From Ketone-containing Phenolic Reactant Or With Ketone-containing Reactant Patents (Class 528/125)
  • Patent number: 9718951
    Abstract: The invention relates to (co)polycarbonate compositions and molding compounds, characterized by improved theological properties and a high heat deflection temperature.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: August 1, 2017
    Assignee: Covestro Deutschland AG
    Inventors: Rolf Wehrmann, Helmut Werner Heuer, Anke Boumans
  • Patent number: 9676906
    Abstract: A polymer of poly(arylene ether)s, a manufacturing method thereof, and a polymer light emitting diode with an organic light emitting layer made from the polymer are provided. The polymer is formed by processing a nucleophilic polycondensation between a fluoro-containing monomer having an electron-withdrawing group and a multi-phenyl monomer. The polymer has a host portion with fluoro- or trifluoromethyl substituents, and a customer portion with multi-phenyl groups.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: June 13, 2017
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Wen-yao Huang, Hsu-feng Lee, Yi-chiang Huang, Mei-ying Chang, Tzu-sheng Huang, Hsin-yi Wen, Chih-chen Wu
  • Patent number: 9644069
    Abstract: A polymer of fluorine-containing sulfonated poly(arylene ether)s and a manufacturing method thereof are provided. The polymer is formed by processing a nucleophilic polycondensation between a fluorine-containing monomer having an electron-withdrawing group and a multi-phenyl monomer. A main structure of the polymer of fluorine-containing sulfonated poly(arylene ether)s has a first portion with fluoro or trifluoromethyl substituted phenyl groups, and a second portion with sulfonated phenyl groups.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: May 9, 2017
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Wen-yao Huang, Hsu-feng Lee, Benjamin Britton, Chun-che Lee, Steven Holdcroft, Jun-jie Pang, Yi-yun Hsu, Yu-chao Tseng
  • Patent number: 9617386
    Abstract: This disclosure relates to a process of purifying a polymer. The process includes (a) providing an organic solution containing a polyimide or polyamic ester in at least one polar, aprotic polymerization solvent; (b) adding at least one purification solvent to the organic solution to form a diluted organic solution, the at least one purification solvent is less polar than the at least one polymerization solvent and has a lower water solubility than the at least one polymerization solvent at 25° C.; (c) washing the diluted organic solution with water or an aqueous solution to obtain a washed organic solution; and (d) removing at least a portion of the at least one purification solvent in the washed organic solution to obtain a solution containing a purified polyimide or polyamic ester. This disclosure also relates to a process of preparing a film on a semiconductor substrate, as well as related purified polymer solutions, films, and articles.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: April 11, 2017
    Assignee: Fujifilm Electronic Materials U.S.A., Inc.
    Inventors: William A. Reinerth, Sanjay Malik, Binod B. De
  • Patent number: 9581905
    Abstract: A composition for film formation includes a compound represented by formula (1) and a solvent. In the formula (1), R1, R2 and R3 each independently represent a group represented by the formula (a). In the formula (a), RA represents a hydrogen atom, an aryl group, or an alkyl group unsubstituted or substituted with at least one of a hydroxy group and an aryl group. RB represents a single bond or an arylene group. A part or all of hydrogen atoms on an aromatic ring of the aryl group and the arylene group may be substituted with a halogen atom, a hydroxy group, an amino group, a sulfanyl group, or a monovalent organic group having 1 to 20 carbon atoms and not including an aromatic ring.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: February 28, 2017
    Assignee: JSR CORPORATION
    Inventors: Shin-ya Nakafuji, Fumihiro Toyokawa, Goji Wakamatsu, Shingo Takasugi, Tooru Kimura
  • Patent number: 9534086
    Abstract: A poly(aryl ether sulfone) of low polydispersity containing no detectable cyclic polymer byproduct was prepared by melt polymerization without catalyst, solvent, and base. The poly(aryl ether sulfone) can be used without further purification for the manufacture of articles. A melt composition for fabricating an article comprises the poly(aryl ether sulfone) and, optionally, one or more additives.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Daniel J. Coady, Jeannette M. Garcia, James L. Hedrick, Hans W. Horn, Gavin O. Jones
  • Patent number: 9520564
    Abstract: A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene represented by the following general formula (1). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. At least one of R1 to R6 in the general formula (1) is an alkoxy group, and R7 to R10 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 13, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuhiro Miura, Takahiro Miyazaki, Tadahiro Shiba
  • Patent number: 9518341
    Abstract: Provided are an amorphous polyetherimide fiber having not only a small single fiber fineness suitable for producing fabrics, and a fabric comprising the amorphous polyetherimide fiber. The fiber comprises an amorphous polyetherimide polymer having a molecular weight distribution (Mw/Mn) of less than 2.5, and having a shrinkage percentage under dry heat at 200° C. of 5% or less, and a single fiber fineness of 3.0 dtex or less. The fiber may have a tenacity at room temperature of 2.0 cN/dtex or greater.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: December 13, 2016
    Assignee: KURARAY CO., LTD.
    Inventors: Ryokei Endo, Yosuke Washitake, Yukie Sugihara, Akihiro Uehata
  • Patent number: 9518072
    Abstract: A method for producing a reaction product comprising an ester-functional silane, the method comprising: i) reacting a composition comprising: a) a haloorganosilane, b) a metal salt of a carboxy-functional compound, c) a phase transfer catalyst comprising a bicyclic amidine, an iminium compound, or a mixture thereof, provided that the iminium compound is not an acyclic guanidinium compound or pyridinium compound, and d) a co-catalyst, provided that the co-catalyst is optional when the phase transfer catalyst comprises the iminium compound.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 13, 2016
    Assignee: Dow Corning Corporation
    Inventors: Michael Wolfgang Backer, John Michael Gohndrone, Don Lee Kleyer, Xiaobing Zhou
  • Patent number: 9499664
    Abstract: A polyimide polymer, polyimide film and polyimide laminate plate including the same are provided. The polyimide polymer includes Formula (I), Formula (II) and Formula (III). In Formula (I), Formula (II) and Formula (III), A is an aromatic group with fluorine, B, B?, and B? are aromatic groups different from one another. B/(B+B?+B?), B?/(B+B?+B?), and B?/(B+B?+B?) are larger than 0. The polyimide film includes a film layer which includes the above polyimide polymer. The film layer optionally includes colorants or inorganic nanoparticles. Therefore, the thermal resistance and the transparency of the polyimide film are improved, and a polyimide film with high thermal resistance and different colors is available. The polyimide solution can also be applied on metal film to form polyimide laminate plate.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: November 22, 2016
    Assignee: MORTECH CORPORATION
    Inventors: Der-Jen Sun, Chi-Sheng Chen, Kuo-Wei Li, Yen-Huey Hsu
  • Patent number: 9464170
    Abstract: Disclosed is a composition having: a diphthalonitrile compound having at least two phthalonitrile groups; a reactive plasticizer; and an amine curing agent. Also disclosed is a composition having: a diphthalonitrile compound having at least two phthalonitrile groups; a nonreactive plasticizer; and an amine curing agent. Also disclosed is a method of: providing a composition having a phthalonitrile compound; heating the composition to a processing temperature until the composition has a viscosity of 30-40 Pa·s at the processing temperature to form a partially cured composition; placing the partially cured composition into a material chamber of an extrusion machine; heating the partially cured composition and the material chamber to within 10° C. of the processing temperature; and extruding fiber from the extrusion machine.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: October 11, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Matthew Laskoski, Andrew P. Saab
  • Patent number: 9447031
    Abstract: A compound represented by Chemical Formula 1: wherein in Chemical Formula 1, R1 and R2 are the same or different, and are each independently an electron-withdrawing group, R3 to R6 are the same or different, and are each independently selected from a hydrogen, a substituted or unsubstituted C1 to C20 alkyl group, and a substituted or unsubstituted C6 to C20 aryl group, and n11 and n12 are the same or different, and are each independently an integer from 1 to 4.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: September 20, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmitry Androsov, Mikhail Kovalev, Evgeny Kiryushchenkov, Fedosya Kalinina
  • Patent number: 9403981
    Abstract: A resin composition, including (A) a polyimide resin; (B) a pre-polymerized maleimide resin; (C) a thermosetting resin; and (D) a flame retardant. The reactants for use in synthesizing the polyimide resin include an acid anhydride and a diamine, with the diamine including 4,4?-diaminodiphenylmethane and its analogous compounds and polyetherdiamines. The resin composition has the following advantages, a resin film or a prepreg is manufactured from the resin composition comprises a polyimide resin synthesized from a diamine of a specific structure and a pre-polymerized maleimide resin, so as to achieve satisfactory characteristics of circuit laminates, such as a low dielectric constant, a low dissipation factor, high heat resistance, and high adhesiveness, so as to be for use in the manufacturing of metal clad laminates and printed circuit boards.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 2, 2016
    Assignee: ELITE MATERIAL CO., LTD.
    Inventor: Chen Yu Hsieh
  • Patent number: 9371409
    Abstract: A process for preparing a curing composition of a coordination complex comprising methylenedianiline (MDA) and a salt, and less than 1000 of free MDA. The curing composition may be used in curing polyurethanes and epoxy resins.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Chemtura Corporation
    Inventors: Thomas R. Doyle, Ronald O. Rosenberg
  • Patent number: 9353220
    Abstract: A process for making polyarylethers provides a reaction mixture that includes a dipolar aprotic solvent for polyarylether and polyarylether forming reactants, and reacts the polyarylether-forming reactants, with removing of water with nitrogen in the absence of azeotrope forming cosolvent and optionally replacing removed amounts with dipolar aprotic solvent. The process can further include directly wet spinning the reactor solution without recovery of the polymer from the dipolar aprotic solvent through a spinneret to form hollow fibers or flat sheets suitable for membranes.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: May 31, 2016
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Selvaraj Savariar, Kevin Hudson, Geoffrey Andrew Russell, James Leslie White, Brett Allen Barton, Cheryl Ford, Jiunn Teo
  • Patent number: 9331352
    Abstract: An aspect of the invention is directed to a polymer comprising a sulfonated perfluorocyclopentyl compound. Another aspect of the invention is directed to a sulfonated copolymer comprising one or more sulfonated polymers. A further aspect of the invention is directed to membranes prepared from the polymers of the claimed invention.
    Type: Grant
    Filed: July 20, 2013
    Date of Patent: May 3, 2016
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Dennis W. Smith, Jr., Daniel K. Dei, John P. Ferraris, Kenneth J. Balkus, Jr., Inga H. Musselman, Duck J. Yang, Grace Jones D. Kalaw, Babloo Sharma
  • Patent number: 9269501
    Abstract: This invention relates to a coating formulation for manufacturing an electrode plate, which contains a solution of a hydroxyalkylchitosan and an organic acid and/or its derivative in an aprotic polar solvent, and an active material added to the solution and kneaded with the solution, the electrode plate, a manufacturing process of the electrode plate, a battery, a capacitor, and an undercoating formulation. According to this invention, a coating formulation for manufacturing an electrode plate for a nonaqueous electrolyte secondary battery or an electrode plate for an electric double layer capacitor having excellent adhesion and improved contact resistance between an active material layer and a collector, the electrode plate, its manufacturing process, the battery and the capacitor can be provided.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 23, 2016
    Assignee: DAINICHISEIKA COLOR & CHEMICALS MFG. CO., LTD.
    Inventors: Satoshi Yamazaki, Takaya Sato, Takanori Sannan, Nobuyuki Kobayashi, Shinya Tsuchida
  • Patent number: 9263688
    Abstract: In a BHJ solar cell, a photoelectric conversion layer contains a condensed carbocyclic ring polymer (photoelectric conversion material). The condensed carbocyclic ring polymer is obtained by polymerizing monomers represented by the following general formulae (1) and (2) to prepare a polyphenylene and then reacting the polyphenylene. R1 to R6 in the general formula (1) independently represent a hydrogen atom or a solubilizing group, and the monomer represented by the general formula (1) exhibits a higher solubility in an organic solvent with the solubilizing group than without the solubilizing group. Ar in the general formula (2) represents an unsubstituted or substituted aromatic group, and R7 and R8 in the general formula (2) independently represent a hydrogen atom, an unsubstituted or substituted aromatic group, a methyl group, or a silyl group.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 16, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadahiro Shiba, Kazuhiro Miura
  • Patent number: 9213430
    Abstract: A touch panel includes a transparent substrate and a touch module disposed thereon. The touch module includes a first stack structure that includes the following elements. A transparent carrying layer has an active area, an extending area, and a plurality of bending segments respectively connecting the active area and the extending area. A patterned conductive layer has an electrode pattern area and a plurality of bonding pads that extend from the electrode pattern area disposed on the active area. A plurality of extending wires connect the bonding pads, and extend to the extending area. A transparent adhesive layer covers the electrode pattern area. A wire protection layer covers a portion of each extending wire on the corresponding extending area. The transparent adhesive layer covers a portion of the bonding pads.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 15, 2015
    Assignee: Young Lighting Technology Inc.
    Inventors: Wu-Hsieh Lee, Wei-Cheng Huang, Chwen-Tay Hwang
  • Patent number: 9209472
    Abstract: A polymer of sulfonated poly(arylene ether)s (PAEs) and a manufacturing method thereof are provided. A main structure of the PAEs has a first side formed by multi-phenyl glycol monomer and a second side formed by multi-phenyl dihalo monomer with an electron-withdrawing group. The glycol monomer and the dihalo monomer are reacted with each other by a nucleophilic displacement reaction, so as to form the main structure of the PAEs. A film made of the PAEs has a better size stability under a high water uptake.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 8, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 9175131
    Abstract: The invention provides novel flame-retardant polymers and materials, their synthesis and use. More particularly, the flame-retardant polymers are deoxybenzoin-derived polymers.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: November 3, 2015
    Assignee: University of Massachusetts
    Inventors: Todd Emrick, E. Bryan Coughlin, Thangamani Ranganathan, Michael Beaulieu, Richard Farris, Bon-Cheol Ku
  • Patent number: 9162967
    Abstract: A sulfonium salt comprising (a) a polymerizable substituent, (b) a sulfonium cation, and (c) a sulfonate anion within a common molecule is capable of generating a sulfonic acid in response to high-energy radiation or heat. A resist composition comprising the sulfonium salt as base resin has high resolution and is suited for precise micropatterning by ArF immersion, EB or EUV lithography.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 20, 2015
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masaki Ohashi, Jun Hatakeyama
  • Patent number: 9156838
    Abstract: This fused heterocyclic compound represented in formula (1) has excellent effectiveness in pest control. In the formula, A1 represents —NR4—, etc.; A2 represents a nitrogen atom, etc.; R1 represents an ethyl group, a cyclopropyl group, or a cyclopropylmethyl group; R2 represents —S(O)mR6 or —C(R7)(CF3)2; R4 represents a C1-C6 alkyl group optionally having one or more halogen atoms; R6 represents a C1-C6 haloalkyl group; R7 represents a fluorine atom or a chlorine atom, and m and n each represents 0, 1 or 2.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 13, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masaki Takahashi, Takamasa Tanabe, Mai Ito, Chie Shimizu, Yoshihiko Nokura
  • Patent number: 9145468
    Abstract: A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene having a structural unit selected from moieties represented by the following general formulae (1) to (3). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. R1 to R8 in the general formulae (1) to (3) independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: September 29, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takahiro Miyazaki, Kazuhiro Miura, Tadahiro Shiba
  • Patent number: 9035013
    Abstract: A sulphur-containing triazine monomer is provided that can be used in the synthesis of a polymer membrane for a PEM-type fuel cell. The sulphur-containing triazine monomer has a structure corresponding to a formula (I): in which: Tz represents a 1,3,5-triazine nucleus; X1 and X2, which are identical or different, represent S, SO, or SO2; Ar1, Ar2, Ar4 and Ar5, which are identical or different, represent a substituted or unsubstituted phenylene group; Ar3 represents a substituted or unsubstituted phenyl group; and Z1 and Z2, which are identical or different, are selected from a group that includes halogens, hydroxyl, alkoxyl, thiol, carboxyl, carboxylates, amine, sulphonamide, acyl chlorides, sulphonyl chlorides, sulphonyl fluorides, isocyanates, and combinations thereof.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: May 19, 2015
    Assignees: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, MICHELIN RECHERCHE ET TECHNIQUE S.A.
    Inventor: Milan Fedurco
  • Patent number: 9023468
    Abstract: A method of preparing a poly (ether ketone ketone) consisting essentially of the repeat unit: —Ar—O—Ar—C(?O)—Ar—C(?O)— wherein each Ar is independently an aromatic moiety is provided. The method may comprise the step of polymerising a monomer system in a reaction medium comprising: (a) a Lewis acid; and (b) a controlling agent comprising an aromatic carboxylic acid, an aromatic sulphonic acid, or a derivative thereof.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 5, 2015
    Assignee: Ketonex Limited
    Inventor: Ian Towle
  • Patent number: 9018336
    Abstract: A polymer of sulfonated poly(arylene ether)s (PAEs) and a manufacturing method thereof are provided. A main structure of the PAEs has a first side formed by multi-phenyl glycol monomer and a second side formed by multi-phenyl dihalo monomer with an electron-withdrawing group. The glycol monomer and the dihalo monomer are reacted with each other by a nucleophilic displacement reaction, so as to form the main structure of the PAEs. A film made of the PAEs has a better size stability under a high water uptake.
    Type: Grant
    Filed: January 26, 2014
    Date of Patent: April 28, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 8992802
    Abstract: An intermediate transfer member that includes a crosslinked poly(ether ether ketone) polymer, an optional conductive component, an optional polymer, and an optional release additive.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 31, 2015
    Assignee: Xerox Corporation
    Inventor: Jin Wu
  • Patent number: 8987407
    Abstract: A fuel cell catalyst layer having sulfonated poly(arylene ether)s and a manufacturing method therefor are provided. The manufacturing method includes steps of: providing at least one type of sulfonated poly(arylene ether)s; mixing the sulfonated poly(arylene ether)s with a catalyst composition to prepare a catalyst slurry; and coating the catalyst slurry to form a film which is dried to be an electrode catalyst layer, in which the weight ratio of the sulfonated poly(arylene ether)s is 5-50 wt %. The sulfonated poly(arylene ether)s in the electrode catalyst layer can provide good thermal stability, glass transition temperature, chemical resistance, mechanical properties, water impermeability, low proton transmission loss, and a relatively simple process to shorten the manufacturing time and lower the cost thereof.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 24, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 8987406
    Abstract: A cyclic poly (phenylene ether ether ketone) composition includes not less than 60% by weight of a cyclic poly (phenylene ether ether ketone) represented by the following Formula (I), which is characterized in that the cyclic poly (phenylene ether ether ketone) is a mixture of cyclic poly (phenylene ether ether ketone)s having different repeating numbers (m) and the composition has a melting point of not higher than 270° C.; and a method of producing a poly (phenylene ether ether ketone) characterized by heat-polymerizing the cyclic poly (phenylene ether ether ketone) composition: where m represents an integer of 2 to 40.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: March 24, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Kohei Yamashita, Shunsuke Horiuchi, Koji Yamauchi
  • Patent number: 8986833
    Abstract: Disclosed are enamel varnish compositions for an enamel wire and an enamel wire using the same. The present invention relates to enamel varnish compositions for an enamel wire in which a polymeric resin component is included in an organic solvent, wherein the polymeric resin component includes a first polyamideimide resin; and a second resin having polyamideimide in which a triazine ring is introduced into a major chain. The enamel wire, in which such a coating pigment composition is applied to the innermost layer, has the increased adhesivity of the insulated coating layer to the conducting wire, as well as the excellent physical properties such as the wear resistance and flexibility, etc.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 24, 2015
    Assignee: LS Cable Ltd.
    Inventor: Joon-Hee Lee
  • Publication number: 20150079378
    Abstract: A method of manufacturing an article comprises rotomolding at least one polymer comprising a poly(aryl ketone), such as PEKK, under conditions effective to produce a rotomolded article having an impact value of at least 35 in-lbs. A rotomolding method comprises heating the mold for a period of time after the internal air temperature of the mold reaches the highest melting point of the at least one polymer. Methods also include using a PEKK powder with a bulk density of at least about 400 g/L. Rotomolded articles of the present invention have impact values of between about 40 in-lbs to about 95 in-lbs, and in particular embodiments greater than about 95 in-lbs.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 19, 2015
    Inventors: Manuel A. Garcia-Leiner, Bruce Clay
  • Patent number: 8981034
    Abstract: A method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology comprises: (1) adding high-temperature organic solvent into a three-necked flask equipped with a thermometer, a nitrogen-feeding pipe, and a stirrer; then stirring and heating; orderly adding 4,4?-difluordiphenylketone, 4,4?-bifluorotriphenyldione, hydroquinone, and 4,4?-dihydroxydiphenylketone after the high-temperature organic solvent has been melted, and stirring to completely dissolve them; adding alkali carbonate of 1-5% excessive amount relative to total mole of hydroquinone and 4,4?-dihydroxydiphenylketone; heating to 220-230° C. while stirring, and maintaining the temperature for 20-40 minutes to complete the first salt-forming reaction, (2) heating to 250-260° C., and maintaining the temperature for 20-40 minutes to complete the second salt-forming reaction, (3) heating to 300-320° C.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 17, 2015
    Assignee: Kingfa Science & Technology Co., Ltd.
    Inventors: Zhongwen Wu, Rongtang Ma
  • Patent number: 8981035
    Abstract: There is provided a production method of poly(phenylene ether ether ketone). The production method makes a cyclic poly(phenylene ether ether ketone) composition subjected to thermal ring-opening polymerization in the presence of a metal alkoxide and/or a metal phenoxide. The cyclic poly(phenylene ether ether ketone) composition includes 60% by weight or more of cyclic poly(phenylene ether ether ketone) and has a melting point of 270° C. or lower.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 17, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Keiko Ichinose, Kohei Yamashita, Makito Yokoe, Koji Yamauchi
  • Patent number: 8969504
    Abstract: Poly(aryletherketone)s comprising fluoride end groups having improved melt stability, lower gel content and lower color are provided.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: March 3, 2015
    Assignee: Solvay Specialty Polymers USA, L.L.C.
    Inventors: Chantal Louis, Satchit Srinivasan, William Gandy
  • Patent number: 8952121
    Abstract: A novel novolac prepared by acid catalyzed condensation between biphenols or bisphenofluorenes and fluorenone is presented. The polymers exhibit excellent oxidative thermal stability and high carbon content, suitable for dielectric, etch stop applications as spin-on material.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: February 10, 2015
    Assignee: Silecs OY
    Inventor: Jyri Paulasaari
  • Publication number: 20150038666
    Abstract: A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene having a structural unit selected from moieties represented by the following general formulae (1) to (3). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. R1 to R8 in the general formulae (1) to (3) independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: Takahiro MIYAZAKI, Kazuhiro MIURA, Tadahiro SHIBA
  • Publication number: 20140374887
    Abstract: There is provided a composition for forming a passivation film that satisfies electric insulation, heat-tolerance, solvent-tolerance, and a dry etch back property at the same time.
    Type: Application
    Filed: February 8, 2013
    Publication date: December 25, 2014
    Applicant: NISSAN CHEMICAL IMDUSTRIES, LTD.
    Inventors: Mamoru Tamura, Hiroshi Ogino, Tomoyuki Enomoto
  • Patent number: 8916672
    Abstract: The present disclosure relates to a transparent polyarylene ether polymer with high heat resistance and a method for preparing the same. More particularly, the present disclosure relates to a polyarylene ether polymer and a method for preparing the same, wherein the polyarylene ether polymer has a repeating structure in which cardo-type aromatic diols having a large molecular volume, polyether sulfones which are amorphous polymers having a high glass transition temperature and superior film formability, and polyether ketones which are crystalline polymers having superior heat resistance and mechanical properties are sequentially arranged. The polyarylene ether polymer is both transparent and heat resistant and, thus, can be used, for example, for a flexible plastic substrate.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 23, 2014
    Assignee: ICUF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Yang Kyoo Han, Gyoung Pyo Kong, Moon Ki Kim, Bo Ra Hong, Hyun Aee Chun
  • Patent number: 8916674
    Abstract: A method for preparing series of terpolymer of poly (diphenyl ether sulfone) and poly (diphenyl ether diphenyl sulfone) comprises: adding high temperature organic solvent, stirring and heating; sequentially adding 4,4?-dihydroxydiphenyl, 4,4?-dichlorodiphenyl sulfone and 4,4?-Bis(4-chlorophenyl)sulfonyl-1,1?-biphenyl; after all the monomers are completely dissolved, heating to 100° C. and adding alkali metal carbonate salt-forming agent which is 5-10 mol % more than the amount of 4,4?-dihydroxydiphenyl added, and subsequently adding xylene; continuously heating and salt-forming reaction begins in the system, and controlling the temperature at 190˜210° C.; then heating to 230˜236° C., and maintaining for 3-4 hours to obtain polymer viscous liquid; and refining the polymer viscous liquid to obtain a terpolymer containing different structural units in the molecular chain, wherein the Tg of the terpolymer can be regulated by changing the ratio of the two dichloro-containing monomers.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 23, 2014
    Assignee: Kingfa Sci & Tech Co., Ltd.
    Inventors: Zhongwen Wu, Rongtang Ma, Xiangbin Zeng
  • Publication number: 20140357829
    Abstract: The invention provides a novel platform for minimal- or non-flammable polymers, which is based purely on hydrocarbon systems and does not need additives of any kind A key feature is that the hydrocarbons disclosed herein are characterized by degradation mechanisms that produce few flammable volatiles. For example, 2,4,4?,6-tetrahydroxydeoxybenzoin is employed as a multifunctional cross-linker in conjunction with bis-epoxydeoxybenzoin, affording new resins that combine excellent physical and mechanical properties with low flammability.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 4, 2014
    Inventors: Todd Emrick, Justin Timmons, Megan Warner Szyndler
  • Patent number: 8889817
    Abstract: Triazine polymer comprising at least a plurality of base structural units comprising at least a moiety corresponding to the formula: in which: the symbols X1 and X2, which are identical or different, represent S, SO, or SO2; the symbols Ar1 and Ar2, which are identical or different, represent a substituted or unsubstituted phenylene group; the symbol Ar3 represents a substituted or unsubstituted phenyl group; the symbol Tz represents the 1,3,5-triazine nucleus. This polymer of the invention, which can be used as electrolyte in a PEM fuel cell, makes it possible to obtain membranes of high chemical and dimensional stability which additionally exhibit a high ion conductivity.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: November 18, 2014
    Assignees: Compagnie Generale des Etablissements Michelin, Michelin Recherche et Technique S.A.
    Inventors: Milan Fedurco, Antonio Delfino
  • Patent number: 8859185
    Abstract: A resist underlayer film-forming composition includes a polymer including a repeating unit shown by a formula (1), and having a polystyrene-reduced weight average molecular weight of 3000 to 10,000, and a solvent. Each of R3 to R8 individually represent a group shown by the following formula (2) or the like. R1 represents a single bond or the like. R2 represents a hydrogen atom or the like.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: October 14, 2014
    Assignee: JSR Corporation
    Inventors: Shin-ya Minegishi, Yushi Matsumura, Shinya Nakafuji, Kazuhiko Komura, Takanori Nakano, Satoru Murakami, Kyoyu Yasuda, Makoto Sugiura
  • Publication number: 20140265015
    Abstract: A method for preparing bones of cerebral cranium, including: a) selecting polyetheretherketone (PEEK) as a raw material according to data obtained by computed tomography (CT) of a patient; b) heating the PEEK material in a heating device to reach a softening point of 260°±10°; c) hot pressing the heated PEEK material obtained in step b) in a forming die, cooling and shaping the PEEK material to yield a blank; d) curing the blank, and placing the blank in a thermostat for removal of internal stress and resilience; e) removing surface crystals and impurities of the blank resulting from the hot pressing; f) mechanically processing the blank according to the CT data of the patient to yield a product having desired size and shape; and g) washing, disinfecting, and packaging the product.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: WUHAN CONSTANT SCIENCE AND TECHNOLOGY LTD.
    Inventor: Dengfeng HUANG
  • Publication number: 20140275324
    Abstract: Photoactive additives are disclosed. The additive is formed from the reaction of a dihydroxybenzophenone, one or more linker moieties having functional groups that react with the phenolic groups, a diol chain extender, and an end-capping agent. If desired, a secondary linker moiety can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Jean-Francois Morizur, Paul Dean Sybert
  • Patent number: 8829060
    Abstract: A membrane comprising a blend of a sulfonated poly(aryl ether) and a phenol compound along with methods for making and using the same. Many additional embodiments are described including applications for such membranes.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 9, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: William E. Mickols, John C. McKeen
  • Publication number: 20140246400
    Abstract: A resin having a fluorene structure, a relatively high carbon concentration in the resin, a relatively high heat resistance and a relatively high solvent solubility has a structure represented by wherein each of R3 and R4 independently denotes a benzene ring or a naphthalene ring, a carbon atom at the bridgehead of a fluorene backbone or (di)benzofluorene backbone is bonded with a carbon atom of each of other aromatic rings, and a carbon atom of each of aromatic rings of a fluorene backbone or (di)benzofluorene backbone is bonded with a carbon atom at the bridgehead of other fluorene backbone or (di)benzofluorene backbone. The resin can be applied to a wet process. Methods for producing the resin, for forming an underlayer film useful for forming a novel resist, and for pattern forming using the material, and an underlayer film excellent in heat resistance and etching resistance for multilayer resist are described.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 4, 2014
    Applicant: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Go Higashihara, Naoya Uchiyama, Masatoshi Echigo
  • Patent number: 8816038
    Abstract: Disclosed is a polymer which is useful for the preparation of an epoxy resin composition or a cured product thereof in film or sheet exhibiting high heat resistance, high thermal conductivity, low thermal expansion, high gas barrier property, and high toughness. The polymer is a thermoplastic aromatic ether polymer comprising a unit represented by the following general formula (1) at a ratio of 10 to 100 mol % and having a weight average molecular weight of 3,000 or more; in formula (1), X is an oxygen atom or a sulfur atom, R1 and R2 each is a hydrogen atom, an alkyl group of 1 to 8 carbon atoms, an aryl group, an alkoxy group, an aralkyl group, or a halogen atom, and n is a number of 1 to 3.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 26, 2014
    Assignee: Nippon Steel & Sumikin Chemical Co., Ltd.
    Inventors: Masashi Kaji, Koichiro Ogami
  • Publication number: 20140235787
    Abstract: Polymers comprising polyetheretheretherketone and polyetherdiphenyletherketone and polymers comprising polyetheretheretherketone and polyetheretherethersulphone are described which have advantageous Tn and/or Tg properties.
    Type: Application
    Filed: October 10, 2012
    Publication date: August 21, 2014
    Inventors: Carlo Capra, Christoper Peter Tyler, Brian Wilson
  • Publication number: 20140227887
    Abstract: A phenolic self-crosslinking polymer whose self-crosslinking reaction at a heating step is performed without additives for hardening the polymer, and a composition of resist-underlayer-film containing the same, are disclosed.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 14, 2014
    Inventors: Jeong-Sik Kim, Jae-Hyun Kim, Jae-Woo Lee