specific antigen and an immunomodulatory agent; and a delivery vehicle molecule encapsulating the one or more mRNAs.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Nutcracker Therapeutics, Inc.
    Inventors: Samuel Deutsch, Daniel Frimannsson, Nicole Fay, Colin McKinlay, Ole Haabeth
  • Patent number: 11873493
    Abstract: This invention relates to compounds, compositions, and methods useful for reducing Glycolate Oxidase (HAO1) target RNA and protein levels via use of dsRNAs, e.g., Dicer substrate siRNA (DsiRNA) agents.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 16, 2024
    Assignee: Dicerna Pharmaceuticals, Inc.
    Inventors: Bob D. Brown, Henryk T. Dudek
  • Patent number: 11872290
    Abstract: The present invention relates to a bicistronic expression vector for silencing a gene specifically in astrocytes and neurons, comprising two expression cassettes comprising a first and a second silencer sequence, respectively, wherein the expression of said first silencer sequence within astrocytes is regulated by an astrocyte-specific promoter and the expression of said second silencer sequence within neurons is regulated by a neuron-specific promoter. In a preferred embodiment, said first and second silencer sequences are SOD1 silencer sequences. Pharmaceutical composition comprising said bicistronic vector and the use of the same in the treatment of motoneuron diseases are further described.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: January 16, 2024
    Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)
    Inventors: Julianne Aebischer, Bernard Schneider, Cylia Rochat
  • Patent number: 11873483
    Abstract: The disclosure provides methods and compositions useful for labeling of target molecules with origin-specific nucleic acid identifiers (for example, barcodes), which can be used subsequently to identify, quantify, or otherwise characterize a feature or activity of target molecules originating from a particular discreet volume. Such target molecules can include polypeptides expressed by cells, in which nucleic acid molecules encoding the polypeptides are labeled with the same, or matched, origin-specific nucleic acid identifiers.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 16, 2024
    Assignees: The Broad Institute, Inc., ÉCOLE SUPERIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS (ESPCI PARIS TECH)
    Inventors: Robert Nicol, Andrew David Griffiths, Baptiste Saudemont, Timothy V. Kirk
  • Patent number: 11866780
    Abstract: The present invention relates to the field of molecular biology, and more specifically to methods for reducing the complexity of a nucleic acid sample.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: January 9, 2024
    Assignee: Illumina Cambridge Limited
    Inventor: Jonathan Mark Boutell
  • Patent number: 11866467
    Abstract: The present invention concerns a structurally distinct immunosuppressive mimic of TGF-? that is a potent inducer of murine and human regulatory T cells and provides a therapeutic agent for the treatment of inflammatory disorders. Disclosed herein is a novel parasite TGF-? mimic which fully replicates the biological and functional properties of TGF-?, including binding to mammalian TGF-? receptors and inducing Foxp3+ Treg in both murine and human CD4+ T cells. This TGF-? mimic shares no homology to mammalian TGF-? or other members of the TGF-? family, but s distinctly related to the component control protein (CCP) superfamily.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: January 9, 2024
    Assignees: THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW, THE UNIVERSITY OF EDINBURGH
    Inventors: Richard Maizels, Danielle Smyth, Henry McSorley
  • Patent number: 11862329
    Abstract: A pathogen detection and display system is configured to discover and display the location of substances of interest, particularly pathogens that can spread infection. The detection and display system can be used in healthcare facilities on surfaces, medical equipment and devices, patients, and staff, for example.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: January 2, 2024
    Assignee: Cardeya Corporation
    Inventors: Charles R. Sperry, Lawrence J. Pillote, Vincent A. Piucci, Dennis F. McNamara, Jr., James M. Wilson, III, Lisa Ruth Stowe, Brett M. Sitzlar, Barbara A. Piucci, David C. Chase
  • Patent number: 11859184
    Abstract: The present invention relates to a multi-conjugate of small interfering RNA (siRNA) and a preparing method of the same, more precisely a multi-conjugate of siRNA prepared by direct binding of double stranded sense/antisense siRNA monomers or indirect covalent bonding mediated by a cross-linking agent or a polymer, and a preparing method of the same. The preparing method of a siRNA multi-conjugate of the present invention is characterized by simple and efficient reaction and thereby the prepared siRNA multi-conjugate of the present invention has high molecular weight multiple times the conventional siRNA, so that it has high negative charge density, suggesting that it has excellent ionic interaction with a cationic gene carrier and high gene delivery efficiency.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: January 2, 2024
    Assignee: Kip Co., Ltd.
    Inventors: Tae Gwan Park, Hye Jung Mok, Soo Hyeon Lee
  • Patent number: 11857642
    Abstract: The present invention provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 150 bp having at least 80% identity to said sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in rod photoreceptors of a gene when operatively linked to a nucleic acid sequence coding for said gene.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 2, 2024
    Assignee: Friedrich Miescher Institute for Biomedical Research
    Inventors: Dominik Hartl, Josephine Juettner, Arnaud Krebs, Botond Roska, Dirk Schuebeler
  • Patent number: 11859171
    Abstract: The present invention provides an approach to increase the effective read length of commercially available sequencing platforms to several kilobases and be broadly applied to obtain long sequence reads from mixed template populations. A method for generating extended sequence reads of long DNA molecules in a sample, comprising the steps of: assigning a specific barcode sequence to each template DNA molecule in a sample to obtain barcode-tagged molecules; amplifying the barcode-tagged molecules to obtain barcode-containing fragments; juxtaposing the barcode-containing fragments to random short segments of the original DNA template molecule during the process of generating a sequencing library to obtain demultiplexed reads; and assembling the demultiplexed reads to obtain extended sequence reads for each DNA template molecule, is disclosed.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: January 2, 2024
    Assignee: Agency for Science, Technology and Research
    Inventors: Stephen R. Quake, William F. Burkholder, Lewis Z. Hong
  • Patent number: 11855697
    Abstract: A system senses analytes through one or more sensors that detect or measure a physical characteristic. The one or more sensor generate a spectroscopic-data signal corresponding to the detection. An edge device communicatively couples the one or more sensors that communicatively couples a wide-area network coupling a cloud service. The edge device includes a data acquisition device that receives spectroscopic data signals from the one or more sensor and a processor that processes the spectroscopic-data signals to identify an analyte. The edge device also includes a transceiver that transmits data identifying the analytes to the cloud service.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: December 26, 2023
    Assignee: UT-Battelle, LLC
    Inventor: Ali Passian
  • Patent number: 11852578
    Abstract: To provide a technique capable of handling quantitative data in a spectrum type microparticle measurement device without causing deterioration of the SNR. The present technology provides a microparticle measurement spectrometer including a spectroscopic element that disperses light emitted from microparticles flowing through a flow path, and a photoelectric conversion array that has a plurality of light receiving elements having different detection wavelength ranges and converts optical information obtained by the light receiving elements into electrical information, in which the photoelectric conversion array has a uniform output of all channels when light with which the amount of light per unit wavelength becomes same is incident.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: December 26, 2023
    Assignee: SONY CORPORATION
    Inventors: Masaaki Hara, Tomoyuki Umetsu, Yoshiki Okamoto
  • Patent number: 11845937
    Abstract: Described are RNAi agents, compositions that include RNAi agents, and methods for inhibition of a double homeobox 4 (DUX4) gene. The DUX4 RNAi agents and RNAi agent conjugates disclosed herein inhibit the expression of a DUX4 gene. Pharmaceutical compositions that include one or more DUX4 RNAi agents, optionally with one or more additional therapeutics, are also described. Delivery of the described DUX4 RNAi agents to skeletal muscle cells in vivo, provides for inhibition of DUX4 gene expression and a reduction in DUX4 levels, which can provide a therapeutic benefit to subjects, including human subjects, suffering from certain skeletal muscle-related diseases or disorders including Facioscapulohumeral Muscular Dystrophy (FSHD).
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: December 19, 2023
    Assignee: Arrowhead Pharmaceuticals, Inc.
    Inventors: Zhi-Ming Ding, Jonathan Van Dyke, Xiaokai Li, Anthony Nicholas, Casi M. Schienebeck, Tao Pei, Zhao Xu, Teng Ai, Susan Phan, Susan Ramos-Hunter
  • Patent number: 11845983
    Abstract: Compositions, methods, and systems are provided for sample preparation techniques and sequencing of macromolecular constituents derived from a cell (i.e., a cell bead) in a multiplexed reaction. Using the compositions, systems, and methods disclosed herein, the association of the macromolecular constituents with the biological particle from which they are derived and the association of the cell bead with the cell bead sample from which they are derived is maintained.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: December 19, 2023
    Assignee: 10X GENOMICS, INC.
    Inventors: Zahra Kamila Belhocine, Andrew D. Price
  • Patent number: 11845986
    Abstract: This disclosure provides methods and compositions for removing one or more high abundance species from a plurality of nucleic acid molecules. In some embodiments, the methods and compositions can be used for normalizing nucleic acid libraries. In some embodiments, molecular labels are used in conjunction with the methods and compositions disclosed herein to improve sequencing efficiency.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: December 19, 2023
    Assignee: Becton, Dickinson and Company
    Inventors: Eleen Shum, Glenn Fu, Craig Betts
  • Patent number: 11845936
    Abstract: The present invention provides methods and compositions for stable genetic modification of cultured mammalian cells. The genetic modifications can be used to produce cultured mammalian cells for therapeutic or diagnostic purposes.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: December 19, 2023
    Assignee: DNA TWOPOINTO INC.
    Inventors: Jeremy Minshull, Maggie Lee
  • Patent number: 11834707
    Abstract: A nucleic acid amplification blocker for detecting a low-abundance mutation sequence and an application thereof in detecting a low-abundance mutation sequence are provided. The nucleic acid amplification blocker is an oligonucleotide modified by locked nucleic acid (LNA), and the matching region of the nucleic acid amplification blocker is located between amplified sequences. The nucleic acid amplification blocker is completely complementary to wild-type gene sequence, and contains at least one mismatch with mutant sequence. The nucleic acid amplification blocker has a great difference in affinity with mutant nucleic acid sequence/wild-type nucleic acid sequence, so as to achieve the purpose of highly selective amplification/enrichment of mutant sequence in samples. The nucleic acid amplification blocker has more significant detection effect on deletion mutation and insertion mutation.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 5, 2023
    Assignee: SHANGHAI MAG-GENE NANOTECH CO., LTD.
    Inventors: Hong Xu, Hao Yang, Gaolian Xu, Hongchen Gu
  • Patent number: 11827661
    Abstract: Compounds useful as fluorescent or colored dyes are disclosed. The compounds have the following structure (I): or a stereoisomer, tautomer or salt thereof, wherein R1, R2, R3, R4, R5, L1, L3, L4, L6, L7, L8, M1, M2, q, w and n are as defined herein. Methods associated with preparation and use of such compounds are also provided.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: November 28, 2023
    Assignee: Sony Group Corporation
    Inventors: C. Frederick Battrell, Kenneth Farber, John C. Kumer, Tracy Matray, Michael VanBrunt
  • Patent number: 11823799
    Abstract: The present invention provides a powerful tool to identify personalized therapeutic strategies. In particular, the invention provides methods for determining therapeutically targetable dominant signaling pathways in a cancer sample from a subject affected with a solid cancer, determining a treatment protocol for the subject, selecting a subject for a therapy, determining whether the subject is susceptible to benefit from a therapy, predicting clinical outcome of the subject, treating the subject and/or predicting the sensitivity of a solid cancer to a therapy.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 21, 2023
    Assignees: UNIVERSITE DE STRASBOURG, INSERM (INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE)
    Inventors: Dominique Bagnard, Aurore Fernandez, Laurent Jacob, Justine Fritz
  • Patent number: 11820985
    Abstract: This disclosure relates to novel modified oligonucleotides. Novel modified siRNA are also provided.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: November 21, 2023
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Anastasia Khvorova, Loïc Maurice René Jean Roux, Ken Yamada
  • Patent number: 11821109
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 21, 2023
    Assignees: President and Fellows of Harvard College, United Kingdom Research and Innovation
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Patent number: 11821030
    Abstract: Methods for multiplex amplification of a plurality of targets of distinct sequence from a complex mixture are disclosed. In one aspect targets are circularized using a single circularization probe that is complementary to two regions in the target that flank a region to be amplified. The targets may hybridize to the circularization probe so that 5? or 3? flaps are generated and methods for removing flaps and circularizing the resulting product are disclosed. In another aspect targets are hybridized to dU probes so that 5? and 3? flaps are generated. The flaps are cleaved using 5? or 3? flap endonucleases or 3? to 5? exonucleases. The target sequences are then ligated to common primers, the dU probes digested and the ligated targets amplified.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 21, 2023
    Assignee: AFFYMETRIX, INC.
    Inventors: Jianbiao Zheng, Li Weng, Malek Faham
  • Patent number: 11816753
    Abstract: Systems and methods are provided for provided for automatic evaluation of a human embryo. An image of the embryo is obtained and provided to a neural network to generate a plurality of values representing the morphology of the embryo. The plurality of values representing the morphology of the embryo are evaluated at an expert system to provide an output class representing one of a current quality of the embryo, a future quality of the embryo, a likelihood that implantation of the embryo will be successful, and a likelihood that implantation of the embryo will result in a live birth.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: November 14, 2023
    Assignees: THE BRIGHAM AND WOMEN'S HOSPITAL, INC., THE GENERAL HOSPITAL CORPORATION
    Inventors: Hadi Shafiee, Charles Bormann, Manoj Kumar Kanakasabapathy, Prudhvi Thirumalaraju
  • Patent number: 11813604
    Abstract: Disclosed is a biogel nanosensor for detection of an analyte that includes an acryloyl or methacryloyl modified hydrogel and nucleic acid amplification reagents in picoliter or nanoliter volume in the form of microarray. Also disclosed are methods of making the disclosed biogel nanosensor, and methods of using the biogel nanosensors.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: November 14, 2023
    Assignees: Trustees of Boston University, Fraunhofer USA, Inc., FRAUNHOFER-Gesellschaft zur Foerderung der angewandten Forschung e. V.
    Inventors: Christine McBeth, Kirsten Borchers, Achim Weber, Daniel Zontar
  • Patent number: 11808755
    Abstract: The present disclosure relates to a device, system and method for sensing functional motions of a single protein molecule via direct attachment of one or more electrodes to the molecule. The present disclosure also relates to an array, a system comprising an array and method for sequencing a biopolymer using an array.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: November 7, 2023
    Assignee: RECOGNITION ANALYTIX, INC.
    Inventors: Stuart Lindsay, Peiming Zhang
  • Patent number: 11806419
    Abstract: Nucleic acid aptamers having a high binding affinity and specificity for malodorous molecules and the use of such aptamers to reduce the intensity of the undesirable smells in personal care compositions.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 7, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Juan Esteban Velasquez, Amy Violet Trejo, Gregory Allen Penner, Stevan David Jones
  • Patent number: 11802311
    Abstract: This disclosure provides methods and compositions for analyzing nucleic acids such as DNA and RNA, and including determination of absolute numbers of such nucleic acids and/or detection and localization of lesions or other modifications on such nucleic acids.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: October 31, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Bo Cao, Peter C. Dedon, Jennifer F. Hu, Michael S. DeMott
  • Patent number: 11795500
    Abstract: The present disclosure relates to methods of identifying RNA targets of RNA binding proteins. In aspects, the disclosure relates to a method of identifying RNA molecules bound by RNA binding proteins. Some embodiments of the present disclosure relate to a method that can definitively identify direct RNA-target interactions with targeted proteins without the requirement for immunoprecipitation or gel extraction. In some embodiments, the method may include combining multiple antibodies in the same sample.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: October 24, 2023
    Assignee: Eclipse Bioinnovations, Inc.
    Inventors: Daniel A. Lorenz, Karen B. Chapman
  • Patent number: 11788132
    Abstract: Techniques for measuring sequences of nucleic acids are provided. Time-based measurements (e.g., forming a histogram) particular to a given sequencing cell can be used to generate a tailored model. The model can include probability functions, each corresponding to different states (e.g., different states of a nanopore). Such probability functions can be fit to a histogram of measurements obtained for that cell. The probability functions can be updated over a sequencing run of the nucleic acid so that drifts in physical properties of the sequencing cell can be compensated. A hidden Markov model can use such probability functions as emission probabilities for determining the most likely nucleotide states over time. For sequencing cells involving a polymerase, a 2-state classification between bound and unbound states of the polymerase can be performed. The bound regions can be further analyzed by a second classifier to distinguish between states corresponding to different bound nucleotides.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: John Mannion, Morgan Mager
  • Patent number: 11788121
    Abstract: Compositions and methods, systems, and kits for detecting and quantifying variations in numbers of molecules, particularly variations in gene dosage, e.g., due to gene duplication, or to variations from the normal euploid complement of chromosomes, e.g., trisomy of one or more chromosomes that are normally found in diploid pairs, without digital sequencing.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 17, 2023
    Assignee: Enumera Molecular, Inc.
    Inventors: Matthew Sekedat, Jeffrey Buis, Ronald David Beaubien, Sharat Singh, Jeff Perry
  • Patent number: 11788124
    Abstract: The present invention relates to detection of nucleic acids and provides a composition comprising a Signal Generating Complex, wherein the composition comprises: (A) a pair of target probes (TPs), wherein a first TP of the pair of TPs comprises a nucleic acid sequence comprising two segments; (B) a pair of base PPAs comprising the first and second base PPAs, wherein the first base PPA comprises a nucleic acid sequence comprising three segments; (C) a set of extension PPAs comprising the first and second extension PPAs, wherein the first extension PPA comprises a nucleic acid sequence comprising two segments; (D) a plurality of pre-amplifiers (PAs), wherein the PAs comprise a nucleic acid sequence comprising three segments; (E) a plurality of amplifiers (AMPs), wherein the AMPs comprise a nucleic acid sequence comprising two segments; and (F) a plurality of label probes (LPs), wherein the LPs comprise a nucleic acid sequence comprising two segments.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 17, 2023
    Assignee: ADVANCED CELL DIAGNOSTICS, INC.
    Inventors: Yuling Luo, Xiao-Jun Ma, Steve Chen, Nan Su, Emerald Doolittle, Bingqing Zhang, Xiaoming Wang, Xingyong Wu, Xiao Yan Pimentel, Helen Jarnagin
  • Patent number: 11789014
    Abstract: The invention relates to a method of determining the presence or absence of a target analyte in a sample. The method comprises immobilising any target analyte present in the sample on a surface; contacting the surface with: (i) a first detection agent that binds specifically to the target analyte; and (ii) a reporter polynucleotide, wherein the reporter polynucleotide is bound to, or binds to, the first detection agent; and contacting a transmembrane pore with any reporter polynucleotide that has been immobilised on the surface, wherein the reporter polynucleotide is immobilised on the surface by binding of the first agent to the target analyte, and using the transmembrane pore to detect the reporter polynucleotide, thereby determining the presence or absence of the target analyte in the sample.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 17, 2023
    Assignee: Oxford Nanopore Technologies PLC
    Inventor: Daniel George Fordham
  • Patent number: 11781177
    Abstract: Compositions comprising covalently modified and mutated biotin-binding proteins, particularly biotin-binding proteins having a negative charge at physiological pH, are provided. Methods of producing such proteins are also provided, as are methods of immobilizing, sequencing, and making nucleic acids employing such proteins.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: October 10, 2023
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Lubomir Sebo, Leewin Chern, Thomas Linsky, Jeremiah Hanes, Erik Miller, Ying Yang, Stephen Yue
  • Patent number: 11781181
    Abstract: The present invention provides a reciprocal-flow-type nucleic acid amplification device comprising: heaters capable of forming a denaturation temperature zone and an extension/annealing temperature zone; a fluorescence detector capable of detecting movement of a sample solution between the two temperature zones; a pair of liquid delivery mechanisms that allow the sample solution to move between the two temperature zones and that are configured to be open to atmospheric pressure when liquid delivery stops; a substrate on which the chip for nucleic acid amplification according to claim 2 can be placed; and a control mechanism that controls driving of each liquid delivery mechanism by receiving an electrical signal from the fluorescence detector relating to movement of the sample solution from the control mechanism; the device being capable of performing real-time PCR by measuring fluorescence intensity for each thermal cycle.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: October 10, 2023
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KYORIN PHARMACEUTICAL CO., LTD.
    Inventors: Hidenori Nagai, Shunsuke Furutani, Yoshihisa Hagihara, Yusuke Fuchiwaki