Measurement Of Electrical Or Magnetic Property Or Thermal Conductivity Patents (Class 436/149)
  • Patent number: 11865539
    Abstract: A method of detecting a target biological entity in a biofluid using a sensor, wherein the biofluid comprises a plurality of the target biological entities and nanoparticles, the sensor comprising a substrate bearing a pair of electrodes having an affinity with the nanoparticles, and wherein a region between the electrodes defines a sensing region.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: January 9, 2024
    Assignee: MURSLA LIMITED
    Inventors: Tomas Miguel De Freitas Dias, Pierre Arsène
  • Patent number: 11549881
    Abstract: Disclosed herein are systems, methods, and techniques for optical detection of analytes (e.g., biomarkers or other objects) using a liquid-core waveguide in which the analytes are suspended in a high-index liquid inside a liquid channel of the waveguide. The term “high-index” may indicate a refractive core index of the carrier liquid that is higher than or equal to that of one or more surrounding cladding layer(s) (e.g., ethylene glycol liquid inside a glass channel). In some embodiments, a method includes illuminating, by a light-source, one or more particles in a liquid-core waveguide, wherein the liquid-core waveguide comprises a first cladding layer having a first index of a refraction, and a hollow core comprising a liquid inside the hollow core, wherein the liquid has a second index of refraction higher than the first index of refraction; and detecting, by a detector, light emitted from the one or more particles.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: January 10, 2023
    Assignee: The Regents of the University of California
    Inventor: Holger Schmidt
  • Patent number: 11465141
    Abstract: The present application is generally directed to systems, methods, and devices for diagnostics for sensing and/or identifying pathogens, genomic materials, proteins, and/or other small molecules or biomarkers. In some implementations, a small footprint low cost device provides rapid and robust sensing and identification. Such a device may utilize microfluidics, biochemistry, and electronics to detect one or more targets at once in the field and closer to or at the point of care.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 11, 2022
    Assignee: ALVEO TECHNOLOGIES, INC.
    Inventors: Shad Pierson, Timothy D. Meehan, Kyle William Montgomery, Daniel J. Wade, Jess M. Sustarich, Brenna Hearn Lord, Ronald Phillip Chiarello
  • Patent number: 11324534
    Abstract: Disclosed herein are apparatuses, systems, kits, and methods for treating skin, such as skin tightening or for treating diseases, disorders, and conditions that would benefit from tissue area or volume reduction, skin restoration, skin tightening, skin lifting, and/or skin repositioning and/or for generally improving skin function or appearance (e.g., the removal of unwanted skin features or irregularities such as sebaceous glands, sweat glands, hair follicles, necrosis, and fibrosis). Such apparatuses, systems, kits, and methods comprise an apparatus having a handheld main body and a detachably attachable tip comprising one or more needles.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: May 10, 2022
    Assignee: Cytrellis Biosystems, Inc.
    Inventors: Alec Ginggen, Douglas Levinson
  • Patent number: 11255360
    Abstract: A capillary structure for passive, directional fluid transport includes a capillary having a forward direction and a backward direction, the capillary including first and second capillary units each having a sequence of capillary components including a connective section in fluid communication with a diverging section, the diverging section having a forward side and dimensions inducing a concave meniscus in the forward direction, wherein the connective section of the second capillary unit is connected to the forward side of the diverging section of the first capillary unit to form at least one transition section, and wherein a change in the dimensions in the transition section induces in the backward direction a convex liquid meniscus or a straight liquid meniscus with an infinite radius of curvature.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: February 22, 2022
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Marsha R. Forthofer, Werner Baumgartner, Gerda Buchberger, Florian Hischen, Philipp Comanns
  • Patent number: 11179061
    Abstract: The embodiments disclose a method including making electrodes using an electrically conductive material for impedimetric detection of analytical targets in an electrochemical sensing platform device, collecting patient samples in a solution compartment of the electrochemical sensing platform device, binding primers and aptamers to electrodes for functionalizing electrodes for detecting and binding targeted viruses and bacterial pathogens, incubating oral fluid samples in the solution compartment using a heater, measuring electrode impedance changes, recording measured electrode impedance changes in a memory device, and integrating wireless technologies into the electrochemical sensing platform device configured for transmitting recorded measured data.
    Type: Grant
    Filed: July 11, 2020
    Date of Patent: November 23, 2021
    Inventor: Gregory J. Hummer
  • Patent number: 11162916
    Abstract: Various embodiments for methods and systems that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample containing the analyte and deriving one of a batch slope, sampling time, or combinations thereof to attain accurate glucose concentration.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: November 2, 2021
    Assignee: Lifescan IP Holdings, LLC
    Inventors: Michael Malecha, Antony Smith, David McColl
  • Patent number: 11056223
    Abstract: A system is disclosed that monitors participants in health-related programs, such as weight loss or exercise programs, and that provides automated, personalized health coaching to the program participants. The system includes breath analysis devices that are used by the program participants to generate ketone measurements, and includes a mobile application that runs on mobile devices of the participants and communicates with corresponding breath analysis devices. The system operates generally by monitoring ketone levels (such as acetone levels) and other attributes of the participants and by making personalized, machine-generated changes or updates to such programs to maintain program effectiveness and engagement. In some embodiments the system uses primary and secondary process flows to collect from the participants information that is used to select or recommend health program modifications.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: July 6, 2021
    Assignee: Invoy Holdings Inc.
    Inventor: Lubna M. Ahmad
  • Patent number: 10983182
    Abstract: A magnetic tunneling junction sensor includes a free ferromagnetic layer of material, a pinned ferromagnetic layer of material, the free ferromagnetic layer and the pinned ferromagnetic layer separated by a thin insulating layer of material through which electrons can tunnel, an oxidized silicon wafer, the free ferromagnetic layer, thin insulating layer and the pinned ferromagnetic layer deposited on the oxidized silicon wafer, and extrinsic magnetic flux.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: April 20, 2021
    Assignee: Brown University
    Inventors: Gang Xiao, Guanyang He
  • Patent number: 10812878
    Abstract: Systems and methods are provided for environment sensing. The system includes a sensor node having a sensor. The sensor includes a sensing material configured to be in contact with an ambient environment. The system includes a remote system having a communication circuit and a controller circuit. The communication circuit is configured to be wirelessly communicatively coupled to the sensor node. The controller circuit electrically coupled to the communication circuit. The controller circuit configured to receive an impedance response of the sensing material and analyze the impedance response of the sensing material at frequencies that provide a linear response of the sensing material to an analyte of interest and at least partially reject effects of interferences.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 20, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Daniel White Sexton, Steven Go
  • Patent number: 10786811
    Abstract: The present invention relates to methods of detecting one or more targets of interest in a sample. In one instance, the target can be correlated to an active infection (e.g., by a virus and/or a bacterium). Methods can include treating the sample with a dissociation agent, thereby releasing the target of interest for more accurate detection (e.g., by use of a sedimentation-based centrifugal microfluidic devices). Also described herein are microfluidic devices and systems for use with a dissociation agent.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: September 29, 2020
    Assignees: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Chung-Yan Koh, Anup K. Singh, Julia Litvinov
  • Patent number: 10631766
    Abstract: At least one microneedle comprises a hydrogel material that includes a substance that fluoresces when the substance interacts with an analyte. A magnitude of the fluorescence varies as a function of the concentration of the analyte. During use, the hydrogel material is illuminated with illumination light in a first wavelength range while the hydrogel material interfaces with the dermal interstitial fluid layer of a subject, and a photosensor generates an output that corresponds to an amount of light received in a second wavelength range.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: April 28, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Samuel K. Sia, Matthieu Jean Michel Rueegg, Nalin Tejavibulya
  • Patent number: 10502708
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 10, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 10408794
    Abstract: In a general aspect, an apparatus can include a porous, monolithic resonator having nanoscale pores defined therein. The apparatus can also include an adsorbent selective to a given analyte disposed on an exterior of the porous, monolithic resonator, the exterior of the porous, monolithic resonator including surfaces defining the nanoscale pores.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: September 10, 2019
    Assignee: Brigham Young University (BYU)
    Inventors: Steven Noyce, Robert C. Davis, Richard R. Vanfleet
  • Patent number: 10383558
    Abstract: A bio information measuring device is provided. The bio information measuring device includes a sensor portion and a needle portion including a plurality of needles projecting from a plurality of openings formed in a surface of the sensor portion. The plurality of needles are configured to pierce tissue, wherein the plurality of needles include a biocompatible organic material which includes an enzyme member that reacts with an analysis material and a conductive polymer for transferring an electrical signal generated as a result of a reaction of the enzyme member with the analysis material.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 20, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Je Cho, Kwang-Bok Kim, Jae-Geol Cho, Chul-Ho Cho, Hyoung-Seon Choi, Seok-Gin Kang, Sun-Tae Jung
  • Patent number: 10371660
    Abstract: Various embodiments for systems and methods that allow for a more accurate analyte concentration with a biosensor by obtaining two calibration codes, one for batch calibration due to manufacturing variations and the other for time calibration due to measured physical characteristics of the fluid sample.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: August 6, 2019
    Assignee: LifeScan IP Holdings, LLC
    Inventor: Michael Malecha
  • Patent number: 10295496
    Abstract: A biosensor system can comprise a sensor chip and a measurement device. The sensor chip comprises a capillary and electrodes disposed within the capillary. The height of the capillary is set to be less than the maximum value of the sum of the diffusion distance of an electron-transfer mediator and the diffusion distance of an analyte at the upper limit of the measurement guaranteed temperature of the biosensor system. The measurement device applies an open circuit voltage, a voltage that is lower than during concentration measurement, or the like to the electrodes of the sensor chip.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: May 21, 2019
    Assignee: PHC HOLDINGS CORPORATION
    Inventor: Motonori Uchiyama
  • Patent number: 10153145
    Abstract: The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: December 11, 2018
    Assignee: MICROMASS UK LIMITED
    Inventors: Emmanuelle Claude, Mark Williams Towers, Kieran Neeson, Richard Denny, Jeffrey M. Brown, Paul R. Murray, Mark McDowall
  • Patent number: 9995719
    Abstract: Methods for depositing materials on patterned substrates, and related devices, are generally provided. In some embodiments, a material is deposited on a patterned substrate. In certain embodiments, the substrate comprises a first portion with a material deposited on the first portion and a second portion of the substrate essentially free of the material. The methods described herein may be useful in fabricating sensors, circuits, tags, among other devices. In some cases, devices for determining analytes are also provided.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 12, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Kelvin Mitchell Frazier, Katherine A. Mirica, Joseph Walish
  • Patent number: 9983163
    Abstract: A biosensor pixel for measuring current that flows through the electrode surface in response to electrochemical interactions and a biosensor array architecture that includes such biosensor pixels. The biosensor pixel includes an electrode transducer configured to measure a current generated by electrochemical interactions occurring at a recognition layer placed directly on top of it in response to an electrical voltage placed across an electrode transducer-electrolyte interface. The biosensor pixel further includes a trans-impedance amplifier connected to the electrode transducer, where the trans-impedance amplifier is configured to convert the current into a voltage signal as the electrochemical interactions occur.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: May 29, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arjang Hassibi, Arun Manickam, Rituraj Singh
  • Patent number: 9874548
    Abstract: A method of detecting an analyte includes vaporizing at least a portion of a fluid within a wellbore, passing the vaporized fluid adjacent a chemiresistive sensing element coupled to a drill string within the wellbore and sensing a resistivity of the chemiresistive sensing element. A sensor for detecting an analyte includes an expansion device for vaporizing a portion of a fluid within a wellbore, a chemiresistive sensing element configured to contact the vaporized fluid within the wellbore and a controller configured to pass a current through the chemiresistive sensing element and calculate a resistance of the chemiresistive sensing element in contact with the gaseous portion of the fluid. An earth-boring tool may include a bit body coupled to a drill string and the sensor.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: January 23, 2018
    Assignee: Baker Hughes Incorporated
    Inventor: Othon R. Monteiro
  • Patent number: 9765395
    Abstract: A DNA sequencing and blood chemistry analysis device is provided including one or more sensor chips and one or more sample wells, wherein each sample well is configured to form a seal with one of the sensors. The one or more sensor chips may comprise Graphene transistors, and each transistor having an associated sequencing probe. The sensor chips interact with a biological sample introduced into the sample well, wherein changes in the current, transconductance, and resistance of the Graphene transistors are indicative of a DNA binding process. Based on the associated sequencing probes, the DNA sequence present in a biological sample can be identified.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: September 19, 2017
    Assignee: Nanomedical Diagnostics, Inc.
    Inventor: Brett Goldsmith
  • Patent number: 9658198
    Abstract: A method for identifying and quantitatively analyzing an unknown organic compound in a gaseous medium. More specifically, the method provides a gas sensor array (120a, 120b, 120c, 120d) coupled to a diluting channeling gas inlet (105) with a honeycomb configuration. Each sensor (120a, 120b, 120c, 120d) in the array receives the test gas after successive dilutions. Detected gas are identified by correlating the responses of each sensor with its associated dilution.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 23, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Stefan H. Gryska, Michael C. Palazzotto, Derek M. Maanum, Myungchan Kang
  • Patent number: 9613785
    Abstract: The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 4, 2017
    Assignee: Micromass UK Limited
    Inventors: Emmanuelle Claude, Mark Williams Towers, Kieran Neeson, Richard Denny, Jeffrey M. Brown, Paul R. Murray, Mark McDowall
  • Patent number: 9518957
    Abstract: A magnetic signal measuring apparatus includes a first magnetic field applying unit that applies a first magnetic field to magnetic substances when a measured substance is binding to the magnetic substances, a second magnetic field applying unit that applies a second magnetic field to the magnetic substances to which the first magnetic field has been applied, and a SQUID that measures a magnetic signal derived from the magnetic substances. The first magnetic field has an intensity of such a degree that the magnetic substances do not flocculate with each other and such a degree that directions of magnetic moments in the magnetic substances can be aligned with each other. The second magnetic field has an intensity of such a degree that the magnetic substances do not flocculate with each other and such a degree that a magnetic signal can be obtained from the magnetic substances.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 13, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Keiji Enpuku, Takako Mizoguchi, Akihiko Kandori
  • Patent number: 9456749
    Abstract: A portable electronic device is described with telecommunication capabilities to allow for data and/or voice communication via private or public networks, having an integrated chemical sensor sensitive to ketones within a breath sample of a user wherein the sensor comprises at least one metal oxide gas sensor and a control circuit for the sensor integrated onto a common substrate or package.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: October 4, 2016
    Assignee: Sensirion AG
    Inventors: Frank Roeck, Moritz Lechner, Michael Dommer
  • Patent number: 9395322
    Abstract: Methods are disclosed for scaling body fluid analysis data to correct and/or compensate for confounding variables such as hematocrit (Hct), temperature, variations in electrode conductivity or combinations thereof before providing an analyte concentration. The scaling methods utilize current response data obtained from an AC block applied prior to a DC block to minimize the impact of such confounding variables upon the observed DC current response before creating descriptors or algorithms. The scaling methods therefore compensate the measured DC current by using data from the AC block made on the same sample. Also disclosed are devices, apparatuses and systems incorporating the various scaling methods.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 19, 2016
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Harvey B. Buck, Jr., Scott E. Carpenter, Zheng Zheng Pan, Rene Valverde-Ventura
  • Patent number: 9377447
    Abstract: In exemplary implementations of this invention, an electronic olfactor determines whether a scent being tested matches the scent of a positive control. The electronic olfactor can perform this scent matching even in a changing olfactory environment, and even if the positive control scent is a combination of hundreds or thousands of different odorants. No prior training is needed, and no attempt is made to identify a single odorant that is unambiguously responsible for a scent. Instead, a computer compares the total scent pattern of a positive control sample with the total scent pattern of a test sample, across a sweep of many permutations of electrical inputs to scent sensors, to try to find any condition under which the total scent patterns do not match. If such a condition cannot be found, then the computer declares a match between the test and target scents.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: June 28, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Andreas Mershin, Asmamaw Wassie, Yael Maguire, David Kong, Shuguang Zhang, Patrick Moran, Karolina Corin
  • Patent number: 9316624
    Abstract: Disclosed herein is a chromatography system wherein a sensor, for example, a UV sensor, is tied to a continuously variable load pump in a feedback control loop, with an option to divert the feed stream back to the load vessel or reservoir or onto a second chromatography column, the disclosed chromatography system allowing a true feedback control across variable load rates, thereby adjusting chromatographic operating parameters, for example, variable load rates, to process conditions, while maximizing throughput.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 19, 2016
    Assignee: GE HEALTHCARE BIO-SCIENCES CORP.
    Inventor: Geoffrey L. Hodge
  • Patent number: 9142394
    Abstract: Prior to multiple reaction monitoring (MRM) measurement condition optimization, an analysis operator prepares, for each precursor ion of an objective compound, two lists on a product-ion selection condition setting screen 200, i.e. a list 203 which shows ions to be preferentially selected as product ions for which the optimization needs to be performed and a list 202 which shows ions to be excluded from the optimization. When a measurement is performed, a product-ion scan measurement for the precursor ion of the objective compound is performed and a spectrum is obtained. Among the ions extracted from this spectrum, any ion registered in the excludable-ion list 202 is excluded, while any ion registered in the preferred-ion list 203 is preferentially selected as a product ion. For each combination of the m/z values of the precursor ion and the product ions thus determined, optimum conditions of the MRM measurement are searched for.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: September 22, 2015
    Assignee: SHIMADZU CORPORATION
    Inventor: Hideki Yamamoto
  • Patent number: 9110015
    Abstract: An array of sensors arranged in matched pairs of transistors with an output formed on a first transistor and a sensor formed on the second transistor of the matched pair. The matched pairs are arranged such that the second transistor in the matched pair is read through the output of the first transistor in the matched pair. The first transistor in the matched pair is forced into the saturation (active) region to prevent interference from the second transistor on the output of the first transistor. A sample is taken of the output. The first transistor is then placed into the linear region allowing the sensor formed on the second transistor to be read through the output of the first transistor. A sample is taken from the output of the sensor reading of the second transistor. A difference is formed of the two samples.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 18, 2015
    Assignee: Life Technologies Corporation
    Inventors: Keith G. Fife, Jungwook Yang
  • Patent number: 9023655
    Abstract: Sample processing units useful for mixing and purifying materials, such as fluidic materials are provided. A sample processing unit typically includes a container configured to contain a sample comprising magnetically responsive particles, and one or more magnets that are in substantially fixed positions relative to the container. A sample processing unit also generally includes a conveyance mechanism configured to convey the container to and from a position that is within magnetic communication with the magnet, e.g., such that magnetically responsive particles with captured analytes can be retained within the container when other materials are added to and/or removed from the container. Further, a sample processing unit also typically includes a rotational mechanism that is configured to rotate the container, e.g., to effect mixing of sample materials disposed within the container. Related carrier mechanisms, sample processing stations, systems, and methods are also provided.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: May 5, 2015
    Assignee: IBIS Biosciences, Inc.
    Inventors: Steven A. Hofstadler, Jared J. Drader, Jose R. Gutierrez, Paul J. Gleason, Rex O. Bare, Robert D. Miller, Jeffrey C. Smith
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 9012232
    Abstract: An auto-calibration system for diagnostic test strips is described for presenting data individually carried on each test strip readable by a diagnostic meter. The carried data may include an embedded code relating to data particular to that individual strip. The data is presented so at to be read by a meter associated with the diagnostic test strip in order to avoid manually inputting the information.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: April 21, 2015
    Assignee: Nipro Diagnostics, Inc.
    Inventors: Gary T. Neel, Brent E. Modzelewski, Allan Javier Caban, Adam Mark Will, Carlos Oti
  • Patent number: 9005987
    Abstract: Described herein are methods for quantitative target detection in a sample through use of microbeads and related devices and systems.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: April 14, 2015
    Assignees: University of Southern California, California Institute of Technology
    Inventors: Emil P. Kartalov, Axel Scherer, Clive R. Taylor
  • Patent number: 9005527
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 14, 2015
    Assignee: Bayer Healthcare LLC
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 8999243
    Abstract: A blood coagulation analysis device and method in which information relating to the coagulability of blood is evaluated based on a change generated in a permittivity measured in a coagulation process of the blood due to addition of a substance that activates or inactivates platelets to the blood.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: April 7, 2015
    Assignee: Sony Corporation
    Inventors: Yoshihito Hayashi, MarcAurele Brun, Shinji Omori, Yoichi Katsumoto, Kazumasa Sato
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia
  • Patent number: 8999724
    Abstract: Described are devices and methods for detecting the match quality and concentration of analytes binding to an electrode surface. The devices utilize a clock to measure capacitance change as a function of time and a temperature controller to measure the capacitance change as a function of temperature.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 7, 2015
    Assignee: Intel Corporation
    Inventors: Gordon Holt, Hernan Castro, Brandon Barnett
  • Publication number: 20150064798
    Abstract: A sensor includes an organic thin-film transistor (OTFT) that operates under low voltage conditions in an aqueous environment. According to an example embodiment, an OTFT includes an organic channel that electrically connects source and drain electrodes, with a gate electrode separated from the channel by a dielectric layer. The channel, gate and dielectric layer are arranged to facilitate switching of the channel region to pass current between the source and drain electrodes, in response to a low voltage applied to the gate electrode, when the channel is exposed to an aqueous solution. The current that is passed is indicative of characteristics of the aqueous solution, and is used to characterize the same. For various implementations, the low voltage operation of the sensor facilitates such characterization with substantially no ionic conduction through an analyte in the aqueous solution.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventors: Zhenan Bao, Mark E. Roberts
  • Patent number: 8968663
    Abstract: An apparatus for examining membrane-bound proteins in a cell can include a chamber with an insulating partition dividing the chamber into an upper well and a lower well, and a pore penetrating the insulating partition. The pore can have a size and shape so as to snugly hold a cell in place therein. The apparatus can further include circuitry for delivering a radio frequency signal to the cell. A belt electrode for delivering electrical signals to the cell can be located within the insulation partition and substantially encircling the pore. A measuring circuit for measuring cell membrane impedance to the radio frequency signal is also provided, and changes in the impedance can signal a change in state of a protein in the cell membrane.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 3, 2015
    Assignee: University of Utah Research Foundation
    Inventors: Sameera Dharia, Richard D. Rabbitt
  • Patent number: 8961883
    Abstract: A biochip including conductive particle and a device for detecting target antigen comprising the biochip are disclosed. According to the present invention, a target antigen can be effectively detected using a small amount of target antigen alone, whereby nonspecific detection signal can be reduced and an amplified signal can be detected.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 24, 2015
    Assignee: LG Electronics Inc.
    Inventors: Kyuho Song, Sunkil Kang, Dayeon Kang, Taeyoung Kim, Seungmok Han, Gueisam Lim, Jisu Kim
  • Patent number: 8940235
    Abstract: A chemical sensor is disclosed. The chemical sensor is an electronic device including in specific embodiments a first transistor and a second transistor. The first transistor includes a semiconducting layer made of a first semiconductor and carbon nanotubes. The second transistor includes a semiconducting layer made of a second semiconductor, and does not contain carbon nanotubes. The two transistors vary in their response to chemical compounds, and the differing response can be used to determine the identity of certain chemical compounds. The chemical sensor can be useful as a disposable sensor for explosive compounds such as trinitrotoluene (TNT). The electronic device is used in conjunction with an analyzer that processes information generated by the electronic device.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yiliang Wu, Ping Liu, Anthony James Wigglesworth
  • Patent number: 8940143
    Abstract: An embodiment of the invention relates to a biochip comprising at least two measurement electrodes, a synthesis electrode, a ground electrode, a gap between the at least two measurement electrodes, a porous dielectric isolation layer and a gel comprising a probe in the gap, wherein the porous dielectric isolation layer is between the synthesis electrode and the gel. Yet other embodiments relate to the method of manufacturing the biochip and using the biochip for electrical detection of bio-species.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Nikolay Suetin
  • Publication number: 20150024507
    Abstract: Provided is a sensor platform that includes a substrate, a plurality of nanochannels disposed on the substrate, and a plurality of electrodes, a waveguide disposed on the substrate and an analysis chamber and a reference chamber disposed on the substrate. Each electrode extends substantially across a width of the plurality of nanochannels. At least one analysis optical resonator is disposed in the analysis chamber and is optically coupled to at least a portion of the waveguide. The at least one analysis optical resonator is in fluid communication with at least one of the plurality of nanochannels. At least one reference optical resonator is disposed in the reference chamber and is optically coupled to at least a portion of the waveguide. The at least one reference optical resonator is in fluid communication with at least one other of the plurality of nanochannels.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 22, 2015
    Inventors: Sang M. Han, Cornellius F. Ivory, Mani Hossein-Zadeh
  • Patent number: 8932868
    Abstract: A method an system is disclosed for the detection and/or allocation of at least one point mutation in target DNA and/or RNA duplexes. The method comprises obtaining a functionalized surface which is coated with probe DNA and/or RNA whereto target DNA and/or RNA duplexes are attached, contacting said functionalized surface to an electrolytic solution having a neutral pH in a flow cell and measuring a first impedance value within said electrolytic solution, and then adding a chemical to the electrolytic solution which is able to achieve denaturation of the target DNA and/or RNA. The method further comprises measuring a second impedance value within the flow cell after completion of the denaturation of the DNA and/or RNA target, and then obtaining a value representative for the impact of the chemical on the impedance of the electrolytic solution.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: January 13, 2015
    Assignees: IMEC, Universiteit Hasselt
    Inventors: Bart Van Grinsven, Ward De Ceuninck, Patrick Wagner
  • Patent number: 8932871
    Abstract: A system for a vehicle includes a first ozone sensor that generates a first sensor signal indicating a first amount of ozone in air flowing into a radiator. A second ozone sensor generates a second sensor signal indicating a second amount of ozone in air flowing out of the radiator. A control module receives the first sensor signal and the second sensor signal and determines an ozone conversion rate based on the first sensor signal and the second sensor signal.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 13, 2015
    Inventors: Scott H. Wittkopp, Chang H. Kim, Brian T. Heil
  • Patent number: 8926900
    Abstract: Improved system for gas chromatography wherein use is made of a separation column and a TCD (Thermal Conductivity Detector), characterized in that the outflow from the separation column is ionized, and the ionization takes place upstream of the TCD. The ionization of the outflow from the separation column upstream of the TCD is surprisingly found in many cases to have a favorable effect on the response of the TCD. The sensitivity of the TCD is found in many cases to increase substantially. For ionization purposes use can be made of electromagnetic radiation, ionizing radiation or pyrolysis. The degree of ionization is preferably measured by means of measuring means provided for the purpose. The response of the TCD and the measurement data obtained with the measuring means are found together to give in many cases even more and better information relating to components present in the outflow from the separation column.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: January 6, 2015
    Assignee: Thermo Fisher Scientific S.p.A.
    Inventors: Job Elders, Gert-Jan Burger
  • Patent number: 8920723
    Abstract: A sample support structure comprising a sample support manufactured from a semiconductor material and having one or more openings therein. Methods of making and using the sample support structure.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 30, 2014
    Assignee: Protochips, Inc.
    Inventors: John Damiano, Jr., Stephen E. Mick, David P. Nackashi
  • Patent number: 8916035
    Abstract: An arrangement and a method measures cell vitalities with a sensor array. The sensor array is formed on a surface of a semiconductor chip. The semiconductor chip has integrated circuits and an integrated circuit is associated with each sensor of the sensor array, for processing the measurement signals of the respective sensor. The integrated circuits are formed in the semiconductor chip spatially in each case below the associated sensor and neighboring sensors of the sensor array have a center-to-center in the range of micrometers. The pH and/or pO2 can be measured in the environment of a living cell.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 23, 2014
    Assignee: Boehringer Ingelheim Vetmedica GmbH
    Inventors: Alexander Frey, Walter Gumbrecht, Peter Paulicka, Meinrad Schienle, Daniel Sickert, Manfred Stanzel