From Ketone-containing Phenolic Reactant Or With Ketone-containing Reactant Patents (Class 528/125)
  • Patent number: 9331352
    Abstract: An aspect of the invention is directed to a polymer comprising a sulfonated perfluorocyclopentyl compound. Another aspect of the invention is directed to a sulfonated copolymer comprising one or more sulfonated polymers. A further aspect of the invention is directed to membranes prepared from the polymers of the claimed invention.
    Type: Grant
    Filed: July 20, 2013
    Date of Patent: May 3, 2016
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Dennis W. Smith, Jr., Daniel K. Dei, John P. Ferraris, Kenneth J. Balkus, Jr., Inga H. Musselman, Duck J. Yang, Grace Jones D. Kalaw, Babloo Sharma
  • Patent number: 9269501
    Abstract: This invention relates to a coating formulation for manufacturing an electrode plate, which contains a solution of a hydroxyalkylchitosan and an organic acid and/or its derivative in an aprotic polar solvent, and an active material added to the solution and kneaded with the solution, the electrode plate, a manufacturing process of the electrode plate, a battery, a capacitor, and an undercoating formulation. According to this invention, a coating formulation for manufacturing an electrode plate for a nonaqueous electrolyte secondary battery or an electrode plate for an electric double layer capacitor having excellent adhesion and improved contact resistance between an active material layer and a collector, the electrode plate, its manufacturing process, the battery and the capacitor can be provided.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 23, 2016
    Assignee: DAINICHISEIKA COLOR & CHEMICALS MFG. CO., LTD.
    Inventors: Satoshi Yamazaki, Takaya Sato, Takanori Sannan, Nobuyuki Kobayashi, Shinya Tsuchida
  • Patent number: 9263688
    Abstract: In a BHJ solar cell, a photoelectric conversion layer contains a condensed carbocyclic ring polymer (photoelectric conversion material). The condensed carbocyclic ring polymer is obtained by polymerizing monomers represented by the following general formulae (1) and (2) to prepare a polyphenylene and then reacting the polyphenylene. R1 to R6 in the general formula (1) independently represent a hydrogen atom or a solubilizing group, and the monomer represented by the general formula (1) exhibits a higher solubility in an organic solvent with the solubilizing group than without the solubilizing group. Ar in the general formula (2) represents an unsubstituted or substituted aromatic group, and R7 and R8 in the general formula (2) independently represent a hydrogen atom, an unsubstituted or substituted aromatic group, a methyl group, or a silyl group.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 16, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadahiro Shiba, Kazuhiro Miura
  • Patent number: 9213430
    Abstract: A touch panel includes a transparent substrate and a touch module disposed thereon. The touch module includes a first stack structure that includes the following elements. A transparent carrying layer has an active area, an extending area, and a plurality of bending segments respectively connecting the active area and the extending area. A patterned conductive layer has an electrode pattern area and a plurality of bonding pads that extend from the electrode pattern area disposed on the active area. A plurality of extending wires connect the bonding pads, and extend to the extending area. A transparent adhesive layer covers the electrode pattern area. A wire protection layer covers a portion of each extending wire on the corresponding extending area. The transparent adhesive layer covers a portion of the bonding pads.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 15, 2015
    Assignee: Young Lighting Technology Inc.
    Inventors: Wu-Hsieh Lee, Wei-Cheng Huang, Chwen-Tay Hwang
  • Patent number: 9209472
    Abstract: A polymer of sulfonated poly(arylene ether)s (PAEs) and a manufacturing method thereof are provided. A main structure of the PAEs has a first side formed by multi-phenyl glycol monomer and a second side formed by multi-phenyl dihalo monomer with an electron-withdrawing group. The glycol monomer and the dihalo monomer are reacted with each other by a nucleophilic displacement reaction, so as to form the main structure of the PAEs. A film made of the PAEs has a better size stability under a high water uptake.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 8, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 9175131
    Abstract: The invention provides novel flame-retardant polymers and materials, their synthesis and use. More particularly, the flame-retardant polymers are deoxybenzoin-derived polymers.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: November 3, 2015
    Assignee: University of Massachusetts
    Inventors: Todd Emrick, E. Bryan Coughlin, Thangamani Ranganathan, Michael Beaulieu, Richard Farris, Bon-Cheol Ku
  • Patent number: 9162967
    Abstract: A sulfonium salt comprising (a) a polymerizable substituent, (b) a sulfonium cation, and (c) a sulfonate anion within a common molecule is capable of generating a sulfonic acid in response to high-energy radiation or heat. A resist composition comprising the sulfonium salt as base resin has high resolution and is suited for precise micropatterning by ArF immersion, EB or EUV lithography.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 20, 2015
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masaki Ohashi, Jun Hatakeyama
  • Patent number: 9156838
    Abstract: This fused heterocyclic compound represented in formula (1) has excellent effectiveness in pest control. In the formula, A1 represents —NR4—, etc.; A2 represents a nitrogen atom, etc.; R1 represents an ethyl group, a cyclopropyl group, or a cyclopropylmethyl group; R2 represents —S(O)mR6 or —C(R7)(CF3)2; R4 represents a C1-C6 alkyl group optionally having one or more halogen atoms; R6 represents a C1-C6 haloalkyl group; R7 represents a fluorine atom or a chlorine atom, and m and n each represents 0, 1 or 2.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 13, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masaki Takahashi, Takamasa Tanabe, Mai Ito, Chie Shimizu, Yoshihiko Nokura
  • Patent number: 9145468
    Abstract: A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene having a structural unit selected from moieties represented by the following general formulae (1) to (3). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. R1 to R8 in the general formulae (1) to (3) independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: September 29, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takahiro Miyazaki, Kazuhiro Miura, Tadahiro Shiba
  • Patent number: 9035013
    Abstract: A sulphur-containing triazine monomer is provided that can be used in the synthesis of a polymer membrane for a PEM-type fuel cell. The sulphur-containing triazine monomer has a structure corresponding to a formula (I): in which: Tz represents a 1,3,5-triazine nucleus; X1 and X2, which are identical or different, represent S, SO, or SO2; Ar1, Ar2, Ar4 and Ar5, which are identical or different, represent a substituted or unsubstituted phenylene group; Ar3 represents a substituted or unsubstituted phenyl group; and Z1 and Z2, which are identical or different, are selected from a group that includes halogens, hydroxyl, alkoxyl, thiol, carboxyl, carboxylates, amine, sulphonamide, acyl chlorides, sulphonyl chlorides, sulphonyl fluorides, isocyanates, and combinations thereof.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: May 19, 2015
    Assignees: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, MICHELIN RECHERCHE ET TECHNIQUE S.A.
    Inventor: Milan Fedurco
  • Patent number: 9023468
    Abstract: A method of preparing a poly (ether ketone ketone) consisting essentially of the repeat unit: —Ar—O—Ar—C(?O)—Ar—C(?O)— wherein each Ar is independently an aromatic moiety is provided. The method may comprise the step of polymerising a monomer system in a reaction medium comprising: (a) a Lewis acid; and (b) a controlling agent comprising an aromatic carboxylic acid, an aromatic sulphonic acid, or a derivative thereof.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 5, 2015
    Assignee: Ketonex Limited
    Inventor: Ian Towle
  • Patent number: 9018336
    Abstract: A polymer of sulfonated poly(arylene ether)s (PAEs) and a manufacturing method thereof are provided. A main structure of the PAEs has a first side formed by multi-phenyl glycol monomer and a second side formed by multi-phenyl dihalo monomer with an electron-withdrawing group. The glycol monomer and the dihalo monomer are reacted with each other by a nucleophilic displacement reaction, so as to form the main structure of the PAEs. A film made of the PAEs has a better size stability under a high water uptake.
    Type: Grant
    Filed: January 26, 2014
    Date of Patent: April 28, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 8992802
    Abstract: An intermediate transfer member that includes a crosslinked poly(ether ether ketone) polymer, an optional conductive component, an optional polymer, and an optional release additive.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 31, 2015
    Assignee: Xerox Corporation
    Inventor: Jin Wu
  • Patent number: 8987406
    Abstract: A cyclic poly (phenylene ether ether ketone) composition includes not less than 60% by weight of a cyclic poly (phenylene ether ether ketone) represented by the following Formula (I), which is characterized in that the cyclic poly (phenylene ether ether ketone) is a mixture of cyclic poly (phenylene ether ether ketone)s having different repeating numbers (m) and the composition has a melting point of not higher than 270° C.; and a method of producing a poly (phenylene ether ether ketone) characterized by heat-polymerizing the cyclic poly (phenylene ether ether ketone) composition: where m represents an integer of 2 to 40.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: March 24, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Kohei Yamashita, Shunsuke Horiuchi, Koji Yamauchi
  • Patent number: 8987407
    Abstract: A fuel cell catalyst layer having sulfonated poly(arylene ether)s and a manufacturing method therefor are provided. The manufacturing method includes steps of: providing at least one type of sulfonated poly(arylene ether)s; mixing the sulfonated poly(arylene ether)s with a catalyst composition to prepare a catalyst slurry; and coating the catalyst slurry to form a film which is dried to be an electrode catalyst layer, in which the weight ratio of the sulfonated poly(arylene ether)s is 5-50 wt %. The sulfonated poly(arylene ether)s in the electrode catalyst layer can provide good thermal stability, glass transition temperature, chemical resistance, mechanical properties, water impermeability, low proton transmission loss, and a relatively simple process to shorten the manufacturing time and lower the cost thereof.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 24, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 8986833
    Abstract: Disclosed are enamel varnish compositions for an enamel wire and an enamel wire using the same. The present invention relates to enamel varnish compositions for an enamel wire in which a polymeric resin component is included in an organic solvent, wherein the polymeric resin component includes a first polyamideimide resin; and a second resin having polyamideimide in which a triazine ring is introduced into a major chain. The enamel wire, in which such a coating pigment composition is applied to the innermost layer, has the increased adhesivity of the insulated coating layer to the conducting wire, as well as the excellent physical properties such as the wear resistance and flexibility, etc.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 24, 2015
    Assignee: LS Cable Ltd.
    Inventor: Joon-Hee Lee
  • Publication number: 20150079378
    Abstract: A method of manufacturing an article comprises rotomolding at least one polymer comprising a poly(aryl ketone), such as PEKK, under conditions effective to produce a rotomolded article having an impact value of at least 35 in-lbs. A rotomolding method comprises heating the mold for a period of time after the internal air temperature of the mold reaches the highest melting point of the at least one polymer. Methods also include using a PEKK powder with a bulk density of at least about 400 g/L. Rotomolded articles of the present invention have impact values of between about 40 in-lbs to about 95 in-lbs, and in particular embodiments greater than about 95 in-lbs.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 19, 2015
    Inventors: Manuel A. Garcia-Leiner, Bruce Clay
  • Patent number: 8981035
    Abstract: There is provided a production method of poly(phenylene ether ether ketone). The production method makes a cyclic poly(phenylene ether ether ketone) composition subjected to thermal ring-opening polymerization in the presence of a metal alkoxide and/or a metal phenoxide. The cyclic poly(phenylene ether ether ketone) composition includes 60% by weight or more of cyclic poly(phenylene ether ether ketone) and has a melting point of 270° C. or lower.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 17, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Keiko Ichinose, Kohei Yamashita, Makito Yokoe, Koji Yamauchi
  • Patent number: 8981034
    Abstract: A method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology comprises: (1) adding high-temperature organic solvent into a three-necked flask equipped with a thermometer, a nitrogen-feeding pipe, and a stirrer; then stirring and heating; orderly adding 4,4?-difluordiphenylketone, 4,4?-bifluorotriphenyldione, hydroquinone, and 4,4?-dihydroxydiphenylketone after the high-temperature organic solvent has been melted, and stirring to completely dissolve them; adding alkali carbonate of 1-5% excessive amount relative to total mole of hydroquinone and 4,4?-dihydroxydiphenylketone; heating to 220-230° C. while stirring, and maintaining the temperature for 20-40 minutes to complete the first salt-forming reaction, (2) heating to 250-260° C., and maintaining the temperature for 20-40 minutes to complete the second salt-forming reaction, (3) heating to 300-320° C.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 17, 2015
    Assignee: Kingfa Science & Technology Co., Ltd.
    Inventors: Zhongwen Wu, Rongtang Ma
  • Patent number: 8969504
    Abstract: Poly(aryletherketone)s comprising fluoride end groups having improved melt stability, lower gel content and lower color are provided.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: March 3, 2015
    Assignee: Solvay Specialty Polymers USA, L.L.C.
    Inventors: Chantal Louis, Satchit Srinivasan, William Gandy
  • Patent number: 8952121
    Abstract: A novel novolac prepared by acid catalyzed condensation between biphenols or bisphenofluorenes and fluorenone is presented. The polymers exhibit excellent oxidative thermal stability and high carbon content, suitable for dielectric, etch stop applications as spin-on material.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: February 10, 2015
    Assignee: Silecs OY
    Inventor: Jyri Paulasaari
  • Publication number: 20150038666
    Abstract: A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene having a structural unit selected from moieties represented by the following general formulae (1) to (3). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. R1 to R8 in the general formulae (1) to (3) independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: Takahiro MIYAZAKI, Kazuhiro MIURA, Tadahiro SHIBA
  • Publication number: 20140374887
    Abstract: There is provided a composition for forming a passivation film that satisfies electric insulation, heat-tolerance, solvent-tolerance, and a dry etch back property at the same time.
    Type: Application
    Filed: February 8, 2013
    Publication date: December 25, 2014
    Applicant: NISSAN CHEMICAL IMDUSTRIES, LTD.
    Inventors: Mamoru Tamura, Hiroshi Ogino, Tomoyuki Enomoto
  • Patent number: 8916674
    Abstract: A method for preparing series of terpolymer of poly (diphenyl ether sulfone) and poly (diphenyl ether diphenyl sulfone) comprises: adding high temperature organic solvent, stirring and heating; sequentially adding 4,4?-dihydroxydiphenyl, 4,4?-dichlorodiphenyl sulfone and 4,4?-Bis(4-chlorophenyl)sulfonyl-1,1?-biphenyl; after all the monomers are completely dissolved, heating to 100° C. and adding alkali metal carbonate salt-forming agent which is 5-10 mol % more than the amount of 4,4?-dihydroxydiphenyl added, and subsequently adding xylene; continuously heating and salt-forming reaction begins in the system, and controlling the temperature at 190˜210° C.; then heating to 230˜236° C., and maintaining for 3-4 hours to obtain polymer viscous liquid; and refining the polymer viscous liquid to obtain a terpolymer containing different structural units in the molecular chain, wherein the Tg of the terpolymer can be regulated by changing the ratio of the two dichloro-containing monomers.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 23, 2014
    Assignee: Kingfa Sci & Tech Co., Ltd.
    Inventors: Zhongwen Wu, Rongtang Ma, Xiangbin Zeng
  • Patent number: 8916672
    Abstract: The present disclosure relates to a transparent polyarylene ether polymer with high heat resistance and a method for preparing the same. More particularly, the present disclosure relates to a polyarylene ether polymer and a method for preparing the same, wherein the polyarylene ether polymer has a repeating structure in which cardo-type aromatic diols having a large molecular volume, polyether sulfones which are amorphous polymers having a high glass transition temperature and superior film formability, and polyether ketones which are crystalline polymers having superior heat resistance and mechanical properties are sequentially arranged. The polyarylene ether polymer is both transparent and heat resistant and, thus, can be used, for example, for a flexible plastic substrate.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 23, 2014
    Assignee: ICUF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Yang Kyoo Han, Gyoung Pyo Kong, Moon Ki Kim, Bo Ra Hong, Hyun Aee Chun
  • Publication number: 20140357829
    Abstract: The invention provides a novel platform for minimal- or non-flammable polymers, which is based purely on hydrocarbon systems and does not need additives of any kind A key feature is that the hydrocarbons disclosed herein are characterized by degradation mechanisms that produce few flammable volatiles. For example, 2,4,4?,6-tetrahydroxydeoxybenzoin is employed as a multifunctional cross-linker in conjunction with bis-epoxydeoxybenzoin, affording new resins that combine excellent physical and mechanical properties with low flammability.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 4, 2014
    Inventors: Todd Emrick, Justin Timmons, Megan Warner Szyndler
  • Patent number: 8889817
    Abstract: Triazine polymer comprising at least a plurality of base structural units comprising at least a moiety corresponding to the formula: in which: the symbols X1 and X2, which are identical or different, represent S, SO, or SO2; the symbols Ar1 and Ar2, which are identical or different, represent a substituted or unsubstituted phenylene group; the symbol Ar3 represents a substituted or unsubstituted phenyl group; the symbol Tz represents the 1,3,5-triazine nucleus. This polymer of the invention, which can be used as electrolyte in a PEM fuel cell, makes it possible to obtain membranes of high chemical and dimensional stability which additionally exhibit a high ion conductivity.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: November 18, 2014
    Assignees: Compagnie Generale des Etablissements Michelin, Michelin Recherche et Technique S.A.
    Inventors: Milan Fedurco, Antonio Delfino
  • Patent number: 8859185
    Abstract: A resist underlayer film-forming composition includes a polymer including a repeating unit shown by a formula (1), and having a polystyrene-reduced weight average molecular weight of 3000 to 10,000, and a solvent. Each of R3 to R8 individually represent a group shown by the following formula (2) or the like. R1 represents a single bond or the like. R2 represents a hydrogen atom or the like.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: October 14, 2014
    Assignee: JSR Corporation
    Inventors: Shin-ya Minegishi, Yushi Matsumura, Shinya Nakafuji, Kazuhiko Komura, Takanori Nakano, Satoru Murakami, Kyoyu Yasuda, Makoto Sugiura
  • Publication number: 20140275324
    Abstract: Photoactive additives are disclosed. The additive is formed from the reaction of a dihydroxybenzophenone, one or more linker moieties having functional groups that react with the phenolic groups, a diol chain extender, and an end-capping agent. If desired, a secondary linker moiety can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Jean-Francois Morizur, Paul Dean Sybert
  • Publication number: 20140265015
    Abstract: A method for preparing bones of cerebral cranium, including: a) selecting polyetheretherketone (PEEK) as a raw material according to data obtained by computed tomography (CT) of a patient; b) heating the PEEK material in a heating device to reach a softening point of 260°±10°; c) hot pressing the heated PEEK material obtained in step b) in a forming die, cooling and shaping the PEEK material to yield a blank; d) curing the blank, and placing the blank in a thermostat for removal of internal stress and resilience; e) removing surface crystals and impurities of the blank resulting from the hot pressing; f) mechanically processing the blank according to the CT data of the patient to yield a product having desired size and shape; and g) washing, disinfecting, and packaging the product.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: WUHAN CONSTANT SCIENCE AND TECHNOLOGY LTD.
    Inventor: Dengfeng HUANG
  • Patent number: 8829060
    Abstract: A membrane comprising a blend of a sulfonated poly(aryl ether) and a phenol compound along with methods for making and using the same. Many additional embodiments are described including applications for such membranes.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 9, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: William E. Mickols, John C. McKeen
  • Publication number: 20140246400
    Abstract: A resin having a fluorene structure, a relatively high carbon concentration in the resin, a relatively high heat resistance and a relatively high solvent solubility has a structure represented by wherein each of R3 and R4 independently denotes a benzene ring or a naphthalene ring, a carbon atom at the bridgehead of a fluorene backbone or (di)benzofluorene backbone is bonded with a carbon atom of each of other aromatic rings, and a carbon atom of each of aromatic rings of a fluorene backbone or (di)benzofluorene backbone is bonded with a carbon atom at the bridgehead of other fluorene backbone or (di)benzofluorene backbone. The resin can be applied to a wet process. Methods for producing the resin, for forming an underlayer film useful for forming a novel resist, and for pattern forming using the material, and an underlayer film excellent in heat resistance and etching resistance for multilayer resist are described.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 4, 2014
    Applicant: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Go Higashihara, Naoya Uchiyama, Masatoshi Echigo
  • Patent number: 8816038
    Abstract: Disclosed is a polymer which is useful for the preparation of an epoxy resin composition or a cured product thereof in film or sheet exhibiting high heat resistance, high thermal conductivity, low thermal expansion, high gas barrier property, and high toughness. The polymer is a thermoplastic aromatic ether polymer comprising a unit represented by the following general formula (1) at a ratio of 10 to 100 mol % and having a weight average molecular weight of 3,000 or more; in formula (1), X is an oxygen atom or a sulfur atom, R1 and R2 each is a hydrogen atom, an alkyl group of 1 to 8 carbon atoms, an aryl group, an alkoxy group, an aralkyl group, or a halogen atom, and n is a number of 1 to 3.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 26, 2014
    Assignee: Nippon Steel & Sumikin Chemical Co., Ltd.
    Inventors: Masashi Kaji, Koichiro Ogami
  • Publication number: 20140235787
    Abstract: Polymers comprising polyetheretheretherketone and polyetherdiphenyletherketone and polymers comprising polyetheretheretherketone and polyetheretherethersulphone are described which have advantageous Tn and/or Tg properties.
    Type: Application
    Filed: October 10, 2012
    Publication date: August 21, 2014
    Inventors: Carlo Capra, Christoper Peter Tyler, Brian Wilson
  • Publication number: 20140227887
    Abstract: A phenolic self-crosslinking polymer whose self-crosslinking reaction at a heating step is performed without additives for hardening the polymer, and a composition of resist-underlayer-film containing the same, are disclosed.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 14, 2014
    Inventors: Jeong-Sik Kim, Jae-Hyun Kim, Jae-Woo Lee
  • Publication number: 20140213671
    Abstract: Provided are an aromatic sulfonic acid derivative and a sulfonic acid group-containing polymer, each of which has excellent proton conductivity even under low humidification conditions, while having excellent mechanical strength and chemical stability, and enables a solid polymer fuel cell to achieve high output and excellent physical durability when used therein. This aromatic sulfonic acid derivative has a specific structure and is characterized in that a sulfonic acid group is introduced into more than 50% of all the phenyl groups. This sulfonic acid group-containing polymer is characterized by being obtained by polymerization using the aromatic sulfonic acid derivative, and is also characterized by having a specific structure.
    Type: Application
    Filed: June 27, 2012
    Publication date: July 31, 2014
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Daisuke Izuhara, Hiroaki Umeda, Emi Amano, Tomoyuki Kunita
  • Publication number: 20140206833
    Abstract: A method for producing polycarbonate by melt polymerization can comprise: (a) adding acetone, diaryl carbonate, and dihydroxy compound to the melt polymerization unit, wherein the acetone is added to the melt polymerization unit as a mixture with the diaryl carbonate and/or the dihydroxy compound; (b) adding a catalyst to the melt polymerization unit, optionally without separating out acetone prior to the addition of the catalyst; and (c) operating the melt polymerization unit under conditions so that the diaryl carbonate(s) and dihydroxy compound(s); dihydroxy compound reacts with the diaryl carbonate to produce polycarbonate with a desired specification, and a phenol by-product.
    Type: Application
    Filed: December 17, 2012
    Publication date: July 24, 2014
    Applicant: SABIC Innovative Plastics IP B.V.
    Inventors: Ignacio Vic Fernandez, Fernan Mateos Salvador, Mykhaylo Lyakhovych, Sergio Ferrer Nadal
  • Patent number: 8754186
    Abstract: An object of the present invention is to provide a polyimide precursor composition that can be cured at low temperatures (250° C. or lower), while having a low viscosity even at a high concentration, and a method of producing the same. Another object of the present invention is to provide a polyimide coating film obtained from the polyimide precursor composition and having good physical properties, and a method of producing the same. Furthermore, another object of the present invention is to provide a photosensitive resin composition containing the polyimide precursor composition, and a method of producing the same. These objects can be achieved by the polyimide precursor composition containing an imidized tetracarboxylic acid having a specific structure and a diamine having a specific structure.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: June 17, 2014
    Assignee: Kaneka Corporation
    Inventors: Kan Fujihara, Tetsuya Kogiso, Yoshihide Sekito
  • Publication number: 20140155569
    Abstract: A chemical compound of structural formula (I) useful in preparation of flame retardant materials is disclosed. Homopolymer, and copolymers of a compound of formula (I), as well as methods of preparing said homo- and copolymers are also disclosed. Polymers described herein advantageous possess low heat release capacities and high char yields.
    Type: Application
    Filed: April 30, 2012
    Publication date: June 5, 2014
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Jayant Kumar, E. Bryan Coughlin, Todd Emrick, Bon-Cheol Ku, Sethumadhavan Ravichandran, Subhalakshmi Nagarajan, Ramaswamy Nagarajan, Weeradech Kiratitanavit
  • Publication number: 20140144325
    Abstract: A gas separation membrane having a polyimide structure.
    Type: Application
    Filed: April 23, 2013
    Publication date: May 29, 2014
    Inventor: Central Glass Company, Limited
  • Patent number: 8735531
    Abstract: A diol from which a resin material having high processability and a high refractive index can be manufactured, a polycarbonate resin and a polyester resin which is a polymer of the diol, and a molded article and an optical element formed of the polymer. The diol is represented by the general formula (1) shown below; the polycarbonate resin and the polyester resin are polymers thereof; and the molded article and the optical element are formed of the polymers, wherein R1 and R2 each independently denote one of a hydrogen atom and an alkyl group having 1 or more and 6 or less carbon atoms; Q denotes one of an oxyethylene group, a thioethylene group and a single bond.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 27, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumoto Hosokawa, Takahiro Kojima, Toshikazu Takata, Kazuko Nakazono, Yasuhiro Kohsaka, Yasuhito Koyama, Toshihide Hasegawa, Ryota Seto
  • Patent number: 8729214
    Abstract: A method for the purification of aromatic polyether polymers prepared by a halide displacement polymerization process comprises adsorbing the catalyst with an alkali metal halide to form an adsorbent component and then removing the adsorbent component. Mixtures resulting from this method are also discussed.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 20, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Beatriz Penalver Bernabe, Thomas Guggenheim, David Bruce Hall, Norman Johnson, Juan Justino Rodriguez Ordonez, David Woodruff
  • Patent number: 8722842
    Abstract: The present invention provides an optical film exhibiting wavelength dispersion such that a retardation value is smaller on the shorter wavelength side, and capable of being also formed comparatively thinly. The optical film of the present invention is an optical film including a polyimide-based polymer represented by the following general formula (I). In the formula (I), m is 40% by mol or more and 100% by mol or less. R1 and R2 each independently denote a substituent having a carbon-carbon double bond or a triple bond. A, A?, B, B?, E, G, and H each denote a substituent, and small letters corresponding to these alphabets denote substitution number thereof. X and Y each independently denote bond part such as a covalent bond. The substituents having a carbon-carbon double bond or a triple bond represented by R1 and R2 are a substituted or unsubstituted aryl group, a substituted or unsubstituted vinyl group, and a substituted or unsubstituted ethynyl group.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: May 13, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Toshiyuki Iida, Yutaka Ohmori, Miyuki Kurogi
  • Patent number: 8710171
    Abstract: The presence of certain impurities in diphenyl sulfone have a deleterious effect on the properties of the poly(aryletherketone)s produced therein, including one or more of color, melt stability, molecular weight, crystallinity, etc. and here identify those impurities and provide processes for the removal of such impurities.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: April 29, 2014
    Assignee: Solvay Advanced Polymers, L.L.C.
    Inventors: Chantal Louis, William Gandy, Edward Ryan, Geoffrey Scott Underwood, Kong Yi
  • Patent number: 8710176
    Abstract: A method of producing a sulfonated polyarylether block copolymer is provided. The method includes producing a sulfonated polyarylether block copolymer containing a hydrophobic segment having a structural unit represented by formula (5) and a hydrophilic segment having a structural unit having a sulfonic acid groups or derivative thereof incorporated into a structure represented by formula (6). A hydrophilic segment prepolymer having a sulfonic acid group in a potassium salt form and a hydrophobic segment prepolymer are block copolymerized. A proton conductor that includes the sulfonated polyarylether block copolymer is also provided.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 29, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Tetsuji Hirano, Nobuharu Hisano, Tatsuya Arai, Masayuki Kinouchi
  • Patent number: 8648155
    Abstract: The present description discloses a polymeric composition which is a melt-processed alloy comprised of (a) a polyarylene sulfide resin, (b) a polyaryl-ether-ketone resin, and a reactive compound which results in (c) a graft copolymer of the polyarylene sulfide resin and/or the polyaryl-ether-ketone resin in addition to the starting resins. Exemplary melt-processed polymeric compositions can be made by reacting an alkoxy silane with the polyarylene sulfide resin and/or the polyaryl-ether-ketone resin to produce a graft copolymer of a portion of one or both of the resins, sufficient to render the composition uniform and homogeneous. It is normally preferred for the exemplary organosilane compound, to be an amino silane. The subject invention further reveals an insulated wire comprising (1) an electrical conductor and (2) a layer of the melt-processed alloy composition; and fiber reinforced composites comprising fibers substantially fully impregnated with the alloy polymeric composition.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 11, 2014
    Assignee: Ticona LLC
    Inventors: Manoj Ajbani, Andrew Auerbach, Ke Feng
  • Patent number: 8642713
    Abstract: Improved poly(aryletherketone)s with superior melt stability, lower gel content and lower color and a new process for their manufacture.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 4, 2014
    Assignee: Solvay Advanced Polymers, L.L.C.
    Inventors: Chantal Louis, Satchit Srinivasan, William Gandy
  • Patent number: 8633256
    Abstract: A process for creating polyolefin blends from waste streams with controlled rheological properties can include processing a waste stream to make a mixture comprising a mixture comprising polypropylene and polyethylene and compounding the mixture with one or more peroxides or nitroxides to produce a polyolefin blend. For example, a process can include: determining the required melt flow rate of the end product; determining the ratio of polyethylene to polypropylene to achieve the required melt flow rate; effecting a separation of polypropylene from polyethylene to achieve the desired composition; determining the amount of peroxide or peroxide concentrate required to increase the melt flow rate to the required level; melt compounding the mixture; evaluating the melt flow rate of the product; and adjusting the composition of polyethyelene and polypropylene or the amount of peroxide added if necessary to achieve the required melt flow rate.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: January 21, 2014
    Assignee: MBA Polymers, Inc.
    Inventors: Brian L. Riise, Hyung Baek
  • Patent number: 8629232
    Abstract: A polymeric material includes phenyl moieties, ketone moieties and ether moieties in the polymeric backbone of said polymeric material, wherein the difference between the nucleation temperature (Tn) and the glass transition temperature (Tg) of said polymeric material is greater than 23° C.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: January 14, 2014
    Assignee: Victrex Manufacturing Limited
    Inventors: Simon Jonathon Grant, John Russell Grasmeder, Michael John Percy, Brian Wilson
  • Patent number: 8609804
    Abstract: Provided are sulfone-containing polyarylene polymers, and processes for preparing the polymers. The polyarylene polymers are suitable for use as engineering polymers.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 17, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Mark F Teasley