Effecting A Change In A Polymerization Process In Response To A Measurement Or Test Patents (Class 526/59)
  • Patent number: 11835500
    Abstract: Disclosed herein is a device and method for changing the conditions of a solution flowing in a serial path. In particular, disclosed herein is a device that includes a chemical reactor, a first system, and a second system that are each serial to one another. Each of the first system and the second system include a mixing chamber, a solvent reservoir, a solvent pump, and one or more detectors. Also disclosed herein is a method for changing the condition of a solution that includes flowing a liquid sample in a path, serially mixing the sample with at least two discrete solvents while it flows through the path, and detecting the condition of the sample after it is mixed with each solvent.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: December 5, 2023
    Assignee: The Administrators of the Tulane Educational Fund
    Inventor: Wayne F. Reed
  • Patent number: 11402311
    Abstract: An arrangement for measuring a volume of a solid or liquid sample includes a first chamber for accommodating the sample; at least one second chamber connectable to the first chamber; a third chamber connectable to a gas supply source and connected to a gas entry path leading to at least one of the first chamber and the second chamber; a pressure sensor; plural gas paths comprising plural valves; a temperature equalization system configured to temper at least the first chamber, the second chamber and the third chamber to substantially a same temperature, wherein the gas paths and the valves are arranged and connected such as to allow, filling gas out of the third chamber into at least one of the first chamber and the second chamber, and measuring a pressure in at least one of the first chamber and the second chamber.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 2, 2022
    Assignee: Anton Paar QuantaTec, Inc.
    Inventors: Enrique Gadea Ramos, Freddy Quesada
  • Patent number: 11168157
    Abstract: This disclosure provides for polymerization processes of polyolefins wherein the melt index can be regulated. For example, there is provided a process for producing a polyethylene, the process comprising: (1) in a polymerization reactor, contacting (a) a polymerization catalyst, (b) ethylene, (c) an optional ?-olefin comonomer, and (d) (x+y) ppm by weight of an antistatic agent on an ethylene basis; and (2) applying reaction conditions to the reaction mixture suitable to produce the polyethylene having a desired set of characteristics, such as desired target melt index. The disclosed polymerization processes allow for production of polyolefins having higher melt indices, and in the alternative to produce polyolefins having a desired target melt index at lower polymerization temperatures.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: November 9, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Daniel M. Hasenberg, Jeffrey S. Lowell
  • Patent number: 10745501
    Abstract: A system and method for feeding a chromium-based catalyst to a polymerization reactor; adding a reducing agent to the chromium-based catalyst, and polymerizing an olefin into a polyolefin in the polymerization reactor in the presence of the chromium-based catalyst.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 18, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Kevin R. Gross, Kevin J. Cann, Mark G. Goode, John H. Moorhouse
  • Patent number: 10683371
    Abstract: The invention relates to an apparatus for producing pulverulent poly(meth)acrylate, comprising a reactor for droplet polymerization having an apparatus for dropletization of a monomer solution for the preparation of the poly(meth)acrylate having holes through which the monomer solution is introduced, an addition point for a gas above the apparatus for dropletization, at least one gas withdrawal point on the circumference of the reactor, a fluidized bed and an apparatus for product discharge from the fluidized bed. The apparatus for product discharge comprises a discharge apparatus, with a backup segment (39) disposed above the discharge apparatus.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: June 16, 2020
    Assignee: BASF SE
    Inventors: Marco Krueger, Karl Possemiers, Gerald Gruenewald, Juergen Freiberg, Markus Muehl
  • Patent number: 10471405
    Abstract: Process for the preparation of a polyolefin in a reaction system comprising a reactor comprising a fluidized bed and a distribution plate, product purge bin, and granular feed bin, wherein the process comprises feeding a polymerization catalyst to the fluidized bed, feeding ?-olefin monomer(s) to the reactor, circulating fluids from the top of the reactor to the bottom of the reactor, withdrawing a stream comprising the polyolefin and fluids from the reactor and passing said stream into the product purge bin, purging the product purge bin with a purge stream comprising an inert gas to obtain a stream comprising a purged polyolefin and a stream comprising fluids, introducing part of the stream comprising fluids back into the reactor, introducing the stream comprising the purged polyolefin into the granular feed bin, and contacting a deactivating stream with purged polyolefin in granular feed bin to obtain the polyolefin free of polymerization catalyst.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 12, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Mohammed Althukair, Abdulrahman Ashri
  • Patent number: 10337902
    Abstract: A system and method of gas-displacement volumetry uses a pressure differential between two chambers of known volumes in order to calculate the volume of an object placed inside one of the chambers. The process involves measuring the pressures of a gas within two sealed chambers with one of the chambers containing an object, equalizing the pressure in the two chambers and using the equilibrium pressure, as well as the two initial pressures, to form a ratio between the free volumes of these chambers. From the pressure differentials and ratios of free volumes, the volume of the object can be determined. The system and method can be automated and controlled through the use of computers, sensors and controls. The system and method can be used to accurately determine the volume of irregular objects.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: July 2, 2019
    Inventor: Matthew C. L. Abate
  • Patent number: 10048238
    Abstract: A method for monitoring a chromatograph used to control production of a chemical product. The method involves sampling a chemical mixture of chemical components used during the production to form the chemical product, measuring the composition of the sample with a chromatograph and adjusting the amount of the chemical components based on the measured composition. The method also involves measuring actual parameters of the sample with at least one gauge, determining expected parameters of the sample based on the measured composition and the measured actual parameters using an equation-of-state, and detecting a fault in the chromatograph by comparing the expected parameters with the actual parameters.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: August 14, 2018
    Inventors: Dale Duespohl, Robert Reib, John Parrish
  • Patent number: 10040882
    Abstract: Polymerization reactor systems providing integrated liquid-solid sampling systems are disclosed. Methods for operating such polymerization reactor systems and for measuring a property of the liquid portion of liquid-solid mixture are described.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: August 7, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Stephen L. Ege, Ralph W. Romig
  • Patent number: 9850330
    Abstract: Processes of forming polyolefins are described herein. One or more specific embodiments of the processes generally include introducing olefin monomer selected from C2-C3 olefins into a first reaction zone under first polymerization conditions to form a first polyolefin; withdrawing a transfer effluent from the first reaction zone, the transfer effluent including first polyolefin and unreacted olefin monomer; introducing the transfer effluent, a comonomer selected from C4-C8 olefins, and additional olefin monomer to a second reaction zone under second polymerization conditions to form a second reactor product; maintaining an essentially constant comonomer:olefin monomer ratio in the second reaction zone; and withdrawing at least a portion of the second reactor product, wherein the second reactor product includes a bimodal polyolefin.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 26, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Joel A. Mutchler
  • Patent number: 9850348
    Abstract: The invention relates to a process for preparing a semi-aromatic polyamide from diamine and dicarboxylic acid, comprising steps of •(i) dosing a liquid diamine to an agitated powder comprising an aromatic dicarboxylic acid thereby forming a powder comprising a diamine/dicarboxylic acid salt (DD-salt), and •(ii) solid-state polymerizing the DD-salt to obtain the polyamide.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: December 26, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Eric Grolman, Rudy Rulkens, Konraad Albert Louise Hector Dullaert, Renier Henricus Maria Kierkels, Geert Adelina Rudolf Vanden Poel
  • Patent number: 9718896
    Abstract: Methods and systems for controlling a polymerization reaction in a non-sticking regime are disclosed. An exemplary method includes measuring parameters for the polymerization reaction including a reactor temperature and a concentration of an induced condensing agent (ICA) in a polymerization reactor. An equivalent partial pressure ((PICA)equiv) of the ICA is calculated. The polymerization reaction is located in a two dimension space defined by a reactor temperature dimension and a ((PICA)equiv) dimension. The location in the two dimensional space is compared to an non-sticking regime, defined as the space between an upper temperature limit (UTL) curve and a lower temperature limit (LTL) curve. The parameters of the polymerization reaction are adjusted to keep the polymerization reaction within the non-sticking regime.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: August 1, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Abarajith S. Hari, Bruce J. Savatsky, David M. Glowczwski, Xianyi Cao
  • Patent number: 9708426
    Abstract: Polymerization reactor systems providing integrated liquid-solid sampling systems are disclosed. Methods for operating such polymerization reactor systems and for measuring a property of the liquid portion of liquid-solid mixture are described.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: July 18, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Stephen L. Ege, Ralph W. Romig
  • Patent number: 9670425
    Abstract: A process sends at least a portion of an oligomerization feed to a first oligomerization reactor zone that includes a zeolite or a SPA catalyst and another portion of the same feed to a second oligomerization reactor zone that includes an amorphous silica alumina catalyst. The first oligomerization reactor zone makes aliphatic olefins that can be cracked to propylene and the second oligomerization reactor zone makes cyclic molecules that can be converted to aromatics in an FCC unit.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: June 6, 2017
    Assignee: UOP LLC
    Inventors: Kurt M. Vanden Bussche, Christopher P. Nicholas, Todd M. Kruse
  • Patent number: 9579619
    Abstract: A method is described that includes contacting an olefin with a catalyst in a polymerization reactor, polymerizing at least a portion of the olefin to form an alpha olefin reaction product, detecting a condition within the polymerization reactor, determining an average temperature of at least one olefin product particle based on the condition, determining an operating particle temperature threshold using a foul curve, comparing the average temperature of the polymer particle to the operating particle temperature threshold, changing one or more operating parameters in response to the comparing, and maintaining the average temperature of the olefin polymer particle at or below the operating particle temperature threshold in response to changing the one or more operating parameters. The alpha olefin reaction product includes a plurality of olefin polymer particles, and the polymerization reactor includes a reaction mixture that includes the olefin, the catalyst, a diluent, and the alpha olefin reaction product.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: February 28, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John D. Hottovy, Gregory G. Hendrickson
  • Patent number: 9562125
    Abstract: The present invention relates to a method to control a liquid feed stream carried out by measuring at least one spectrum of the liquid feed stream comprising an initiator or catalyst, determining its activity using a predictive model on the basis of said spectrum and adjusting the feed streams and/or the preparation conditions of the feed stream comprising the initiators or catalysts in order to attain or maintain a desired level of total activity.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 7, 2017
    Assignee: ARLANXEO Deutschland GmbH
    Inventors: Ursula Tracht, Ricarda Leiberich, Michael Berger, Hanns-Ingolf Paul, Udo Wiesner
  • Patent number: 9550847
    Abstract: Method for controlling a process for the production of a polymer by polymerization of a monomer and a comonomer. The process includes maintaining a substantially constant effective flow ratio (EFR), the effective flow ratio being defined as EFR=(Qcomo?Lcomo)/(Qmono?Lmono), Qcomo and Qmono being, respectively, flow rates of comonomer and monomer to the reactor, Lcomo and Lmono being, respectively, losses of comonomer and monomer.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: January 24, 2017
    Assignee: INEOS EUROPE AG
    Inventors: Andrew David Bell, Jean-Louis Chamayou, Imen Ghouila
  • Patent number: 9534083
    Abstract: In a process for producing polyamides by polycondensation of polycondensable polyamide-forming monomers and/or oligomers in reaction mixtures comprising same, which may be water-containing but are free from organic solvents, the polycondensation is effected in an agitated reactor under agitation in a first step in the liquid phase and after a phase change taking place during the process in the same reactor is effected in a subsequent second step in the solid state, wherein the temperature in the reactor is below the melting point of the polyamide in the second step at least.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: January 3, 2017
    Assignee: BASF SE
    Inventors: Achim Stammer, Faissal-Ali El-Toufaili, Simon Gramlich, Angela Ulzhöfer
  • Patent number: 9469698
    Abstract: Processes of forming polyolefins are described herein. One or more specific embodiments of the processes generally include introducing olefin monomer selected from C2-C3 olefins into a first reaction zone under first polymerization conditions to form a first polyolefin; withdrawing a transfer effluent from the first reaction zone, the transfer effluent including first polyolefin and unreacted olefin monomer; introducing the transfer effluent, a comonomer selected from C4-C8 olefins, and additional olefin monomer to a second reaction zone under second polymerization conditions to form a second reactor product; maintaining an essentially constant comonomer:olefin monomer ratio in the second reaction zone; and withdrawing at least a portion of the second reactor product, wherein the second reactor product includes a bimodal polyolefin.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: October 18, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Joel A. Mutchler
  • Patent number: 9034994
    Abstract: Polymerization reactor systems providing real-time control of the average particle size of catalyst system components are disclosed. Methods for operating such polymerization reactor systems also are described.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 19, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Joel A. Mutchler
  • Patent number: 8981018
    Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: March 17, 2015
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Ian C. Shay, Christopher A. Craven, David C. Grundy, Volker Weiss, Andrew P. Washabaugh
  • Patent number: 8940842
    Abstract: Methods for controlling the weight ratio of a higher molecular weight component to a lower molecular weight component of an olefin polymer are disclosed. This weight ratio can be increased as polymerization reaction temperature and/or catalyst system residence time are increased.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Tony R. Crain, Jerry T. Lanier, Jeff S. Fodor
  • Patent number: 8940239
    Abstract: Techniques are provided for operating a reactor during a catalyst transition period. The instantaneous reaction rate during a catalyst transition period can be determined using real-time measured process variables, and material balance calculations to provide an instantaneous reaction rate in approximately real time. According to certain embodiments, a material balance can be performed on the reactor system using a continuous ideal stirred tank reactor to determine the fractions of each type of catalyst that are present in the reactor, as well as the overall weight percent of catalyst in the reactor. A controller can then calculate the overall instantaneous reaction rate based on the respective catalyst fractions and the overall weight percent of catalyst in the reactor. The catalyst feed rate can then be adjusted based on the determined instantaneous reaction rate to maintain the instantaneous reaction rate within desired limits during a catalyst transition period.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: January 27, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gregory G. Hendrickson
  • Patent number: 8933178
    Abstract: A control method for controlling a fluidized bed polymerization reactor in the production of a given polymer product, the method comprising the following steps: (a) determining a ratio of the production rate of the polymer product in the reactor to the pressure in the reactor, (b) setting a production rate of the polymer product in the reactor which production rate, on the basis of said ratio of step (a), corresponds to a desired pressure in the reactor; (c) adjusting the feed rates of monomers into the reactor in accordance with said set point production rate.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 13, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Antonio Mileo, Giorgio Ballarini, Enrico Soffritti
  • Patent number: 8853333
    Abstract: The invention relates to a process for operating a mixing kneader, comprising one or more shafts on whose surfaces are disposed kneading bars and which are surrounded by a casing, comprising the following steps: (a) supplying reactants at an addition site in the mixing kneader, (b) converting the reactants in an exothermic reaction, the reaction at first forming a coherent kneadable intermediate, (c) tearing and dividing the coherent kneadable intermediate to form a product, the exothermic reaction optionally continuing during the tearing and division, (d) withdrawing the product at a withdrawal site in the mixing kneader, wherein at least one of the shafts and/or the casing is heated to a temperature above 20° C. during the operation of the mixing kneader.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: October 7, 2014
    Assignee: BASF SE
    Inventors: Oskar Stephan, Monte Peterson, Karl J. Possemiers, Steven Lippens
  • Patent number: 8846829
    Abstract: Techniques are provided for operating a reactor during a catalyst transition period. The instantaneous reaction rate during a catalyst transition period can be determined using real-time measured process variables, and material balance calculations to provide an instantaneous reaction rate in approximately real time. According to certain embodiments, a material balance can be performed on the reactor system using a continuous ideal stirred tank reactor to determine the fractions of each type of catalyst that are present in the reactor, as well as the overall weight percent of catalyst in the reactor. A controller can then calculate the overall instantaneous reaction rate based on the respective catalyst fractions and the overall weight percent of catalyst in the reactor. The catalyst feed rate can then be adjusted based on the determined instantaneous reaction rate to maintain the instantaneous reaction rate within desired limits during a catalyst transition period.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: September 30, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gregory G. Hendrickson
  • Patent number: 8843324
    Abstract: The present invention provides a method to calibrate a NIR analyzer to measure monomer concentrations at one or more locations in a reactor system. The regression coefficients for the NIR analyzer are transferable between reactors using the same process (solution polymerization to solution polymerization) and may be used to control the reaction, or calibrate flow meters on line.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 23, 2014
    Assignee: Nova Chemicals (International) S.A.
    Inventor: Yves Lacombe
  • Patent number: 8835575
    Abstract: A process for continuously producing water-absorbing polymer particles, wherein the monomer stems from at least two different sources and the monomer from one source differs from the monomer from at least one other source in the content of at least one secondary component.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: September 16, 2014
    Assignee: BASF SE
    Inventors: Wilfried Heide, Claus Hechler, Marc Gerardus Nicolas Grimmon, Filip Mees, Karl J. Possemiers
  • Patent number: 8796400
    Abstract: A method for the copolymerization of ethylene and a C3+ olefin in a loop reactor and polymers formed therefrom are described herein. The method generally includes introducing an ethylene monomer, a C3+ olefin and a diluent carrier liquid into a loop reactor. A catalyst system can be supplied to said loop reactor. The diluent liquid, ethylene monomer, and C3+ olefin can be circulated through said loop reactor, while copolymerizing said ethylene and C3+ olefin in the presence of said catalyst system to produce a slurry. The slurry can be diverted into a settling leg, and sequentially discharged therefrom and withdrawn from said loop reactor. An ethylene monomer co-feed can be introduced into said loop reactor at spaced locations downstream of the ethylene and diluent. The ethylene co-feed can be introduced in an amount effective to reduce the variation in the ratio of ethylene and C3+ olefin.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: August 5, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Louis Fouarge, Eric Damme, Olivier Miserque, Daniel Siraux, Philippe Bodart, Andre Lewalle, Marc Van der Auwera, Frans Van den Brande, Giacomo Conti, Hugo Vandaele, Mark Verleysen, Carl Van Camp, Etienne Laurent, Philippe Marechal, Marc Moers, Leopold D'Hooghe, Marjan Sillis, Kai Hortman, Pascal Folie, Renaud Oreins
  • Patent number: 8790579
    Abstract: Methods and systems for preparing catalyst, such as chromium catalysts, are provided. The valence of at least a portion of the catalyst sent to an activator is changed from Cr(III) to Cr(VI). The catalyst is prepared or activated continuously using a fluidization bed catalyst activator.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 29, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Ted H. Cymbaluk, Charles K. Newsome, Charles R. Nease, H. Kenneth Staffin, Thomas R. Parr
  • Publication number: 20140194582
    Abstract: Provided is a method for operating a gas-phase, fluidized-bed reactor. The method has the steps of (a) receiving a signal from a probe in contact with the interior of the reactor or a process component in communication with the reactor, wherein the signal is derived from a physical property or condition within the reactor or the process component; (b) modifying the signal to create a modified signal; and (c) adjusting one or more operating parameters of the reactor in response to the modified signal if the physical property or condition is different than a desired value. There is also a method for reducing fouling in a distributor plate of a gas-phase, fluidized-bed reactor with a recycle line.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 10, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Joseph Andres Moebus, William Anthony Lamberti, Harry William Deckman, Charles R. Buhler, Judson S. Clements
  • Publication number: 20140171601
    Abstract: A system and method for discharging a transfer slurry from a first polymerization reactor through a transfer line to a second polymerization reactor, the transfer slurry including at least diluent and a first polyethylene. A product slurry is discharged from the second polymerization reactor, the product slurry including at least diluent, the first polyethylene, and a second polyethylene. The velocity, pressure drop, or pressure loss due to friction in the transfer line is determined, and a process variable adjusted in response to the velocity, pressure drop, or pressure loss not satisfying a specified value.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY, LP
    Inventors: Maruti Bhandarkar, Elizabeth Ann Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Patent number: 8742035
    Abstract: Embodiments of the invention provide a method of controlling a gas-phase polymerization process. The method includes determining a difference between a control variable of the polymerization process, such as the production rate, and the desired value of the control variable; adjusting or maintaining a first manipulated variable to at least partially compensate for the difference between the control variable and the desired value; and adjusting or maintaining a second manipulated variable to at least partially compensate for the effect of adjusting or maintaining the first manipulated variable.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 3, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Paul K. Samples, John R. Parrish, Ivan J. Hartley, Jeffrey B. Drabish
  • Patent number: 8703883
    Abstract: Polymerization reactor systems providing real-time control of the average particle size of catalyst system components are disclosed. Methods for operating such polymerization reactor systems also are described.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: April 22, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Joel A. Mutchler
  • Patent number: 8697761
    Abstract: There are disclosed a regenerated rubber, a method and apparatus for obtaining regenerated rubbers from vulcanized crumb rubber, such as rubber from scrap. The apparatus is a thermokinetic mixer having the particularity to have an air tight stationary chamber with inner non-uniform surface. The method comprises the steps of raising the speed of the rotor shaft in order to increase a temperature of a mixture made of vulcanized crumb rubber and a lubricant, such as oil, until a devulcanizing temperature is reached; and reducing the temperature of the mixture to a lower temperature during a second period of time. The method of the invention is environmentally friendly or “green”, since the regeneration method does not use chemicals, includes a shorter period of treatment at higher temperature avoiding the risks of rubber cracking and spontaneous combustion, and further allowing mass-production of regenerated rubber with lower energy consumption.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 15, 2014
    Assignee: Phoenix Innovation Technology Inc.
    Inventors: Sylvain Martel, Stephen Murphy, Patrick Legault
  • Publication number: 20140058050
    Abstract: The present invention relates to a method to control a liquid feed stream carried out by measuring at least one spectrum of the liquid feed stream comprising an initiator or catalyst, determining its activity using a predictive model on the basis of said spectrum and adjusting the feed streams and/or the preparation conditions of the feed stream comprising the initiators or catalysts in order to attain or maintain a desired level of total activity.
    Type: Application
    Filed: September 23, 2011
    Publication date: February 27, 2014
    Applicant: LANXESS Deutschland GmbH
    Inventors: Ursula Tracht, Ricarda Leiberich, Michael Berger, Hanns-Ingolf Paul, Udo Wiesner
  • Patent number: 8653206
    Abstract: The invention relates to an improved process for manufacturing an olefin polymer composition, in particular polyethylene, that incorporates two or more reaction zones in an optimized configuration that ease product transitions and allows for improved reactor quality control.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: February 18, 2014
    Assignee: INEOS USA LLC
    Inventors: Mark A. Gessner, Michel Promel
  • Publication number: 20130345373
    Abstract: Catalyst deactivating agents and compositions containing catalyst deactivating agents are disclosed. These catalyst deactivating agents can be used in methods of controlling polymerization reactions, methods of terminating polymerization reactions, methods of operating polymerization reactors, and methods of transitioning between catalyst systems.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Qing Yang, Kathy S. Collins, Tony R. Crain, Timothy O. Odi
  • Patent number: 8475720
    Abstract: The disclosure relates to a device for removing and analyzing a sample from a polymerization reactor including one or more sample conduits for removing a sample from the reactor and transferring the sample to a sample flash tank, whereby the conduits are in communication with the reactor and are provided with at least two sampling valves; a sample flash tank for separating said solid particles and evaporated gas, whereby the sample flash tanks are connected to the conduits and provided with a device for analyzing evaporated gas, and including a sample receiver for purifying the solid particles. The receivers are connected to the sample flash tanks and provided with an apparatus for analyzing the solid particles. The disclosure includes a method for improving a polymerization reaction.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: July 2, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Hugo Vandaele
  • Patent number: 8455596
    Abstract: The present invention provides a method for production of a copolymer for photoresists in which the bias of the monomer composition ration is small. This method for production is a method for production of a copolymer for photoresists, which copolymer containing at least two types of repeating units, the method having a supplying step of supplying a monomer solution and a solution containing a polymerization initiator into a polymerization reaction system, wherein the range of fluctuation of the monomer composition ratio of unreacted monomers is within the range between minus 15% and plus 15% or the standard deviation of the monomer composition ratio of unreacted monomers is within 2 in the polymerization reaction system during the period from the start of the polymerization reaction to the end of supplying of the monomer solution.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: June 4, 2013
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Tomo Oikawa, Eiichi Ikawa
  • Publication number: 20130137836
    Abstract: Methods for removing polymer skins or build-up from reactor walls in polymerization reactor systems containing a loop slurry reactor are disclosed. Such methods can employ removing some or all of the comonomer from the reactor system in combination with increasing the polymerization temperature of the loop slurry reactor.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: George R. Rajaendran, Max P. McDaniel, Gregory G. Hendrickson, John D. Stewart, John D. Hottovy, Ted H. Cymbaluk, Suzannah Lane, Richard A. Hernandez, Elliott W. Johnson, Qing Yang, William L. Valerioti, Eric Schwerdtfeger, Albert P. Masino
  • Publication number: 20130109818
    Abstract: Methods and systems for preparing catalyst, such as chromium catalysts, are provided. The valence of at least a portion of the catalyst sent to an activator is changed from Cr(III) to Cr(VI). The catalyst is prepared or activated continuously using a fluidization bed catalyst activator.
    Type: Application
    Filed: December 11, 2012
    Publication date: May 2, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Chevron Phillips Chemical Company LP
  • Patent number: 8433443
    Abstract: Generally, a method of monitoring a polymerization reaction in a fluid bed reactor to generate, in on-line fashion, data indicative of the imminent occurrence of a discontinuity event (for example, sheeting) and optionally also control the reaction to prevent the occurrence of the discontinuity event is provided. Typical embodiments include the steps of generating in on-line fashion at least one of bed static data indicative of static charge in the fluidized bed and carryover static data indicative of carryover static; and generating at least one of temperature data (in on-line fashion using at least one monitored reaction parameter) indicative of a first temperature and acoustic emission data indicative of resin stickiness in the reactor, where the first temperature is indicative of at least one of degree of resin stickiness in the reactor and a characteristic of melting behavior of polymer resin in the reactor in the presence of at least one diluent.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: April 30, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Robert O. Hagerty, Ian D. Burdett, Marc L. DeChellis, F. David Hussein, Eric J. Markel, Michael E. Muhle, Richard B. Pannell, Daniel P. Zilker
  • Patent number: 8420751
    Abstract: Provided is a method for performing a polymerization process in a stirred reactor, wherein a critical time window is determined by means of a monitor of at least one polymerization process parameter and an associated process window, and when a critical time window is present, an adaptation of process conditions is made in order to configure the polymerization process to conform to the process window.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 16, 2013
    Assignee: BASF SE
    Inventors: Ilshat Gubaydullin, Karl-Heinz Wassmer, Robert Rupaner, Jochen Kessler, Guillermo Arens, Gerald Wildburg, Christian Magin, Wolfgang Huemmer, Lambertus Manders, Rudolf Schuhmacher, Oliver Birkert
  • Patent number: 8354481
    Abstract: The present invention provides methods of controlling a gas-phase polymerization process. The method includes determining a difference between a control variable of the polymerization process, such as the production rate, and the desired value of the control variable; adjusting or maintaining a first manipulated variable to at least partially compensate for the difference between the control variable and the desired value; and adjusting or maintaining a second manipulated variable to at least partially compensate for the effect of adjusting or maintaining the first manipulated variable. The first and second manipulated variables can include process variables such as the fluidized bed weight, the catalyst concentration, the concentration of one or more monomers, the flow of one or more comonomers, the ratio of one comonomer to another comonomer, the activator concentration, the ratio of an activator to selectivity control agent, the concentration of a chain transfer agent, and the retardant concentration.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 15, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Paul K. Samples, John R. Parrish, Ivan J. Hartley, Jeffrey B. Drabish
  • Patent number: 8344077
    Abstract: This invention is related to the field of olefin polymerisation in double loop reactors and especially to the polymerisation of olefins with very active catalyst systems. It discloses a method for reducing blockage when transferring polymer product from the first loop to the second loop of a double loop reactor.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: January 1, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Daan Dewachter, Daniel Siraux, André Lewalle
  • Patent number: 8324327
    Abstract: A process for polymerizing one or more olefins in a gas-phase polymerization reactor is provided. The gas-phase reactor has a fluidized bed and a fluidizing medium. The fluidizing medium has an operating density and an operating velocity. The process includes determining a critical gas velocity and/or determining a critical gas velocity for the polymerization. The operating gas density and/or the operating gas velocity for the fluidizing medium is then adjusted to be less than or equal to its respective critical value. The process includes increasing the bulk density of the fluidized bed. The increase in the fluidized bed bulk density increases productivity without increasing reactor residence time.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: December 4, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Ping Cai, Roger B. Painter, Jan W. Van Egmond
  • Publication number: 20120283395
    Abstract: Techniques are provided for operating a reactor during a catalyst transition period. The instantaneous reaction rate during a catalyst transition period can be determined using real-time measured process variables, and material balance calculations to provide an instantaneous reaction rate in approximately real time. According to certain embodiments, a material balance can be performed on the reactor system using a continuous ideal stirred tank reactor to determine the fractions of each type of catalyst that are present in the reactor, as well as the overall weight percent of catalyst in the reactor. A controller can then calculate the overall instantaneous reaction rate based on the respective catalyst fractions and the overall weight percent of catalyst in the reactor. The catalyst feed rate can then be adjusted based on the determined instantaneous reaction rate to maintain the instantaneous reaction rate within desired limits during a catalyst transition period.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventor: Gregory G. Hendrickson
  • Patent number: 8273834
    Abstract: In some embodiments, a method including the steps of monitoring a polymerization reaction which produces a polymer resin in a fluid bed reactor, where a dry melt reference temperature is characteristic of melting behavior of a dry version of the resin, and in response to data indicative of at least one monitored parameter of the reaction, determining in on-line fashion a reduced melt reference temperature that is at least substantially equal to the difference between the dry melt reference temperature and a temperature by which the dry melt reference temperature is depressed by the presence of condensable diluent gas with the resin in the reactor. Optionally, the method also includes the step of controlling the reaction in response to the reduced melt reference temperature or a stickiness parameter determined from the reduced melt reference temperature.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: September 25, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Eric J. Markel, Robert O. Hagerty, Richard B. Pannell
  • Patent number: 8192689
    Abstract: The invention relates to a device for taking out and analyzing a sample from a polymerization reactor comprising one or more sample conduits (2), for taking a sample out of said reactor and for conducting said sample to one or more sample flash tanks (3), whereby said conduits each are in communication with said reactor (19) and each are provided with at least two sampling valves (4, 5); comprising one or more sample flash tanks (3), for separating said solid particles and evaporated gas, whereby said sample flash tanks are connected to said conduits (2) and provided with means for analyzing said evaporated gas (7), and comprising one or more sample receivers (6), for purifying said solid particles, whereby said receivers are connected to said sample flash tanks (3) and provided with means (8) for analyzing said solid particles. The invention further relates to a method for improving a polymerization reaction in a polymerization reactor.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: June 5, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Hugo Vandaele