Radiant Energy Application: (class 250) Patents (Class 505/848)
  • Patent number: 11917927
    Abstract: A production line device prepares a superconducting circuit layer on a substrate. The device prepares an under bump metallization (UBM) layer on an upper surface of the superconducting circuit layer. A superconducting connection is formed between the UBM layer and the superconducting circuit layer. The production device prepares a welding spot on an upper surface of the UBM layer to obtain a qubit assembly configured for a flip-chip superconducting quantum chip. A superconducting electrical connection is formed between the welding spot and the UBM layer.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: February 27, 2024
    Assignee: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
    Inventors: Chenji Zou, Yarui Zheng, Hui Wang
  • Patent number: 8374662
    Abstract: A particle trap and an associated method of trapping particles are provided. The particle trap includes a body formed of a high temperature superconductor (HTS). The body defines a cavity therethrough. The particle trap also includes first and second HTS end plates or first and second electrodes positioned at opposite ends of the cavity. At least one of the end plates or at least one of the electrodes defines at least one opening into the cavity to permit charged particles to enter and exit the cavity.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: February 12, 2013
    Assignee: The Boeing Company
    Inventor: John Ralph Hull
  • Patent number: 6281497
    Abstract: A radioactive ray detecting device comprises a superconductor element formed without an underlying substrate, an oxide film formed on a surface of the superconductor element, and a superconductor thin film formed on the oxide film. The oxide film and the superconductor thin film cover substantially an entire periphery of the surface of the superconductor element. The semiconductor element may be formed of a polycrystalline material such as aluminum, or a single crystal superconductor such as one containing tin, lead, niobium or tantalum, and may have a circular cross section or a rectangular cross section.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: August 28, 2001
    Assignee: Seiko Instruments Inc.
    Inventor: Hiroyuki Suzuki
  • Patent number: 6239431
    Abstract: A system and method for using one or more localized weak-link structures, and damping on the electrical bias circuit, to improve the performance of superconducting transition-edge sensors (TES). The weak links generally consist of an area or areas having a reduction in cross-sectional geometry in an otherwise uniform bilayer TES applied to a substrate. The weak links control the dissipation of power in the sensor, making it quieter and making its electrical response smoother and less hysteretic. The TES response is also made smoother by implementing a damping circuit on the electrical output of the TES.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: May 29, 2001
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Gene Hilton, Kent David Irwin, John Martinis, David Wollman
  • Patent number: 5532485
    Abstract: An array of superconductive quantum detectors (SQD) with current biased SQUID flowing in one direction from fifty percent of the detectors and flowing in the opposite direction for the other fifty percent. The SQD in one embodiment has a serpentine pattern loop and minimal cross-sectional area to increase kinetic induction. A directly connected SQUID is within the loop of one embodiment and exterior of the loop in another embodiment. Methods of optimizing the signal of the array and different types of Josephson Junctions are also disclosed.
    Type: Grant
    Filed: October 14, 1994
    Date of Patent: July 2, 1996
    Assignee: Northrop Grumman Corp.
    Inventors: Nathan Bluzer, Martin G. Forrester
  • Patent number: 5448098
    Abstract: A first type of superconductive photoelectric device is provided by a superconductive thin film located between two electrodes. The superconductive thin film is one which has a photo-conductive effect and converts from a normally conducting state to a superconductive state in response to light irradiation. The superconductive thin film is preferably formed of a compound semiconductor of Pb chalcogenide added with Pb and/or In added beyond the stoicheometry of the compound semiconductor, such as Pb.sub.1-x Sn.sub.x Te+In, so as to generate precipitations of Pb. A second type of superconductive photoelectric device is provided by a photo-conductive material formed of Pb.sub.1-x Sb.sub.x Te filled in a gap between two superconductive electrodes, where the gap width is shorter than 500 times of a coherence length.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: September 5, 1995
    Assignee: Fujitsu Limited
    Inventors: Koji Shinohara, Osamu Ohtsuki, Kazuo Murase, Sadao Takaoka
  • Patent number: 5398266
    Abstract: A superconductive apparatus having therein at least a superconductive member includes a lithium containing member so as to interrupt neutrons directed to the superconductive member.
    Type: Grant
    Filed: May 13, 1993
    Date of Patent: March 14, 1995
    Assignees: Hitachi, Ltd., Hitachi Engineering Co., Ltd., Japan Atomic Energy Research Institute
    Inventors: Katsumi Hayashi, Hiroyuki Handa, Tadanori Mizoguchi, Naoyuki Miya, Masayuki Nagami
  • Patent number: 5381001
    Abstract: The present invention relates mainly to a detection cell, a matrix detector using such cells, a sensor including such a detector, and a spectroscope including such a sensor. The invention provides a photon detection cell comprising a superconducting element, in particular of niobium, that is sensitive to photons of the radiation to be detected or to phonons generated by such photons, in particular by breaking Cooper pairs into quasi-particles and by means of a superconducting tunnel junction including a superconducting electrode, the cell being delimited by a plurality of spaced-apart superconducting tunnel junctions that are distributed around the periphery of the cell. The device of the invention is applicable to counting photons, and thus mainly to acquiring and processing information coming from faint radiation sources.
    Type: Grant
    Filed: October 5, 1993
    Date of Patent: January 10, 1995
    Assignee: Agence Spatiale Europeenne
    Inventors: Michael A. C. Perryman, Anthony Peacock, Clare L. Foden
  • Patent number: 5347143
    Abstract: A superconducting tunnel element, having a plurality of super conductors separated by barriers, the superconductors each comprising two physically separate but electrically connected superconducting layers and one insulated control layer. As a result, summation of the detection capacity or of the transmitting intensity becomes possible. Also, the simultaneous detection or transmission is permitted on arbitrary different frequencies or a summation of the signal intensity is possible in the case of SQUID-systems.
    Type: Grant
    Filed: August 9, 1993
    Date of Patent: September 13, 1994
    Assignee: Dornier Luftfahrt GmbH
    Inventor: Hehrwart Schroder
  • Patent number: 5331162
    Abstract: A superconducting infrared photodetector employing SQUID (Superconducting Quantum Interference Device) measurement of fluxon flow in thin superconducting granular films to provide sensitive, low-noise detection of infrared radiation. The superconducting infrared photodetector includes a plurality of superconducting detector elements connected in parallel or series, means for supplying a bias current to the detector elements, and a digital or analog SQUID readout circuit. Each detector element includes a thin granular film of superconducting material which forms a randomly connected array of weakly coupled superconductors. The weakly coupled superconductors promote the formation of oppositely-polarized fluxons, which are driven to opposite sides of the film when subjected to the bias current. Incident radiation causes an increase in this fluxon flow, generating a voltage change.
    Type: Grant
    Filed: November 22, 1991
    Date of Patent: July 19, 1994
    Assignee: TRW Inc.
    Inventors: Arnold H. Silver, Michael Leung, Gregory S. Lee, Randy W. Simon, Robert D. Sandell
  • Patent number: 5321276
    Abstract: A superconducting tunnel junction radiation sensing device includes first and second superconductor electrodes and a tunnel barrier layer interposed therebetween. The tunnel barrier layer is made up of a thin-wall portion and a thick-wall portion each formed of a semiconductor or an insulator, and each having opposite surfaces respectively contacting the first and second superconductor electrodes, and each extending adjacent each other in a same horizontal plane between the first and second electrodes. The thick-wall portion has a vertical thickness which is at least twice that of the thin-wall portion. Furthermore, the thickness of the thin-wall portion is such that a tunnel effect is enabled therethrough form the first electrode to the second electrode, and the thickness of the thick-wall portion is such that a tunnel effect is substantially prohibited therethrough from the first electrode to the second electrode.
    Type: Grant
    Filed: October 1, 1991
    Date of Patent: June 14, 1994
    Assignee: Nippon Steel Corporation
    Inventors: Masahiko Kurakado, Atsuki Matsumura, Takeshi Kaminaga, Tooru Takahashi
  • Patent number: 5185527
    Abstract: A multispectral superconductive quantum radiant energy detector and related method utilizing a closed loop of superconductive material having spaced legs, one of which is disposed to ambient. The superconductivity current is divided in the first and second legs according to geometric and kinetic inductances. A ground plane is provided for minimizing the geometric inductance with the loop during injection and removal of the current.
    Type: Grant
    Filed: January 16, 1992
    Date of Patent: February 9, 1993
    Assignee: Westinghouse Electric Corp.
    Inventor: Nathan Bluzer
  • Patent number: 5173606
    Abstract: A superconductor electromagnetic radiation detector includes a superconductor composite (2) that has a matrix (6) transparent to electromagnetic radiation wavelengths to be detected and a plurality of superconductor particles (4) dispersed in the matrix (6). The detector also includes remote means for detecting a physical response of the superconductor particles (4) to electromagnetic radiation. The physical response of the superconductor particles (4) to electromagnetic radiation indicates the presence of electromagnetic radiation. A method of detecting electromagnetic radiation includes illuminating a plurality of superconductor particles (4) dispersed in the matrix (6) of a superconductor composite (2) with electromagnetic radiation and remotely detecting a physical response to the superconductor particles (4) to the electromagnetic radiation.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: December 22, 1992
    Assignee: United Technologies Corporation
    Inventors: Bernard R. Weinberger, Daniel M. Potrepka, Lahmer Lynds, Jr.
  • Patent number: 5155634
    Abstract: An optical reflection band filter structure for selectively blocking radiation within a preselected range of wavelengths is described which comprises a plurality of multipole elements of preselected configuration deposited with prescribed spacing in a periodic array on a substrate of dielectric material, each multipole configuration comprising a central element of metal and having shape corresponding to the overall shape of the multipole and a plurality of spaced metal segments, each space between adjacent segments being filled with a segment of material characterized by a transition from superconducting phase to insulating phase upon being heated to a characteristic transition temperature, each transition segment disposed outwardly from the center of the multipole element having lesser thickness than, or different composition from, the next inwardly disposed transition segment, the innermost transition segments having thickness substantially equal to that of the metal segments and central element.
    Type: Grant
    Filed: July 20, 1989
    Date of Patent: October 13, 1992
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Robert J. Spry
  • Patent number: 5142150
    Abstract: A horizon sensor for spaced-based satellites consisting of a high critical temperature superconductor which changes temperature based upon its exposure to space-based radiation. The horizon sensor may be flexibly positioned along the outer surface of the space- based satellite. As the orientation in space of the satellite varies, certain portions of the satellite body will be alternately exposed to radiation while other portions of the satellite body will be shadowed from it. As the sensor is exposed to radiation due to the change in orientation of the satellite body, the temperature of the superconductor changes due to radiation absorption. This change in temperature causes the conductivity of the superconductor within the sensor to vary, and this causes a change in voltage within the sensor. This voltage may be appropriately processed via land based or satellite based control systems to accurately measure and/or change the orientation of the satellite in space.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: August 25, 1992
    Assignee: Selenia Industrie Elettroniche Associate S.p.A.
    Inventors: Nicola Sparvieri, Filippo Graziani
  • Patent number: 5116807
    Abstract: A phase shifter having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.
    Type: Grant
    Filed: September 25, 1990
    Date of Patent: May 26, 1992
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert R. Romanofsky, Kul B. Bhasin
  • Patent number: 5110792
    Abstract: An optical modulation method and apparatus uses superconductive oxide material for the optical modulation element. The current, magnetic field, temperature or pressure applied to the superconductive oxide material is varied so as to induce a superconduction-normalconduction transition, and the resulting variation in optical characteristics such as the reflectivity, transmissivity or refractive index of the superconductive oxide material modulate the input light. The method and apparatus are fast in operation and simple in structure. The method and apparatus also detect the variation in the current, magnetic field, temperature or pressure as a change in the reflectivity, transmissivity or refractive index of the superconductive oxide material on the basis of a superconduction-normalconduction transition.
    Type: Grant
    Filed: November 3, 1989
    Date of Patent: May 5, 1992
    Assignee: Hitachi, Ltd.
    Inventors: Takahiro Nakayama, Kunihiro Tamahashi, Moriaki Fuyama, Hiroyuki Minemura, Yoshio Sato, Nobuyoshi Tsuboi, Hiroaki Koyanagi
  • Patent number: 5070241
    Abstract: A multilayered radiation detector device (50) including a resonant cavity structure wherein one cavity wall electrode includes a portion of a photovoltaic radiation detector (52). Specifically, a RFM detector has a superconducting transmission line electrode (54) electrically coupled to a high mobility semiconductor layer (58) of the photovoltaic detector. The superconductor transmission line electrode inductance forms, in combinations with a photodetector depletion region capacitance, a series resonant or a parallel resonant circuit. A radiation-induced change in the capacitance results in a change in the circuit resonant frequency and a corresponding variation in the amplitude of an on-resonance RF signal applied to the circuit. In another embodiment the resonant cavity structure includes a gap having a width that is modulated by an amount of absorbed radiation, the radiation-induced change in the distributed cavity capacitance resulting in a change in the cavity resonant frequency.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: December 3, 1991
    Assignee: Santa Barbara Research Center
    Inventor: Michael D. Jack
  • Patent number: 5047386
    Abstract: An apparatus for the continuous manufacture of high temperature superconducting wires is disclosed. A core on which the superconductive ceramic substance is caused to directionally solidify from the melt is drawn through the melt in such a manner as to obtain an oriented microstructure conductive to high critical current carrying capacity. This also produces a macrostructure with appropriate mechanical strength and flexibility independently of the superconducting substance chosen.
    Type: Grant
    Filed: December 29, 1988
    Date of Patent: September 10, 1991
    Assignee: Troy Investments Inc.
    Inventor: Aharon Z. Hed
  • Patent number: 5043580
    Abstract: A radiation detector comprising an element made of superconductive material supplied by an electrical generator as well as a system to measure the resistance of the element. For example, the generator is a constant voltage source. The measuring system utilizes a resistor placed in series with the superconductive element and a voltage measuring apparatus connected to the terminals of the resistor. Incident radiation has the effect of causing variations in the resistance of the superconductive element. Consequently, from the value of the resistance of the superconductive element, the intensity of the radiation received is detected. The disclosed device can be applied to the detection of radiation located between the visible wavelengths and the dwarf wavelengths.
    Type: Grant
    Filed: January 10, 1990
    Date of Patent: August 27, 1991
    Assignee: Thomson-CSF
    Inventor: Pierre Hartemann
  • Patent number: 5021659
    Abstract: A broadband photon detector capable of detecting a steady state flux of incident radiation operates using a superconducting material is biased at the temperature where the material changes from a superconducting to a non-superconducting state. Photons which strike said material cause a temperature rise and a measurable increase in resistivity of the material that continues until the radiation ceases. The superconducting material for detecting the incident radiation is formed as a strip on microspheres that act as a substrate to make as small a heat sink as possible.
    Type: Grant
    Filed: July 25, 1989
    Date of Patent: June 4, 1991
    Assignee: Progress Technology Corp.
    Inventor: Richard T. Schneider
  • Patent number: 4970395
    Abstract: A photon detector based upon photon-assisted tunneling in superconductor-insulator-superconductor or super-Schottky structures, in which the superconductor is a high transition temperature superconductor. An electrical bias is provided on either side of such structures so that photo-assisted tunneling, in the presence of incident photons on the structure, can occur to thereby permit a tunneling current therebetween.
    Type: Grant
    Filed: December 23, 1988
    Date of Patent: November 13, 1990
    Assignee: Honeywell Inc.
    Inventor: Paul W. Kruse, Jr.
  • Patent number: 4939121
    Abstract: A process is described for enhancing superconductor characteristics by application of strong magnetic and/or electric fields to the constituent component materials from which ceramic superconductors are being formed and during the time that these superconductors are being synthesized. This process has particular applicability to the production of superconducting oxide ceramics such as the cuprates. The required magnetic fields are on the order of 1-10 tesla and the required electric fields are on the order of 0.1-1 MV/cm. The fields act as ordering mechanisms and induce grain orientation. The magnetic field aligns the magnetic moment of the grains. The electric field induces electric polarization in the grains and then aligns them. The superconducting structure formation occurs during the sintering, cooling and annealing phases of the fabrication process. Superconductivity is strongly affected by the oxygen stoichiometry in the lattice elemental cell. Applied electric fields cause elongation of the unit cell.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: July 3, 1990
    Assignee: General Dynamics Corporation, Electronics Division
    Inventor: Theodore W. Rybka
  • Patent number: 4935626
    Abstract: A broadband photon detector device that operates using a superconducting material is biased at the temperature where the material changes from a superconducting to a non-superconducting state. Photons that strike the material cause a temperature change and a measurable increase in resistivity of the material. Measuring the increase in resistivity allows the detection of the incident photons. This detector is very sensitive because superconducting leads are connected at one end to the superconducting material and at another end to a sensor that measures the changing resistivity, thereby limiting thermal conduction. Thermal conduction is further prevented in another embodiment in which a sensor is electrically and thermally isolated from the superconducting material. This sensor detects the change in resistivity of the superconducting material through detecting a change in an eddy current established in the superconducting material.
    Type: Grant
    Filed: September 13, 1988
    Date of Patent: June 19, 1990
    Assignee: Progress Technologies Corporation
    Inventor: Richard T. Schneider
  • Patent number: 4904869
    Abstract: The present invention provides an x-ray sensor that converts x-ray radiation into infrared radiation using a high mass number material. The infrared radiation that results from this conversion is then detected using a superconducting detector. The superconducting detector uses a superconducting material for each of a plurality of detector elements that are temperature biased at the superconducting-nonsuperconducting transition temperature. As infrared photons strike one of the detector elements, the temperature of the superconducting detector element increases, which causes an increase in the resistance of the detector element. Using the output of each detector element an image of the original x-ray radiation is obtained.
    Type: Grant
    Filed: December 14, 1988
    Date of Patent: February 27, 1990
    Assignee: Progress Technologies Corporation
    Inventor: Richard T. Schneider
  • Patent number: 4894542
    Abstract: A broadband photon detector device which operates using a superconducting material is biased at the temperature where the material changes from a superconducting to a non-superconducting state. Photons which strike said material cause a temperature rise and a measurable increase in resistivity of the material. Measuring the increase in resistivity allows the detection of the incident photons.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: January 16, 1990
    Assignee: Progress Technology Corporation
    Inventor: Richard T. Schneider
  • Patent number: 4851680
    Abstract: A Josephson junction type radiation energy analyzer comprising: a tunnel junction comprising a triple layer of superconductor-insulator-superconductor; and a metal layer which is provided in contact with one of the superconductors of the tunnel junction and to which radiation is incident.
    Type: Grant
    Filed: November 12, 1987
    Date of Patent: July 25, 1989
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tomoki Oku