With Glass Forming, Working, Or Treating Patents (Class 505/420)
  • Patent number: 10115511
    Abstract: A metal assembly (1) suitable for being wound into a coil and used in DC magnet applications. The metal assembly comprises an insulated superconductive wire (2) extending in a longitudinal direction. The insulated superconductive wire comprises a superconductive wire (4), comprising a material (5) that exhibits superconducting properties within a defined temperature range embedded in a metal matrix (6), and an electrically insulating layer (7) arranged as a coating on the superconductive wire. The metal assembly further comprises a thermal conduction element (3) comprising a thermally conductive material arranged as a layer at least partly surrounding the insulated superconductive wire, such that the metal assembly, when wound into a coil, exhibits isotropic or essentially isotropic thermal conduction properties.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 30, 2018
    Assignee: MMC Copper Products Oy
    Inventors: Jukka Somerkoski, Antti Kilpinen
  • Publication number: 20020052669
    Abstract: The control system is defined by at least one subsystem for controlling electric motors, and by a subsystem for controlling pneumatic article molding movements, each subsystems including a central unit, a plurality of peripheral units, and a second-level serial bus interposed between the respective central unit and respective peripheral units. A first-level serial bus is connected between the two central units; the peripheral units are intelligent types; and the first-level bus and second-level buses are “fieldbuses” in CANbus technology and employ a CANopen protocol.
    Type: Application
    Filed: August 7, 2001
    Publication date: May 2, 2002
    Applicant: BOTTERO S.p.A.
    Inventors: Bruno Nittardi, Roberto Silvestro, Fulvio Abelli, Carlo Sesia
  • Patent number: 5814122
    Abstract: A hollow high temperature ceramic superconducting fiber (10, 100), a process for making the hollow fibers and an apparatus for carrying out the process are provided. The apparatus functions to simultaneously draw a molten superconducting material (16) and a molten glass material (18) into a hollow preform (25) which is heat treated to form a hollow superconducting fiber (10, 100) which is flexible and has a high electrical current carrying capacity. The glass cladding layer (14, 14') surrounds the hollow superconducting core (12).
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: September 29, 1998
    Assignee: Owens-Corning Fiberglas Technology, Inc.
    Inventor: Jianzhong Huang
  • Patent number: 5550102
    Abstract: A method of manufacturing a superconductor is carried out by first preparing a material composed of Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7. This material is heated/molten in a platinum crucible. A melt thus obtained is drawn out from a high-temperature frame provided above the platinum crucible and heated to a temperature exceeding the melting point of the material. The melt thus drawn out is cooled by natural standing, to be solidified. As the result, an elongated superconductor composed of Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7 can be obtained. This superconductor enters a superconductive state at 90 K.
    Type: Grant
    Filed: September 9, 1992
    Date of Patent: August 27, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshihiro Nakai, Kazuo Sawada, Kazuhiko Hayashi, Masanobu Nishio
  • Patent number: 5409888
    Abstract: To produce a high-temperature superconductor of the composition Bi.sub.2 (Sr,Ca).sub.3 Cu.sub.2 O.sub.8+x having a strontium to calcium ratio of 5:1 to 2:1 and a value of x between 0 and 2, the oxides and/or carbonates of bismuth, strontium, calcium and copper are vigorously mixed in a stoichiometric ratio. The mixture is heated at a temperature of 870.degree. to 1100.degree. C. until a homogeneous melt is obtained. The melt is poured into mold and allowed to solidify in them. The cast bodies removed from the molds are annealed for 6 to 30 hours at 780.degree. to 850.degree. C. Finally, the annealed cast bodies are treated for at least 6 hours at temperatures of 600.degree. to 820.degree. C. in an oxygen atmosphere. The cast bodies can be converted into shaped bodies of the desired sizes by mechanical processes before they are annealed. The shape and size of the shaped bodies may also be determined by the shape and dimensioning of the mold used in producing the cast bodies.
    Type: Grant
    Filed: January 11, 1994
    Date of Patent: April 25, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Joachim Bock, Eberhard Preisler
  • Patent number: 5356871
    Abstract: A method of making a high critical temperature superconductive fiber by fiber drawing a material of the family Bi.sub.x Pb.sub.y Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.z where 1.9.ltoreq. x+y.ltoreq. 2.3. In the method a preform is made, fiber drawing is performed, and the resulting fiber is annealed in air, wherein said preform is constituted by a block of vitreous material having the formula Bi.sub.x P.sub.y Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.z where: 1.9.ltoreq. x+y.ltoreq. 2.3 and a tube surrounding said block and made of a vitreous material having the formula Bi.sub.x' Sr.sub.2 Ca.sub.1 Cu.sub.2 O.sub.z' with 1.5.ltoreq. x'.ltoreq. 2.2.
    Type: Grant
    Filed: June 9, 1992
    Date of Patent: October 18, 1994
    Assignee: Alcatel Alsthom Compagnie General d'Electricite
    Inventors: Jean-Claude Bobo, Alain Wicker