With Particular Receiver Circuit Patents (Class 455/334)
  • Patent number: 11889146
    Abstract: In situations where a receiver, rendering a content, switches from a first transport stream carrying that content to a second transport stream carrying that same content, artefacts may occur on the rendered content while transitioning between both transport streams. Considering transport stream data of a transport stream signal may be available at a nominal frequency higher than a frequency corresponding to the transport stream bitrate, there may be some periods of time during which no data is present in the transport stream signal. A salient idea is to switch from the first transport stream signal to the second transport stream signal in such periods during which there is no transport stream valid data in the first transport stream signal, allowing to minimize the risks of perceptible defects in the rendered content throughout the switching.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: January 30, 2024
    Assignee: INTERDIGITAL MADISON PATENT HOLDINGS, SAS
    Inventors: Anthony Pesin, Abdullah Haskou, Ali Louzir, Jean-Yves Le Naour
  • Patent number: 11876548
    Abstract: Wireless devices, and particularly mobile devices such as cellphones, PDAs, computers, navigation devices, etc., as well as other devices which transmit or receive data or other signals at multiple frequency bands utilize at least one antenna to transmit and receive and a plurality of different bands (e.g., GSM cellular communication band; Bluetooth short range communication band; ultrawideband (UWB) communications, etc.). These wireless devices can simultaneously transmit or receive at a plurality of different bands, or simultaneously transmit and receive at different bands. The wireless devices have the ability to use a single physical structure (e.g., an antenna for transmission and reception of many different bands. The antenna can he either actively tuned or passively tuned using one or more elements. The antenna may comprise a plurality of antenna elements or antennas, and at least one antenna may be a steerable antenna.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 16, 2024
    Inventor: Theodore S. Rappaport
  • Patent number: 11855815
    Abstract: An apparatus for detecting a Q-demodulator's real-time phase and offset error includes an RF signal path configured to receive an RF signal from an RF component, a first chopper to chop the RF signal at a first frequency to generate a chopped RF signal, an LO signal path configured to receive an LO signal, a second chopper to chop the LO signal at a second frequency to generate a chopped LO signal, a summing mechanism to combine the chopped LO signal to the chopped RF signal into a combination signal. The apparatus further includes a Q-demodulator comprising a phase shifter configured to shift a phase of the combination signal and a phase of the LO signal, and a mixer configured to multiply the shifted combination signal by the shifted LO signal to generate a baseband signal, and at least two filters configured to extract different signals contained in the baseband signal for analysis.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: December 26, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Mohammad Maymandi Nejad, Ronald J. Lipka
  • Patent number: 11831697
    Abstract: Disclosed are a method, a first electronic audio device, and a system comprising at least a first electronic audio device and a second electronic audio device for performing audio communication between at least the first electronic audio device and the second electronic audio device. The electronic audio devices are configured for wireless communication via a wireless connection. The electronic audio devices are configured to transmit and/or receive audio directly between them via the wireless connection. The electronic audio devices comprise a speaker and a microphone.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: November 28, 2023
    Assignee: GN AUDIO A/S
    Inventor: Lisa Rørbæk Kamstrup
  • Patent number: 11716210
    Abstract: An electronic device includes a communication module, an external module and a signal integration circuit. The signal integration circuit includes a first input port, a second input port, a third input port and an output port. The first input port is for inputting an input signal. The second input port is for selectively inputting a first L1 band signal. The third input port is for selectively inputting a second L1 band signal. The output port selectively outputs a first output signal or a second output signal. When the third input port is coupled to an external module, the third input port is for inputting the second L1 band signal, and the output port outputs the second output signal. When the third input port is not coupled to the external module, the second input port is for inputting the first L1 band signal, and the output port outputs the first output signal.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: August 1, 2023
    Assignee: GETAC TECHNOLOGY CORPORATION
    Inventors: Min-Yu Wang, Kuan-Yu Chen
  • Patent number: 11695201
    Abstract: Radio frequency (RF) systems with tunable filters are provided herein. In certain embodiments, an RF system includes a first RF processing circuit configured to process a first frequency band of a first communication standard and a second frequency band of a second communication standard. The first frequency band and the second frequency band are close in frequency and/or partially overlapping in frequency. The first RF processing circuit includes a tunable filter for changing the bandwidth of the first RF processing circuit to enhance the robustness of the first RF processing circuit to blocker or jammer signals of a third frequency band.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: July 4, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventor: Stephane Richard Marie Wloczysiak
  • Patent number: 11601183
    Abstract: Spatial redistributors and methods of redistributing signals in accordance with various embodiments of the invention are illustrated. One embodiment includes an array of channels configured to receive and retransmit a signal, where each of a plurality of independently operating channels in the array includes: at least one antenna element; an RF chain configured to apply at least a time delay to the received signal prior to retransmission; control circuitry configured to control the time delay applied to the received signal by the RF chain; and a reference oscillator. In addition, the array of channels is configured to redirect a signal received from a first set of directions for retransmission in a second set of directions; and the control circuitry of the channels in the array of channels coordinates the time delays applied to the received signal across the array of channels to control the wave front of the retransmitted signal.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 7, 2023
    Assignee: California Institute of Technology
    Inventors: Seyed Ali Hajimiri, Austin C. Fikes, Parham Porsandeh Khial
  • Patent number: 11570709
    Abstract: A low-power wake-up receiver includes a mixer-based two-stage heterodyne architecture that provides multi-stage channel filtering, including a combination of circuits and a digital signal processor that process energy in a plurality of advertising channels to detect a four-dimensional wake-up signature via frequency-hopping among the plurality of advertising channels. One receiver is a BLE/Wi-Fi dual-mode wake-up receiver.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 31, 2023
    Assignee: The Regents of the University of California
    Inventors: Po-Han Wang, Patrick Mercier
  • Patent number: 11496182
    Abstract: A method of using customer premise cable modem equipment to generate a signal that can be used for leakage detection. Various signal types are described which are usable for the purposes of leakage detection.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: November 8, 2022
    Assignee: COMSONICS, INC.
    Inventors: Ken Couch, Joseph Early, Peter Jensen
  • Patent number: 11323796
    Abstract: A wireless earphone includes: a sensor which serves as both of an antenna configured to transmit and receive a radio signal wirelessly to and from an external device and a pad configured to receive an input manipulation of a wearer; a radio circuit configured to perform various kinds processing relating to the radio signal; and a control circuit configured to perform various kinds processing on the basis of the input manipulation. The wireless earphone further includes a capacitance element connected between the radio circuit and the sensor and between the control circuit and the sensor, the capacitance element being connected to a ground conductor in series to pass only the radio signal.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: May 3, 2022
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Fukahori, Ryota Fujiwara, Toshinori Komesu
  • Patent number: 11101566
    Abstract: An electronic package and a method for fabricating the same are provided. A resist layer and a support are formed on a first substrate having a first antenna installation area. A second substrate having a second antenna installation area is laminated on the resist layer and the support. The resist layer is then removed. The support keeps the first substrate apart from the second substrate at a distance to ensure that the antenna transmission between the first antenna installation area and the second antenna installation area can function normally.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 24, 2021
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Hung Chen, Chun-Yi Huang, Chang-Fu Lin, Rung-Jeng Lin, Kuo-Hua Yu
  • Patent number: 11038728
    Abstract: In some examples, a system includes a receiver configured to receive signals encoding first, second, and third messages in first, second, and third frequency bands. The system also includes a mixer configured to down-convert the received signals to intermediate-frequency (IF) signals based on a local oscillator signal. The system further includes at least one analog-to-digital converter configured to sample the IF signals at a sampling rate. A frequency band of the IF signals encoding the first message falls within a first Nyquist region, and a frequency band of the IF signals encoding the second message falls within a second Nyquist region. The first and second Nyquist regions are frequency ranges bounded by multiples of one-half of the sampling rate, and the second Nyquist region is different from the first Nyquist region. The system includes processing circuitry configured to determine data in the first, second, and third messages based on an output of the at least one analog-to-digital converter.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: June 15, 2021
    Assignee: Honeywell International Inc.
    Inventor: Thomas W. Hastings
  • Patent number: 10910329
    Abstract: The disclosure relates to a semiconductor package device. The semiconductor package device includes a substrate, a waveguide component, a package body, a first dielectric layer, an antenna pattern, and an antenna feeding layer. The waveguide component is on the substrate. The package body is on the substrate and encapsulates the waveguide component. The first dielectric layer is on the package body and has a first surface and a second surface adjacent to the package body and opposite to the first surface. The antenna pattern is on the first surface of the first dielectric layer. The antenna feeding layer is on the second surface of the first dielectric layer.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: February 2, 2021
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Kuo-Hsien Liao, Alex Chi-Hong Chan
  • Patent number: 10896021
    Abstract: The disclosure is directed to a process that can predict an audio glitch, and then attempt to preempt the audio glitch. The process can monitor the systems, processes, and execution threads on a larger system or device, such as a mobile device or an in-vehicle device. Using a learning algorithm, such as deep neural network (DNN), the information collected can generate a prediction of whether an audio glitch is likely to occur. An audio glitch can be an audio underrun condition. The process can use a second learning algorithm, which also can be a DNN, to generate recommended system adjustments that can attempt to prevent the audio glitch from occurring. The recommendations can be for various systems and components on the device, such as changing the processing system frequency, the memory frequency, and the audio buffer size. After the audio underrun condition has abated, the system adjustments can be reversed fully or in steps to return the system to its state prior to the system adjustments.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: January 19, 2021
    Assignee: Nvidia Corporation
    Inventors: Utkarsh Vaidya, Sumit Bhattacharya
  • Patent number: 10635150
    Abstract: An electrical power supply device includes a DC-DC power convertor receiving an input voltage and producing a first output voltage or a second output voltage that is less than the first output voltage, the first and second output voltage each less than the input voltage and a device controller in communication with the DC-DC power convertor. The device controller has one or more processors and memory. The memory includes instructions which causes the device controller to command the DC-DC power convertor to output the first output voltage when the input voltage is equal to or greater than a threshold voltage and which causes the device controller to command the DC-DC power convertor to output the second output voltage when the input voltage is less than the threshold voltage. A method of operating the electrical power supply device is also presented.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 28, 2020
    Assignee: Aptiv Technologies Limited
    Inventors: Mohamad Elghrawi, Robert M. Voto
  • Patent number: 10444014
    Abstract: An angular sensor. The angular sensor includes a Coriolis vibratory gyroscope (CVG) resonator, configured to oscillate in a first pair of normal modes including a first normal mode and a second normal mode and a second pair of normal modes including a third normal mode and a fourth normal mode. The angular sensor further includes a coarse readout circuit configured to drive the first pair of modes, measure the motion of the first pair of modes, and derive from the measured motion of the first pair of modes a coarse measurement of an angular rate of the resonator. The angular sensor further includes and a fine readout circuit configured to derive a measurement of the difference between the true angular rate of the resonator and the coarse measurement.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: October 15, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Logan D. Sorenson, Raviv Perahia, David T. Chang, Randall L. Kubena, Deborah J. Kirby, Hung Nguyen, Richard J. Joyce
  • Patent number: 10257267
    Abstract: A solution for running a software application on a computing machine is provided, which includes registering a capability of a delegation component to execute at least one action on the computing machine, each one defined by at least one characteristic thereof, receiving a request for executing the at least one action from the software application by the delegation component, the request being bound to the delegation component at run-time according to the capability registration thereof, and delegating, by the delegation component, the execution of the at least one action to at least one local component of the computing machine being capable of executing at least part of the at least one action and/or to at least one remote component of at least one remote computing machine being capable of executing at least part of the at least one action according to an availability of the at least one local component.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: April 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Claudio Marinelli, Luigi Pichetti, Alex Donatelli, Giovanni Lanfranchi
  • Patent number: 10212221
    Abstract: A solution for running a software application on a computing machine is provided, which includes registering a capability of a delegation component to execute at least one action on the computing machine, each one defined by at least one characteristic thereof, receiving a request for executing the at least one action from the software application by the delegation component, the request being bound to the delegation component at run-time according to the capability registration thereof, and delegating, by the delegation component, the execution of the at least one action to at least one local component of the computing machine being capable of executing at least part of the at least one action and/or to at least one remote component of at least one remote computing machine being capable of executing at least part of the at least one action according to an availability of the at least one local component.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: February 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Claudio Marinelli, Luigi Pichetti, Alex Donatelli, Giovanni Lanfranchi
  • Patent number: 10014909
    Abstract: There is provided a communication device including a transmission unit configured to transmit a modulated signal obtained by performing frequency conversion to convert a baseband signal output by a first electronic device into a signal with a higher frequency band than the baseband signal, using a waveguide as a transmission path, and a detection target mechanism corresponding to a mechanism included in a second electronic device that receives the baseband signal output by the first electronic device, the detection target mechanism being configured to be connected to the first electronic device and to be detected by the first electronic device when the first electronic device and the second electronic device are connected.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: July 3, 2018
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Hirosada Miyaoka
  • Patent number: 9979862
    Abstract: A buffering method for video playing includes: playing a video according to an amount of video buffer data and a predefined playing threshold, and monitoring a network speed; determining whether the network speed meets a predefined condition; and updating a previously set video buffer depth and the playing threshold according to the network speed if the network speed meets the predefined condition. A storage medium and device are also provided.
    Type: Grant
    Filed: April 23, 2017
    Date of Patent: May 22, 2018
    Assignee: UBTECH ROBOTICS CORP.
    Inventors: Youjun Xiong, Haiwu Su, Lin Chen
  • Patent number: 9960795
    Abstract: Provided are a semiconductor device and an operating method thereof. A semiconductor device includes a mixer configured to upconvert a baseband signal using a local oscillator (LO) signal; and a notch filter configured to receive the upconverted signal from the mixer and filter notch frequency components, the notch filter further configured to resonate at a fundamental frequency to provide a higher impedance and resonate at a notch frequency different from the fundamental frequency to provide a lower impedance.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: May 1, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Qing Liu, Dae Hyun Kwon, Hui Changhsiang
  • Patent number: 9831916
    Abstract: The disclosure relates to a method for transmitting data via direct current lines for energy transmission from a first communication unit to a second communication unit. The method includes generating a high-frequency test signal having a predefined voltage amplitude by the first or the second communication unit and coupling the high-frequency test signal onto the direct current lines. The method further includes determining a current level caused by the high-frequency test signal on the direct current lines by the first communication unit, and determining a voltage amplitude for a high-frequency signal based on the current level caused by the test signal. The method also includes coupling a high-frequency signal having the predetermined voltage amplitude onto the direct current lines by the first communication unit. The disclosure also relates to a system for transmitting data via direct current lines for energy transmission and to a photovoltaic installation having such a system.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: November 28, 2017
    Assignee: SMA Solar Technology AG
    Inventor: Holger Behrends
  • Patent number: 9802050
    Abstract: An energy-releasing carbon nanotube transponder comprising a nanocapacitor connected to at least one carbon nanotube and method of using same are described. An adjustable amount of electric energy is stored within the nanocapacitor so that the energy-releasing carbon nanotube transponder delivers either a biologically destructive or a biologically non-destructive electrical charge to target cells in response to biological, chemical or electrical stimuli. An optional biocompatible coating onto the outer surface of the carbon nanotube transponder improves cellular targeting, cellular binding or body tolerance towards the carbon nanotube transponder. Optionally, a molecular label attached to at least one carbon nanotube allows for in vivo tracking of the carbon nanotube transponder.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: October 31, 2017
    Assignee: Rush University Medical Center
    Inventor: Marvin A. Rossi
  • Patent number: 9806677
    Abstract: An amplifier (100) adapted for noise suppression comprises a first input (102) for receiving a first input signal and a second input (104) for receiving a second input signal, the first and second input signals constituting a differential pair. A first output (106) delivers a first output signal and a second output (108) delivers a second output signal, the first and second output signals constituting a differential pair. A first transistor (MCG1) has a first drain (110) coupled to the first output (106) such that all signal current, except parasitic losses, flowing through the first drain (110) flows through the first output (106), and the first transistor (MCG1) further having a first source (112) coupled to the first input (102).
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: October 31, 2017
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Daniele Mastantuono, Sven Mattisson
  • Patent number: 9742459
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 22, 2017
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Salih Yarga, Yijun Zhou, Erdinc Irci, Jayesh Nath, Ming-Ju Tsai, Matthew A. Mow, Liang Han, James G. Judkins, Robert W. Schlub
  • Patent number: 9660856
    Abstract: A method and system of compensating for distortion in a baseband in-phase (I) and a corresponding baseband quadrature (Q) signal. The circuit includes an in-phase I attenuator configured to attenuate the baseband in-phase I signal and an in-phase Q attenuator configured to attenuate the baseband Q signal. There are one or more circuits that are configured to receive the attenuated in-phase I signal and the attenuated baseband Q signal. Each circuit performs a different calculation based on predetermined equations configured to determine the IM2, HD2@0°, HD2@90°, IM3@0°, IM3@90°, HD3@0°, and HD3@90°. The distortion compensation circuit is configured to use the result of at least one of the calculation circuits to generate I and Q distortion compensation signals.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 23, 2017
    Assignee: Linear Technology Corporation
    Inventor: John Perry Myers
  • Patent number: 9560060
    Abstract: Systems and methods can support identifying multiple radio transmitters as being integrated within a single communications device. Radio frequency signals may be collected using one or more sensors incorporating radio receivers. A first radio frequency signature and a second radio frequency signature may be identified within one or more of the radio frequency signals as originating respectively from a first radio transmitter and a second radio transmitter. Characteristics of the first and second radio frequency signatures may be analyzed to evaluate a relationship between the first and second radio frequency signatures. It may be determined whether or not the first and second radio transmitters are integrated within a common wireless electronic device based upon the evaluated relationship between the first radio frequency signature and the second radio frequency signature. Characteristics and behaviors associated with the wireless electronic device may be determined therefrom.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: January 31, 2017
    Assignee: Bastille Networks, Inc.
    Inventors: Robert John Baxley, David Maynor, Logan Michael Lamb
  • Patent number: 9538468
    Abstract: The present description provides methods, computer program products, and systems for saving power in Wi-Fi devices utilizing Bluetooth. A Wi-Fi radio transitions to deep sleep mode from active mode while a Bluetooth radio remains active. An active Wi-Fi connection to the access point can be maintained by the station while in deep sleep mode as needed to prevent being disassociated. Responsive to the indication of data packets waiting at the access point, sent over the Bluetooth radio, the Wi-Fi radio at the station can be transitioned from the deep sleep mode to the active mode. A notification of active mode is sent to the access point currently associated with the Wi-Fi radio so that packets can be forwarded.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 3, 2017
    Assignee: Fortinet, Inc.
    Inventors: Suryanarayanan Radhakrishnan, Saurabh Bhargava, Sanjay Gandotra
  • Patent number: 9479186
    Abstract: In described examples, an analog to digital converter (ADC) includes a main ADC and a reference ADC. The main ADC generates a zone information signal and a digital output in response to an input signal. The reference ADC receives a plurality of reference voltages from the main ADC. The plurality of reference voltages includes a first reference voltage and a second reference voltage. The reference ADC generates a reference output in response to the input signal, the first reference voltage and the second reference voltage. A subtractor generates an error signal in response to the digital output and the reference output. A logic block generates one of a first offset correction signal, a second offset correction signal and a gain mismatch signal in response to the zone information signal, the error signal and the reference output.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 25, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Srinivas Kumar Reddy Naru, Nagarajan Viswanathan, Visvesvaraya Pentakota
  • Patent number: 9402279
    Abstract: Systems and techniques relating to wireless communications are described. A described technique includes performing, at a wireless communication device, an arbitration among multiple different wireless radio technologies, which collectively use two or more radio resources of the wireless communication device, to produce an arbitration result; and operating the two or more radio resources in accordance with the arbitration result. Performing the arbitration can include performing a first level arbitration between a request associated with a first technology of the multiple different wireless radio technologies and a request associated with a second technology of the multiple different wireless radio technologies to produce a first level result; and performing a second level arbitration to produce a second level result when indicated by the first level result. The arbitration result can be based on the first level result and the second level result, if any.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: July 26, 2016
    Assignee: Marvell International Ltd.
    Inventors: Hao Zhang, Nelson Xu, Yiqing Shen, Ken Yeung
  • Patent number: 9269050
    Abstract: Various methods and systems are provided for classification using correntropy. In one embodiment, a classifying device includes a processing unit and memory storing instructions in modules that when executed by the processing unit cause the classifying device to adaptively classify a data value using a correntropy loss function. In another embodiment, a method includes adjusting a weight of a classifier based at least in part on a change in a correntropy loss function signal and classifying a data value using the classifier. In another embodiment, a method includes classifying a data value by predicting a label for the data value using a discriminant function, determining a correntopy statistical similarity between the predicted label and an actual label based at least in part on a correntropy loss function, and minimizing an expected risk associated with the predicted label based at least in part on a correntropy statistical similarity.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 23, 2016
    Assignee: University of Florida Reseach Foundation, Inc.
    Inventors: Jose Carlos Principe, Abhishek Singh
  • Patent number: 9134242
    Abstract: The present invention discloses a method and its associated apparatus to retrieve the amplitude and, especially, the phase of nonlinear electromagnetic waves. The application field of the present invention is optical imaging. A sample is probed by coherent electromagnetic radiation, and by a nonlinear interaction such as harmonic generation a nonlinear object wave is emitted. A nonlinear reference wave is generated by interaction of the same nature with the coherent electromagnetic radiation, and an interference between the nonlinear object wave and the nonlinear reference wave is sensed by a detector array. As an example, the technique makes possible real-time nanometric localization and tracking of nonlinear field emitters, such as, but not limited to, nanoparticles.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: September 15, 2015
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Etienne Shaffer, Christian Depeursinge
  • Patent number: 9041539
    Abstract: Provided are a radio frequency identification (RFID) tag and a method for receiving a signal of the RFID tag. The RFID tag includes a voltage generator configured to generate a voltage signal from a received signal, a common gate circuit configured to convert the voltage signal into a current signal, a current/voltage converter configured to the current signal into a voltage signal by using a resistance value, a low-pass filter configured to perform low-pass filtering on the converted voltage signal, a buffer configured to buffer the low-pass-filtered voltage signal within an operation range, and a peak detector configured to detect a peak value from the buffered signal to demodulate information data. The current/voltage converter controls the resistance value to convert the current signal into a voltage signal included within the operation range of the buffer.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 26, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Iljong Song, CholSu Yoon
  • Patent number: 9042851
    Abstract: One or more circuits may comprise at least one first-type analog-to-digital converter (ADC) and at least one second-type ADC. The circuit(s) may be operable to receive a plurality of signals, each of which may comprise a plurality of channels. The circuit(s) may be operable to digitize a selected one or more of the channels. Which, if any, of the selected channels are digitized via the at least one first-type ADC and which, if any, of the selected channels are digitized via the at least one second-type ADC, may be based on which of the plurality of channels are the selected channels and/or based on power consumption of the circuit(s). A bandwidth of each first-type ADC may be on the order of the bandwidth of one of the received signals. A bandwidth of each second-type ADC may be on the order of the bandwidth of one of the plurality of channels.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: May 26, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9042859
    Abstract: A circuit includes first and second transconductance stages that generate first and second currents, respectively, in response to an input signal. A current combiner circuit selectively couples the first current to a first output, selectively couples the second current to the first output, selectively couples the first current to a second output, and selectively couples the second current to the second output. In response to the first current being coupled to both the first and second outputs, the current combiner circuit couples the second current to both the first and second outputs. In response to the first current being decoupled from the second output, the current combiner circuit decouples the second current from both the first and second outputs. In response to the first current being decoupled from the first output, the current combiner circuit decouples the second current from both the first and second outputs.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: May 26, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Gregory Uehara, Xiaohua Fan
  • Patent number: 9042847
    Abstract: Embodiments of the present invention provide a filter, a receiver, a transmitter, and a transceiver. The filter includes a resonant cavity component, a microstrip filtering component, and two connecting pieces, where the resonant cavity component includes at least two resonant cavities connected in parallel, each resonant cavity is provided with a resonator and a tuning screw, the microstrip filtering component includes a dielectric substrate and a microstrip positioned on the dielectric substrate, one of the connecting pieces matches and connects one end of the microstrip to the resonator on one resonant cavity, the other connecting piece matches and connects the other end of the microstrip to the resonator on another resonant cavity, and impedance of the resonant cavity component is less than impedance of the microstrip filtering component.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 26, 2015
    Assignee: Hauwei Technologies Co., Ltd.
    Inventor: Yanzhao Zhou
  • Patent number: 9037103
    Abstract: A method for processing a radio signal includes: receiving a signal on two antennas; demodulating the signal using first and second independent signal paths that are synchronized by symbol number; maximum ratio combining branch metrics from the two receiver paths; and using the combined branch metrics to produce an output, wherein the receiver paths include an arbitration scheme. A receiver that implements the method is also provided.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: May 19, 2015
    Assignee: iBiquity Digital Corporation
    Inventors: Brian W. Kroeger, Paul J. Peyla, Jeffrey S. Baird
  • Patent number: 9037087
    Abstract: Computationally implemented methods and systems include receiving one or more signals through a directional antenna of a wearable computing device, the one or more signals having been transmitted by one or more electronic devices; determining that the one or more electronic devices are within a spatial pod surrounding the wearable computing device based, at least in part, on the one or more signals received by the wearable computing device; and obtaining at least access to one or more functionalities from the one or more electronic devices that were determined to be within the spatial pod of the wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: May 19, 2015
    Assignee: Elwha LLC
    Inventors: Pablos Holman, Roderick A. Hyde, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, Clarence T. Tegreene
  • Patent number: 9036514
    Abstract: Systems and methods for combining signals from multiple active wireless receivers are discussed herein. An exemplary system comprises a first downconverter, a phase comparator, a phase adjuster, and a second downconverter. The first downconverter may be configured to downconvert a received signal from a first antenna to an intermediate frequency to create an intermediate frequency signal. The phase comparator may be configured to mix the received signal and a downconverted signal to create a mixed signal, compare a phase of the mixed signal to a predetermined phase, and generate a phase control signal based on the comparison, the downconverted signal being associated with the received signal from the first antenna. The phase adjuster may be configured to alter the phase of the intermediate frequency signal based on the phase control signal. The second downconverter may be configured to downconvert the phase-shifted intermediate frequency signal to create an output signal.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 19, 2015
    Assignee: Aviat U.S., Inc.
    Inventor: Ying Shen
  • Patent number: 9031519
    Abstract: The present invention relates to a node (1) in a wireless communication system, the node (1) comprising at least a first and second antenna function (2, 3), and a first and second radio chain (4, 5). At least at the start of a first mode of operation, each antenna function (2, 3) is connected to a corresponding radio chain (4, 5). The node further comprises a switching network (6) and a beamforming network (7), which switching network (6), at least at the start of a second mode of operation, is arranged to disconnect at least one antenna function (2) from its corresponding radio chain (4) and connect it to another of the radio chains (5) via at least a part of the beamforming network (7), such that at least two antenna functions (2, 3) are connected to the same radio chain (5). The node (1) is arranged to perform beamforming for said at least two antenna functions (2, 3) by means of said beamforming network (7), the switching network (6) being arranged to switch between the first mode and the second mode.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 12, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Andreas Nilsson, Anders Derneryd, Jonas Fridén, Lars Manholm
  • Patent number: 9020073
    Abstract: One embodiment relates to a low intermediate frequency (IF) receiver. The low-IF receiver includes an analog front end that is configured to receive a modulated IQ data signal and provide an in-phase signal and a quadrature signal, where the in-phase signal is phase shifted by approximately 90° relative to the quadrature signal. The low-IF receiver further includes a digital processing block, and a single path that provides only one of the in-phase signal and the quadrature signal to the digital processing block. Other receivers and methods are also disclosed.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: April 28, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Stefan van Waasen, Christian Grewing, Michael Lewis
  • Patent number: 9020456
    Abstract: A wake-up function is provided for a low power radio. The radio includes: an antenna, a rectifier, and a comparator. The rectifier is configured to receive an RF signal from the antenna and generates an output having a magnitude that decreases in the presence of the RF signal. The comparator compares the output from the rectifier to a reference signal and outputs an activation signal for another radio component. In response the activation signal, the radio component will transition from a low power consumption mode to a higher power consumption mode. In this way, the rectifier and comparator cooperatively operate to perform a wake-up function in the presence of an RF signal.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: April 28, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: David D. Wentzloff, Nathan E. Roberts
  • Patent number: 9020457
    Abstract: The present disclosure relates to a circuit for providing a signal gain, comprising: a first stage comprising a first set of variable gain transconductors arranged for receiving an input signal and for performing phase-shifting of the input signal, thereby producing an intermediate signal, and a second stage, comprising a second set of transconductors and a plurality of capacitors arranged for receiving the intermediate signal and for providing an output signal to a combiner, wherein the first stage and second stage together form a filter, and wherein the first set of variable gain transconductors and at least one of the transconductors of the second set define the signal gain of the circuit.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: April 28, 2015
    Assignees: IMEC, Vrije Universiteit Brussel
    Inventors: Viki Szortyka, Piet Wambacq
  • Patent number: 9014654
    Abstract: A semiconductor apparatus includes multiple field effect transistors provided between an antenna terminal to be connected to an antenna and multiple external terminals through which RF signals are capable of being supplied and a voltage generating circuit. When the field effect transistors provided between one of the multiple external terminals and the antenna terminal are turned off, the voltage generating unit charges a capacitor via a resistor circuit by switching the polarity of the RF signal to be supplied to the other external terminal with respect to the control signal and outputs a voltage based on a sum of the charge voltage and the voltage of the control signal as the gate drive voltage. The resistor circuit includes a first resistor including positive temperature characteristics and a second resistor including negative temperature characteristics.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 21, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tsutomu Kobori, Shigeki Koya, Akishige Nakajima, Yasushi Shigeno
  • Patent number: 9014655
    Abstract: A wireless communication system includes: a filter; and a semiconductor chip including a signal processing integrated circuit having an amplifier, wherein a main surface of the semiconductor chip is provided with a plurality of electrode terminals along an edge portion thereof; wherein the amplifier has a transistor including a control electrode, a first electrode through which a signal is outputted, and a second electrode to which a voltage is applied; wherein the control electrode, the first electrode and the second electrode of the transistor are connected to the electrode terminals, respectively; and wherein none of wirings are arranged between the electrode terminals and placements of the control electrode, the first electrode and the second electrode, making space between the electrodes and the electrode terminals narrow.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: April 21, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Kumiko Takikawa, Satoshi Tanaka, Yoshiyasu Tashiro
  • Patent number: 9014649
    Abstract: A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 21, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Anand K. Anandakumar, Curtis Ling, Sugbong Kang
  • Patent number: 8989586
    Abstract: Optical communications system (10) and method for transmission of payload data (PD) from a low earth orbit satellite (20) to an optical ground terminal (30), the low earth orbit satellite (20) being connectable with the optical ground terminal (30) via an optical downlink channel (DL), and the optical ground terminal (30) being connectable with the low earth orbit satellite (20) via an uplink channel (UC); wherein said uplink channel (UC) is an acquisition and tracking beacon channel by means of a ground beacon (GB) controlled by a point-acquisition-track subsystem (PAT), the ground beacon (GB) comprising a wide angle beam (W) for acquisition and a guidance beam (G) for tracking; and wherein the ground beacon (GB) for the uplink channel (UC) is a pulse position modulated PPM channel.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 24, 2015
    Assignee: RUAG Schweiz AG
    Inventors: Felix Andreas Arnold, Thomas Dreischer
  • Patent number: 8989690
    Abstract: A radio frequency front end of a receiver including a tunable filter receiving a signal; a controller for tuning the tunable filter; and an interference detection circuit configured to detect interference and provide an input to a controller, wherein the controller tunes the tunable filter based on the input from the interference detection circuit. Also a method for removing interference at a radio frequency front end of a receiver, the method detecting interference at an interference detection circuit; and tuning at least one tunable filter to at least one frequency of the detected interference.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 24, 2015
    Assignee: BlackBerry Limited
    Inventors: Christopher Andrew Devries, Daniel Noel Badiere
  • Patent number: 8989691
    Abstract: Power supply rejection in a single-ended receiver, through impedance balancing, is described. The single-ended receiver includes a first low noise amplifier and a second low noise amplifier. The single-ended receiver also includes a multi-port coupled transformer that outputs a differential signal. The multi-port coupled transformer includes a first primary coil that is coupled to an output of the first low noise amplifier and a second primary coil. The single-ended receiver also includes balancing impedances at the output of each of the low noise amplifiers. These impedances can be configured such that the on impedance of the first low noise amplifier equals the combined impedance of the off impedance of the second low noise amplifier and the balancing impedance. This balancing of impedances on the first and second primary coils results in power supply rejection of noise and spurious signals.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: March 24, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Ojas M Choksi, Wei Zhuo
  • Patent number: 8958764
    Abstract: A method of and apparatus for detecting signal features including amplitude, phase and timing of recognizable input signals in a frequency band or spectrum of interest. One or more super-regenerative oscillators are provided, each having a center frequency and each detecting signal features of recognizable input signals in the frequency band or spectrum of interest during multiple, successive time slots. The center frequency of each of the one or more super-regenerative oscillators is varied between time slots in a selected sequence, preferably according to a Segmentlet algorithm. The one or more super-regenerative oscillators extract the signal features of each the recognizable input signals in different time slots and/or in different super-regenerative oscillator and with a different time-slot associated center frequency associated with the one or more super-regenerative oscillators, thereby providing a time-frequency-amplitude map of the frequency band or spectrum of interest.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: February 17, 2015
    Assignee: HRL Laboratories, LLC
    Inventors: Zhiwei Xu, Donald A. Hitko, Peter Petre