Thallium (tl) Containing Patents (Class 505/120)
  • Patent number: 8852460
    Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
  • Patent number: 8633472
    Abstract: Terahertz radiation source and method of producing terahertz radiation, said source comprising a junction stack, said junction stack comprising a crystalline material comprising a plurality of self-synchronized intrinsic Josephson junctions; an electrically conductive material in contact with two opposing sides of said crystalline material; and a substrate layer disposed upon at least a portion of both the crystalline material and the electrically-conductive material, wherein the crystalline material has a c-axis which is parallel to the substrate layer, and wherein the source emits at least 1 mW of power.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: January 21, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Lev Boulaevskii, David M. Feldmann, Quanxi Jia, Alexei Koshelev, Nathan A. Moody
  • Patent number: 8337724
    Abstract: A method of preparing a composite includes the following steps. A powder blend is sintering while an oxygen partial pressure (pO2) of a gaseous atmosphere surrounding the powder blend is controlled. Before the sintering, a shape is formed from the powder blend. After the forming and before the sintering, binder is removed from the powder blend. The powder blend comprises binder, a mixed electronic/oxygen O2? anionic conducting compound (C1) and a compound (C2) chosen from MgO and BaTiO3. The resultant composite comprises at least 75 vol % of compound (C1), from 0.01 to 25 vol % of compound (C2), and from 0 vol % to 2.5 vol % of compound (C3).
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: December 25, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Thierry Chartier, Gregory Etchegoyen
  • Patent number: 8092721
    Abstract: Methods and compositions for the deposition of ternary oxide films containing ruthenium and an alkali earth metal.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 10, 2012
    Assignees: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Satoko Gatineau, Julien Gatineau, Christian Dussarrat
  • Publication number: 20080191561
    Abstract: A superconducting electrical cable system is configured to be included within a utility power grid. The superconducting electrical cable system includes a superconducting electrical path interconnected between a first and a second node within the utility power grid. A non-superconducting electrical path is interconnected between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path are electrically connected in parallel. The superconducting electrical path has a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path has a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Inventors: DOUGLAS C. FOLTS, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 6869915
    Abstract: An oxide superconductor includes a textured superconducting material including an array of defects, where the defects are a compound of two elements foreign to the superconductor, plus other elements native to the superconductor. The two foreign elements include one from group A and one from group B (or alternately the two foreign elements include the element uranium and one element from group C), where group A includes Cr, Mo, W, or Nd, group B includes Pt, Zr, Pd, Ni, Ti, Hf, Ce and Th, and group C includes Zr, Pd, Ni, Ti, Hf, Ce and Th. The array of defects is dispersed throughout the superconducting material. The superconducting material may be the RE1Ba2Cu3O7?? compound, wherein RE=Y, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Tb; the Bi2Sr2CaCu2Ox, (Bi, Pb)2Sr2CaCu2Ox, Bi2Sr2Ca2Cu3Ox (Bi, Pb)2Sr2Ca2Cu3Ox compounds; the HgBa2Ca2Cu3O8 and HgBa2CaCu2O6 compounds, the TlCaBa2Cu2Ox or Tl2Ca2Ba2Cu3Ox compounds and compounds involving substitution such as the Nd1+xBa2?xCu3Ox compounds.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: March 22, 2005
    Inventor: Roy Weinstein
  • Patent number: 6784138
    Abstract: A method for maximising critical current density (Jc) of high temperature superconducting cuprate materials (HTSC) which comprises controlling the doping state or hole concentration of the materials to be higher than the doping state or hole concentration of the material that provides a maximum superconducting transition temperature (Tc), and to lie at about a value where the normal-state pseudogap reduces to a minimum. Jc is maximised1 at hole concentration p≈0.19. HTSC compounds are also claimed.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Industrial Research Limited
    Inventor: Jeffery Lewis Tallon
  • Patent number: 6767866
    Abstract: Proposed are a selective reduction type high temperature superconductor and methods of making the same, the superconductor having a pair of charge supply layers each formed of a Cu1-xMx surface (1, 1), a first superconducting layer formed of a 5-coordination CuO2 surface (2) and a second superconducting layer formed of a 4-coordination CuO2 surface (3). Reducing M ions (e.g., Tl ions) in the charge supply layers by heat treatment in a reducing atmosphere enables the 5-coordination CuO2 surface (2) as the first superconducting layer to be over-doped and the 4-coordination CuO2 surface (3) as the second superconducting layer to be optimum-doped. According to the present invention, a high temperature superconductor is provided that with its critical temperature held high has a reduced superconducting anisotropy &ggr;, and provides a high critical current density Jc and a high c irreversibility field Hirr.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: July 27, 2004
    Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventor: Hideo Ihara
  • Patent number: 6711422
    Abstract: An superconducting electric motor is operated as a traditional squirrel-cage induction motor until the rotor reaches synchronous speed, at which point a current is trapped in a superconducting film by heating a portion of the superconducting film above its critical temperature, allowing the magnetic field generated by the stator coils to penetrate into the superconducting material and to induce a current. The superconducting material is then allowed to cool down below its critical temperature, thus trapping the current and allowing the motor to operate as a synchronous motor utilizing the magnetic field created by the direct current circulating in the superconducting material.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: March 23, 2004
    Inventor: Osman K. Mawardi
  • Patent number: 6569360
    Abstract: The present invention provides a generic method of preparing a metal matrix composite with a textured compound. A “roller-skate” structure starting powder with a mixture of plate-like particles and smaller particles provides better flow compatibility, higher packing density, better densification and texture formation in preparing a metal matrix composite with a textured compound. In particular, the invention provides a method of preparing a textured superconducting composite wire with an improved critical current density.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 27, 2003
    Inventor: Hengning Wu
  • Patent number: 6444620
    Abstract: A high-temperature superconductor having low superconducting anisotropy includes a two-dimensional layered structure of crystal unit cells each consisting of a pair of superconducting layer and charge reservoir layer. At least a portion of the atoms of the charge reservoir layer are replaced by atoms giving superconductivity, rendering the charge reservoir layer superconducting and lowering the superconducting anisotropy by increasing the coherence length in the thickness direction.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: September 3, 2002
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventor: Hideo Ihara
  • Patent number: 6300284
    Abstract: A copper-based high-temperature superconducting material includes a carrier supply layer overdoped with carriers; and a superconducting layer comprised of at least three CuO2 layers that are selectively doped with the carriers; whereby a high superconducting transition temperature (Tc) is maintained to be not less than 116 K, critical current density (Jc) is improved to be 5×106 A/cm2 (77 K, 0 T), and irreversible field (Hirr) is improved to be not less than 7 T.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: October 9, 2001
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Hideo Ihara, Yoshiyasu Sekita
  • Patent number: 6126855
    Abstract: The invention provides superior reaction products of copper, especially ultra-clean copper and polymeric chemical complexes. The polymers are unusual in that they provide polymeric systems of extensive conjugated double bond networks well suited for electron flow. The polymers are the covalent reaction products of aroylacrylates and isocyanates or thioisocyanates and are of stability and ease of manufacture.The materials provide superior electrical conductors and superconductors. Through the use of lattice modifiers and stabilizers the lattices of the polymers may be "fine tuned" easily so as to optimize important characteristics such as electron flow.The organic coatings on the copper perform best as thin films, especially as films thinner than lambda, the penetration depth of the magnetic flux into the superconductor. The long term widely accepted use of copper as an electrical conductor, with its flexibility, durability, and strength is preserved while its electrical current capacity is greatly enhanced.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: October 3, 2000
    Inventor: Stanley B. Elliott
  • Patent number: 5962373
    Abstract: A precursor is made from a plurality of materials having different vapor pressures. The precursor and a source material are placed in a closed heat treatment furnace. The source material is materials which are the same as some of the materials contained in the precursor and having particular vapor pressures. The precursor and source material is thermally treated in the furnace while the source material is being supplied, so the particular materials in the precursor have their evaporation suppressed, thereby forming compounds. The compounds may be oxide superconductors, oxide dielectric, and so on.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: October 5, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masaaki Nemoto, Shuichi Yoshikawa, Ryokan Yuasa, Isao Yoshida, Yorinobu Yoshisato
  • Patent number: 5939361
    Abstract: A substrate is set in a reaction chamber, to heat the substrate to a predetermined temperature. Tl, Ba, Ca, Cu and O are supplied to the substrate by a Tl evaporation source and a target, to cause a TlBaCaCuO film to grow on the substrate. The TlBaCaCuO film is crystallized for each formation of each of its blocks each having a layered structure. In an incomplete block which is being formed, the amount of evaporation of Tl by the heating is large, so that the amount of evaporation of Tl varies depending on the ratio of an uncrystallized region on its surface. In a complete block after the formation, the amount of evaporation of Tl by the heating is small, and is approximately constant. Film growth is stopped for a predetermined time period for each formation of the block, to control the amount of supply of Tl depending on the forming step of the block.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: August 17, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Masaaki Nemoto
  • Patent number: 5919735
    Abstract: A high temperature superconductor which has a layered crystal structure, which has a superconducting transition temperature, Tc, of 110 K or more, and which has a composition expressed by:Cu.sub.1-z M'.sub.z Ae.sub.2 Ca.sub.x-1 Cu.sub.x O.sub.y,where M' is at least one element selected from the group consisting of (a) trivalent ions of Tl, and (b) polyvalent ions of Mo, W, and Re,where Ae is at least one of Ba and Sr,where x ranges from 1 to 10,where y ranges from 2x+1 to 2x+4, andwhere z ranges from 0<z.ltoreq.0.5.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: July 6, 1999
    Assignee: Agency of Industrial Science and Technology
    Inventors: Hideo Ihara, Akira Iyo
  • Patent number: 5916697
    Abstract: A material formed as a film comprised of monomolecular layers (2,3,4,5) stacked on a substrate (1), wherein said film includes at least one first set (R) of layers which form an electric charge reservoir, and a second set (S) of layers which form a conductive cell and which contain a number of conductive copper oxide layers (4), separated from each other by intermediate layers (5), the reservoir and the conductive cell being adjacent in the layer stack. There are at least four conductive copper oxide layers, and the intermediate layers have the chemical formula Ca.sub.1-x M.sub.x and are free of strontium, wherein x is a real number between 0 and 0.2, M is a component with an ionic radius close to that of the Ca.sup.2+ ion, and the intermediate layers may be complete or not.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: June 29, 1999
    Assignees: Michael Lagues, Jacques Lewiner, Ufinnova
    Inventor: Michel Lagues
  • Patent number: 5883050
    Abstract: A Hg-based superconducting cuprate film on a substrate is disclosed, which comprises a compound having the formula Hg.sub.1-x M.sub.x Ba.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.y, M is a metal cation, x ranges from 0 to 1, n is an integer greater than 0, and y is an oxygen sufficiency factor having a value less than about 10.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: March 16, 1999
    Assignee: The University of Kansas
    Inventors: Sang-Ho Yun, Judy Z. Wu
  • Patent number: 5874383
    Abstract: A high temperature superconductor system having the single phase composition TlBiBaCaCuO. The system exhibits a T.sub.c of at least 116 K.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: February 23, 1999
    Assignee: University Technology Corporation
    Inventors: Allen M. Hermann, Veeraraghavan Badri
  • Patent number: 5858926
    Abstract: The present invention is directed to a process for preparing a HgBaCaCuO superconductor by annealing a precursor mixture comprising a lower member of the homologous HgBaCaCuO superconductor series, a source of calcium and a source of copper. The precursor mixture may further comprise a source of oxygen, a source of rhenium, and, if desired, a source of an additional element selected from the group consisting of halogens and metals other than mercury, barium, calcium, copper and rhenium. The process is particularly effective for preparing (Hg.sub.1-x,Re.sub.x)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8-y by annealing a precursor mixture containing (Hg.sub.1-x,Re.sub.x)Ba.sub.2 Ca.sub.1 Cu.sub.2 O.sub.6-y at a temperature below about 850.degree. C., wherein x ranges up to about 0.25 and y is a rational number ranging from about negative 1 to about positive 1.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: January 12, 1999
    Assignee: Florida State University
    Inventors: Justin Schwartz, Christian H. Wolters, Kathleen M. Amm
  • Patent number: 5851955
    Abstract: A system for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: December 22, 1998
    Assignee: Sandia Corporation
    Inventors: Michael P. Siegal, Donald L. Overmyer, Frank Dominguez
  • Patent number: 5851954
    Abstract: A composite based on a superconducting oxide having a high critical temperature, characterized by the fact that it is constituted by glass and said oxide, the glass being such that its vitreous transition temperature is not greater than 750K, the volume fraction of the glass lying in the range 2% to 40%, said oxide existing in the glass in the form of crystallites having substantially the same orientation.
    Type: Grant
    Filed: January 3, 1992
    Date of Patent: December 22, 1998
    Assignee: Alcatel Alsthom Compagnie Generale D'Electricite
    Inventors: Michel Ribes, Christian Belouet
  • Patent number: 5849672
    Abstract: Novel superconducting oxide material containing compound oxide having a composition represented by the formula:?(Tl.sub.1-x Bi.sub.x).sub.1-p .alpha..sub.p !.sub.q Sr.sub.y Ca.sub.z Cu.sub.v O.sub.win which ".alpha." is at least one element selected from a group consisting of In, Sn, Sb, Pb, Y and lanthanide elements and "x", "y", "z", "p", "q", "v" and "w" are numbers each satisfying respective range of 0.ltoreq.x.ltoreq.1.0, 0.5.ltoreq.y.ltoreq.4.0, 0.5.ltoreq.z.ltoreq.4.5, 0.ltoreq.p.ltoreq.0.6, 0.5.ltoreq..ltoreq.3.0, and 1.0.ltoreq.v.ltoreq.5.5.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: December 15, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Kengo Ohkura, Toshihiro Kotani
  • Patent number: 5807809
    Abstract: Improved superconducting thin films are provided having very high T.sub.c (zero) and J.sub.c values, on the order of greater than or equal to 120K and 10.sup.5 A/cm.sup.2 or greater, respectively. The films of the invention are adapted for deposit and support on a compatible substrate, and include a superconductive material, most preferably Tl.sub.2 Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10, with up to about 10% elemental gold admixed with the superconductive material. The preferred method for fabricating the thin film superconductors comprises first forming a non-superconducting precursor film on a compatible substrate which is placed in contact with an unsintered bulk body containing thallium; the substrate with precursor film are sintered with the bulk body to form the desired superconductor material.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: September 15, 1998
    Assignees: Midwest Superconductivity, Inc., The University of Arkansas
    Inventors: Ying Xin, Bingruo Xu, Iatneng Chan, Greg J. Salamo, Fui T. Chan
  • Patent number: 5776861
    Abstract: Hg,Tl-based superconductors are produced by HIPping. A new superconducting phase, having a double (Hg,Tl)-layer and the nominal composition:(Hg.sub.1-x Tl.sub.x).sub.2 (Ba.sub.1-a Sr.sub.a).sub.2 (Ca.sub.1-b Y.sub.b).sub.2 Cu.sub.3 O.sub.zwhere 0.ltoreq.x.ltoreq.0.95, 0.ltoreq.a.ltoreq.1, 0.ltoreq.b.ltoreq.1, and z is sufficient to provide said phase with a resistive and magnetic superconducting transition of 100K or above, can be produced. Either precursor oxides, or partially or fully reacted mixed oxides, can be used in the HIPping mixture.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: July 7, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Louis E. Toth, William Lechter, Earl F. Skelton, Michael Osofsky
  • Patent number: 5646094
    Abstract: The present invention comprises novel superconducting materials exhibiting superconductivity at temperatures exceeding 90 K. with chemical formula Tl.sub.a Pb.sub.b Ca.sub.c Sr.sub.d R.sub.e Cu.sub.f O.sub.g where R=Y or the lanthanide rare earth elements and where 0.3.ltoreq.a,b.ltoreq.0.7, 0.05.ltoreq.c.ltoreq.1.1,2-c.ltoreq.d.ltoreq.1.95, 0.05.ltoreq.e.ltoreq.1, 1.9.ltoreq.f.ltoreq.2.1 and 6.5.ltoreq.g.ltoreq.7.5. These compounds, which are layered perovskite-like oxides, exhibit a high chemical stability, form readily into nearly single phase, do not require adjustment of oxygen stoichiometry after synthesis and compositions may be chosen allowing superconductivity at temperatures exceeding 100 K. A preferred form of the superconducting materials is the range of compositions given by the chemical formulaTl.sub.0.5+x Pb.sub.0.5-x Ca.sub.1-y Sr.sub.2-z R.sub.y+z Cu.sub.2 O.sub.7.+-..delta.where 0.ltoreq.x, 8.ltoreq.0.3, 0.ltoreq.y.ltoreq.0.95, 0.05.ltoreq.z.ltoreq.1-y of which a preferred form isTl.sub.0.
    Type: Grant
    Filed: April 13, 1995
    Date of Patent: July 8, 1997
    Inventors: Jeffrey Lewis Tallon, Murray Robert Presland
  • Patent number: 5618776
    Abstract: The invention provides certain novel metal oxide materials which exhibit superconductivity at elevated temperatures and/or which are useful in electrode, electrolyte, cell and sensor applications, or as electrochemical catalysts. The metal oxide materials are generally within the formulaR.sub.n+1-u-s A.sub.u M.sub.m+e Cu.sub.n O.sub.w (1)where n.gtoreq.0 and n is an integer or a non-integer, 1.ltoreq.m.ltoreq.2, 0.ltoreq.s.ltoreq.0.4, 0.ltoreq.e.ltoreq.4, and 2n+( 1/2)<w<(5/2)n+4, with the provisos that u is 2 for n.gtoreq.1, u is n+1 for 0.ltoreq.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: April 8, 1997
    Inventors: Jeffrey L. Tallon, Robert G. Buckley, Murray R. Presland
  • Patent number: 5597781
    Abstract: A high temperature superconductor system is provided having the following formula: M-A-B-C-D-E, wherein, M is a metallic element. A is an element in Group 3A, B is an element in Group 2A, C is another element in Group 2A, D is an element in Group 1B, and E is an element in Group 6A. In an embodiment, the high temperature superconductor has the following formula: R-Tl-Sr-Ca-Cu-O (wherein R is chosen form the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y). Processes for making these high temperature superconductors are also disclosed.
    Type: Grant
    Filed: February 15, 1990
    Date of Patent: January 28, 1997
    Assignee: University of Arkansas
    Inventors: Zhengzhi Sheng, Allen M. Hermann
  • Patent number: 5556830
    Abstract: Improved superconducting oxides are provided having the general formula (Hg.sub.1-x Tl.sub.x)Ba.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2+.alpha. where x is from about 0.05-0.5 and n is 1, 2, 3 or 4, and .alpha. is an oxygen enrichment factor. The Tl-doped oxides exhibit very high T.sub.c and J.sub.c values.
    Type: Grant
    Filed: May 31, 1994
    Date of Patent: September 17, 1996
    Assignee: Midwest Superconductivity, Inc.
    Inventors: Guifu Sun, Kai W. Wong, Ying Xin
  • Patent number: 5550105
    Abstract: Superconducting compositions characterized by the formula (Pb.sub.a A.sub.1-a)(Sr.sub.b Ba.sub.1-b).sub.2 (Ca.sub.c B.sub.1-c)Cu.sub.2 O.sub.7 wherein at least half the A atoms are Hg and the remainder, if any, are selected from one or more of Cd, Tl and Cu, B is selected from Y and the rare earths, a is from 0.3 to 0.7, b is from 0 to 1 and c is from 0.2 to 0.5 are disclosed. The superconductive compositions display zero-resistance temperatures up to about 80K.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: August 27, 1996
    Assignee: BICC Public Limited Comapany
    Inventors: Peter P. Edwards, Shu-Fen Hu, Ru-Shi Liu, David A. Jefferson
  • Patent number: 5545610
    Abstract: An oxide-based superconductor ccmprising Tl, Pb, Sr, Ca and Cu or Tl, Pb, Ba, Sr, Ca and Cu, prepared by subjecting a low melting point composition comprising the superconductor-constituting elements and a solid composition comprising the superconductor-constituting elements, prepared in advance, to reaction under melting conditions for the low melting point composition, has distinguished current pass characteristics in a high magnetic field due to improvement of electric contact among grains through reduction of non-superconductor phase, increase in crystal grain sizes (reduction of crystal boundaries), orientation of crystal and cleaning of crystal boundaries.
    Type: Grant
    Filed: September 2, 1993
    Date of Patent: August 13, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Kazutoshi Higashiyama, Toshiya Doi, Takesi Ozawa, Seizi Takeuchi, Tomoichi Kamo, Shinpei Matsuda, Yutaka Yoshida
  • Patent number: 5529979
    Abstract: Superconducting oxide material containing compound represented by the formula:(Tl.sub.(l-p-q) Bi.sub.p Pb.sub.q).sub.y .gamma..sub.z (.alpha..sub.(l-r) .beta..sub.r).sub.s Cu.sub.v O.sub.win which each of ".alpha." and ".gamma." is an element selected in IIa group of the periodic table, ".beta." is an element selected from a group comprising Na, K, Rb and Cs, "y", "z", "v", "w", "p", "q", "r" and "s" are numbers each satisfying respective range of 0.5.ltoreq.y.ltoreq.3.0, 0.5.ltoreq.z.ltoreq.6.0, 1.0.ltoreq.v, 5.0.ltoreq.w, 0.ltoreq.p.ltoreq.1.0, 0.ltoreq.q.ltoreq.1.0, 0.ltoreq.r.ltoreq.1.0 and 0.5.ltoreq.s.ltoreq.3.0.
    Type: Grant
    Filed: February 2, 1994
    Date of Patent: June 25, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Hiroyuki Kusuhara
  • Patent number: 5523284
    Abstract: In accordance this invention, there is provided a process for making a bulk superconductive material. In the first step of this process, a diffusion couple is formed from superconductor oxide and impurity oxide. Thereafter, the diffusion couple is heated to a temperature in excess of 800 degrees Centigrade, cooled at a controlled rate, and annealed.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 4, 1996
    Assignee: Alfred University
    Inventors: James G. Fagan, Jr., Vasantha R. W. Amarakoon
  • Patent number: 5521148
    Abstract: Novel superconducting oxide material containing compound oxide having a composition represented by the formula:[(Tl.sub.1-x Bi.sub.x).sub.1-p .alpha..sub.p ].sub.q Sr.sub.y Ca.sub.z Cu.sub.v O.sub.win which ".alpha." is at least one element selected from a group consisting of In, Sn, Sb, Pb, Y and lanthanide elements and "x", "y", "z", "p", "q", and "v" are numbers each satisfying respective range of 0.1.ltoreq.x.ltoreq.0.5, 0.5.ltoreq.y.ltoreq.4.0, 0.5.ltoreq.z.ltoreq.4.5, 0.ltoreq.p.ltoreq.0.6, 0.5.ltoreq.q.ltoreq.3.0, and 1.0.ltoreq.v.ltoreq.5.5.
    Type: Grant
    Filed: October 8, 1991
    Date of Patent: May 28, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Kengo Ohkura, Toshihiro Kotani
  • Patent number: 5516752
    Abstract: Superconducting oxide material containing compound represented by the formula:(Tl.sub.(1-p-q) Bi.sub.p Pb.sub.q).sub.y .gamma..sub.z (.alpha..sub.(1-r) .beta..sub.r).sub.s Cu.sub.v O.sub.win which each of ".alpha." and ".gamma." is an element selected in IIa group of the periodic table, ".beta." is an element selected from a group comprising Na, K, Rb and Cs, "y", "z", "v", "w", "p", "q", "r" and "s" are numbers each satisfying respective range of 0.5.ltoreq.y.ltoreq.3.0, 0.5.ltoreq.z.ltoreq.6.0, 1.0.ltoreq.v, 5.0.ltoreq.w, 0.ltoreq.p.ltoreq.1.0, 0.ltoreq.q.ltoreq.1.0, 0.ltoreq.r.ltoreq.1.0 and 0.5.ltoreq.s.ltoreq.3.0.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: May 14, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Hiroyuki Kusuhara
  • Patent number: 5510323
    Abstract: An oxide superconductor comprising a perovskite type oxide compound of thallium, strontium, calcium and copper or thallium, strontium, balium, calcium and copper is produced by absorbing thallium in a gaseous phase into a mixture of strontium oxide or strontium oxide and barium oxide, calcium oxide, and copper oxide or a mixture of compounds capable of producing these oxides upon firing. From this superconductor are provided a superconductor wire material, tape-shaped wire material, coil, thin film, magnet, magnetic shielding material, printed circuit board, measuring device, computer, power storing device and etc.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: April 23, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Tomoichi Kamo, Seizi Takeuchi, Shinpei Matsuda, Atsuko Soeta, Takaaki Suzuki, Yutaka Yoshida
  • Patent number: 5502029
    Abstract: Superconductors using oxide superconducting materials having pinning centers inside crystal grains are enhanced in transmissible critical current density and allowed to have a high critical current density even in the magnetic field. A superconductor is produced comprising superconducting materials having a high irreversible magnetic field where the c axes of their crystals are oriented in one direction. This can be practically realized by heat-treating a superconducting material having the composition (Tl.sub.1-X1-X2 Pb.sub.X1 Bi.sub.X2)(Sr.sub.1-X3 Ba.sub.X3).sub.2 Ca.sub.2 Cu.sub.3 O.sub.9+X4 together with Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8 having a tendency of growing in the form of plate crystal. Various apparatuses capable of working under cooling with liquid nitrogen let alone with liquid helium and having a high superconducting critical current density even in a high magnetic field can be produced.
    Type: Grant
    Filed: January 26, 1994
    Date of Patent: March 26, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Toshiya Doi, Atsuko Soeta, Seizi Takeuchi, Tomoichi Kamo, Shinpei Matsuda
  • Patent number: 5498594
    Abstract: A high temperature superconducting system comprising M--R--Tl--Sr--Cu--O wherein: M is at least one compound selected from the group consisting of Hg, Pb, K, and Al; and R represents rare earth metals. In one embodiment, a composition forms a 93K superconducting phase having the composition: M--R--Tl--Sr--Cu--O wherein: M is selected from the group consisting of Hg and Al; and R is a rare earth metal. In another embodiment, the composition comprises M--R--Tl--Sr--Cu--O wherein: M is selected from the group of Pb and/or K; and R is a rare earth metal.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: March 12, 1996
    Assignee: University of Arkansas
    Inventors: Zhengzhi Sheng, John Meason, Ying Xin
  • Patent number: 5492885
    Abstract: Mercury-thallium based superconductors with the formula Hg.sub.1-x Tl.sub.x Ba.sub.2 (Ca.sub.1-y Sr.sub.y).sub.2 Cu.sub.3 O.sub.8+.delta. ; change "their preparing method, in particular characterized in that it" to and a method for preparing them. The new superconductors are prepared by reacting respective ternary oxides, such as Ba.sub.2 CuO.sub.3+x and Ca.sub.1-y Sr.sub.y CuO.sub.2, to reduce the formation of an impure phase and by substituting thallium (Ti) a portion of the mercury (Hg) conventionally used in mercury-based superconductors of similar structure, in order to thermally stabilize the superconductor and provide it with a high critical current density characteristic.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: February 20, 1996
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Yong H. Hur, Yong K. Park, Jong C. Park
  • Patent number: 5489573
    Abstract: A method is disclosed for forming polycrystalline thallium system superconductors having high current carrying capacity and high magnetic field behavior. A precursor deposit is formed comprised of silver, in an amount of about 1 to 20 mole percent of total metals in the precursor deposit, and the balance oxides of calcium, barium, and copper in ratios for forming the superconductor. The precursor deposit is annealed in an oxidizing atmosphere, and in the presence of a source of thallous oxide. The source of thallous oxide is heated to a first temperature selected to incorporate thallium into the deposit in an amount of about 6 to 22 mole percent of metals in the superconductor, and the precursor deposit is heated to a second temperature to form the superconductor.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: February 6, 1996
    Assignee: General Electric Company
    Inventors: John A. DeLuca, Pamela L. Karas
  • Patent number: 5482917
    Abstract: A superconducting composition having the nominal formula TlM.sub.2 CuO.sub.5-x F.sub.x wherein M is Ba and x is from about 0.10 to about 0.65, or M is Sr and x is from about 0.35 to about 0.75 is disclosed.
    Type: Grant
    Filed: September 21, 1993
    Date of Patent: January 9, 1996
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Munirpallam A. Subramanian
  • Patent number: 5476836
    Abstract: Methods and reactors are described for the production of high temperature superconductor films on a variety of substrates, particularly those films which include volatile components during their manufacture. The reactors are particularly useful for producing films containing thallium. The reactors provide for relatively low volume cavities in which the substrate is disposed, and control of the thallium oxide overpressure during the processing. In a preferred embodiment, one or more holes or apertures are made in the reactor to permit thallium and thallium oxide to controllably leak from the reactor. For manufacture of double sided superconducting films, a reactor is used having top and bottom plates each with one or more holes in them. Uniform high temperature superconducting films are obtained while inhibiting reaction between the substrate and superconducting film during the processing.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: December 19, 1995
    Assignee: Superconductor Technologies, Inc.
    Inventor: Michael M. Eddy
  • Patent number: 5453494
    Abstract: Metal organic chemical vapor deposition (MOCVD) source reagents useful for formation of metal-containing films, such as thin film copper oxide high temperature superconductor (HTSC) materials. The source reagents have the formula MAyX wherein: M is a metal such as Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm Yb, Lu Bi, Tl, Y or Pb; A is a monodentate or multidentate organic ligand; y is 2 or 3; MAy is a stable sub-complex at STP conditions; and X is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O, and F. The ligand A may for example be selected from beta-diketonates, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: September 26, 1995
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Robin A. Gardiner
  • Patent number: 5401713
    Abstract: A new superconducting material composed mainly of compound oxide represented by the general formula:Tl.sub.h Ca.sub.j .alpha..sub.k(1-y) .beta..sub.ky Cu.sub.m O.sub.nwherein".alpha." represents Ba or Sr;".beta." represents any one of elements selected from a group comprising Na, K, Rb and Cs;"h", "j", "k", "m" and "n" are the atomic ratios each satisfies the following range:1.ltoreq.h.ltoreq.3, 1.ltoreq.j.ltoreq.3, 1.ltoreq.k.ltoreq.3,2.ltoreq.m.ltoreq.4 and 5.ltoreq.n.ltoreq.15 and"y" is a number which satisfies a range of 0.05.ltoreq.y.ltoreq.0.8.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: March 28, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yasuko Torii
  • Patent number: 5389603
    Abstract: A new class of high temperature superconductive oxides is disclosed. An exemplary member of the class has nominal composition Pb.sub.2 Sr.sub.2 Y.sub.0.5 Ca.sub.0.5 Cu.sub.3 O.sub.8 and has a transition temperature T.sub.c (onset) of about 79K.
    Type: Grant
    Filed: February 9, 1990
    Date of Patent: February 14, 1995
    Assignee: AT&T Corp.
    Inventors: Bertram J. Batlogg, Robert J. Cava
  • Patent number: 5384088
    Abstract: Wire, bulk, film, etc. of a superconductive material is manufactured from a powdery precursor. The superconductive material has a superconductive crystal of 1223 phase and/or 1234 phase as a main component, and the powdery precursor comprises at least 1212 phase as a main component.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: January 24, 1995
    Assignees: Hitachi Cable, Ltd., Hitachi Ltd.
    Inventors: Junichi Sato, Masahiro Seido, Akira Nomoto, Tomoichi Kamo, Katsuzo Aihara
  • Patent number: 5376623
    Abstract: Unexpected results were obtained when Tl-1223 and Tl=-2223 superconductive materials were annealed at respectively pre-determined annealing temperatures. The optimum annealing temperatures for Tl-1223 and Tl-2223 superconductive materials are found to be 860.degree. C. and 820.degree. C., respectively. By incorporating the optimum annealing temperature and an optimum annealing envirenment, which is expressed in terms of oxygen partial pressure, into the manufacturing process, the present invention presents a method which can substantially increase the critical temperature of thallium based superconductive materials with greatly reduced annealing time and with improved reproducibility, and is thus superior to any method disclosed in the prior art.
    Type: Grant
    Filed: September 7, 1993
    Date of Patent: December 27, 1994
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Jinn Tsai, Sheng-Feng Wu, Yao-Tsung Huang, Ru-Shi Liu
  • Patent number: 5374610
    Abstract: An insulating composition consisting of Bi, Sr, RE, Cu, O or of Tl, Ba, RE, Cu, O (wherein; RE is an element selected from a group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) aligns properly with a crystal face of an oxide superconductor because its crystal structure is the same as or similar to that of the oxide superconductor. An insulating composition in which a part of Bi is replaced by Pb is further near the oxide superconductor its construction, and the modulation structure in this insulating composition is mitigated or disappears.
    Type: Grant
    Filed: May 8, 1991
    Date of Patent: December 20, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Noburu Fukushima, Shunji Nomura, Hisashi Yoshino, Ken Ando, Hiromi Niu, Tomohisa Yamashita
  • Patent number: 5328892
    Abstract: An oxide superconducting material having a composition represented by a formulaTlSr.sub.2 (Sr.sub.n-x Y.sub.x)Cu.sub.n+1 O.sub.5+2nwherein n=1 or 2 and 0.1.ltoreq.x.ltoreq.n is provided. This material has a high critical current density Jc even by sintering at a relatively low temperature of 850.degree.-880.degree. C.
    Type: Grant
    Filed: September 27, 1989
    Date of Patent: July 12, 1994
    Assignee: NEC Corporation
    Inventors: Takashi Manako, Yuichi Shimakawa, Yoshimi Kubo
  • Patent number: 5304537
    Abstract: A high-temperature superconducting system comprising M-Tl-Ba-Cu-O wherein: M is selected from the group consisting of Ti, Zr, and Hf. In one embodiment, the M-Tl-Ba-Cu-O system forms a high Tc phase of approximately 90 K wherein: M is selected from the group consisting of Zr and Hf. In another embodiment, a nominal ZrTl.sub.2 Ba.sub.2 Cu.sub.3 O.sub.10 sample forms a high Tc phase of above 100 K.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: April 19, 1994
    Assignee: The University of Arkansas
    Inventor: Zhengzhi Sheng