Compound Or Reaction Product Mixture Patents (Class 585/16)
  • Patent number: 11680121
    Abstract: A process for making a poly alpha-olefin (PAO) having a relatively high vinylidene content (or combined vinylidene and tri-substituted vinylene content) and a relatively low vinyl and/or di-substituted vinylene content, as well as a relatively low molecular weight. The process includes: contacting a feed containing a C2-C32 alpha-olefin with a catalyst system comprising activator and a bis-cyclopentadienyl metallocene compound, typically a cyclopentadienyl-benzindenyl group 4 transition metal compound.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: June 20, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jian Yang, Jo Ann M. Canich, Hua Zhou, Jennifer L. Rapp
  • Patent number: 11673130
    Abstract: The present invention relates to a catalyst system containing a metathesis catalyst containing at least one N-heterocyclic carbene ligand and at least one phenolic compound and to a process for performing the metathesis on nitrile rubbers for reducing their molecular weight using a metathesis catalyst containing at least one N-heterocyclic carbene ligand (NHC ligand) and at least one phenolic compound.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 13, 2023
    Assignee: ARLANXEO DEUTSCHLAND GMBH
    Inventors: Karola Schneiders, Karsten Knebel, Volker Wege, Jurgen Kirsch
  • Patent number: 11525020
    Abstract: The present disclosure generally relates to processes to produce alpha-olefin oligomers and poly alpha-olefins. In an embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin and a first catalyst system comprising a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes PAO dimer comprising at least 96 mol % of vinylidene and 4 mol % or less of trisubstituted vinylene and disubstituted vinylene, based on total moles of vinylidene, trisubstituted vinylene, and disubstituted vinylene. The method includes introducing the first reactor effluent, a second alpha-olefin and a second catalyst composition comprising an acid catalyst into a second reactor under second reactor conditions to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 13, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Monica D. Lotz, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Patent number: 11518864
    Abstract: There is described a microwave pyrolysis process for the depolymerization of plastic for the production of monomers, waxes and heavy oils including the steps of: a) steam purge of the plastic from about 0.5% to about 50% w/w of a catalyst, in a media; b) pyrolysis of the plastic and the catalyst in the media with a microwave (MW) for a time sufficient to allow generation of heat providing a thermal treatment between 300° C. and 650° C. through absorption of microwaves by the catalyst and the media. The catalyst includes a compound having a high dielectric loss at the frequency of the MW to absorb microwaves, transfer heat to the plastic and initiate a pyrolysis reaction.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 6, 2022
    Assignee: Pyrowave Inc.
    Inventors: Jocelyn Doucet, Jean-Philippe Laviolette
  • Patent number: 11505626
    Abstract: This invention relates to novel and improved catalyst and catalysts systems for the oligomerization of the higher olefins, which produce lubricants having improved properties, such as end-saturated oligomer chains which are needless to hydrogenation process, low kinematic viscosity and/or high viscosity index, low pour point, and high flash point lubricants.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 22, 2022
    Assignees: IRAN POLYMER AND PETROCHEMICAL INSTITUTE, UNIVERSITAT DE GIRONA
    Inventors: Ahad Hanifpour, Naeimeh Bahri-Laleh, Mehdi Nekoomanesh, Albert Poater
  • Patent number: 11466219
    Abstract: A process is disclosed for increasing gasoline and middle distillate selectivity in catalytic cracking. A process can include co-processing at least pyrolysis liquid and a distillation residue from tall oil distillation in a catalytic cracking process in a presence of a solid catalyst to provide a cracking product.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 11, 2022
    Assignee: NESTE OYJ
    Inventors: Ville Paasikallio, Blanka Toukoniitty, Jukka-Pekka Pasanen
  • Patent number: 11414609
    Abstract: A system that includes a feedstock of a non-petroleum or renewable feedstock containing oxygen and contaminants of one or more of metals, gums, and resins that is introduced into the reactor at a flow velocity of from 20 ft/sec to 100 ft/sec. The feedstock is heated within the reactor to a temperature of from 700° F. to 1100° F. to remove and/or reduce the content of one or more of gums and resins in the fats and/or oils of the feedstock. The system further includes a reactor product that is formed in the reactor from the feedstock that has the one or more of gums and resins in the fats and/or oils of the feedstock removed and/or reduced and a heat exchanger to cool the reactor product. A separator unit separates and removes non-condensable gases, metals and water from the cooled reactor product. A final product of the system is separated from the non-condensable gases, metals and water from the cooled reactor product.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: August 16, 2022
    Assignee: Duke Technologies, LLC
    Inventors: Michael D. Ackerson, Michael Steven Byars, Kyle Ackerson, John Coleman
  • Patent number: 11306237
    Abstract: A latent-heat storage material composition includes: a latent-heat storage material for storing or releasing heat by utilizing absorption or release of latent heat in association with phase change; and additives mixed with the latent-heat storage material. The additives can adjust a property of the latent-heat storage material. The additives include a first additive, which is a water-soluble substance belonging to polysaccharides and is gellan gum, which is also a thickener for increasing the viscosity of a melt of the latent-heat storage material composition in a liquid phase state, based on interaction of the thickener with water contained in the latent-heat storage material composition and cations. The content of the gellan gum is 1 wt % or less of the weight of the whole latent-heat storage material composition.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: April 19, 2022
    Assignee: TOHO GAS CO., LTD.
    Inventors: Kohei Nakamura, Takashi Ina
  • Patent number: 11268121
    Abstract: A mutant carotenoidogenic bacterium, comprising any of genes (a)-(c) below: (a) a gene encoding a protein comprising a mutant amino acid sequence in which at least the 225th amino acid residue in the amino acid sequence of 1-deoxy-D-xylulose 5-phosphate synthase of a carotenoidogenic bacterium has been substituted with other amino acid residue; (b) a gene encoding a protein comprising a mutant amino acid sequence in which at least the 305th amino acid residue in the amino acid sequence of decaprenyl diphosphate synthase of a carotenoidogenic bacterium has been substituted with other amino acid residue; and (c) both of the genes (a) and (b) above.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 8, 2022
    Assignee: ENEOS CORPORATION
    Inventors: Hidetada Nagai, Wataru Sato, Toshiyuki Takahashi, Harumi Sato
  • Patent number: 10981846
    Abstract: A method for making a fuel includes reacting a conjugated diene or a mixture of conjugated dienes with a catalyst selected from the group consisting of a low valent iron catalyst stabilized with a pyridineimine ligand, an iron precatalyst coordinated to the pyridineimine ligand that is activated with a reducing agent, a low oxidation state Fe complex stabilized with a pyridineimine ligand and a coordinating ligand, and combinations thereof, thereby forming a substituted cyclooctadiene. The substituted cyclooctadiene is then hydrogenated, thereby forming cyclooctane fuel.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 20, 2021
    Assignees: The United States of America, as Represented by the Secretary of the Navy, The Trustees of Princeton University
    Inventors: Benjamin G. Harvey, Kyle E. Rosenkoetter, Paul Chirik, C. Rose Kennedy
  • Patent number: 10913958
    Abstract: The invention provides a method for producing a terpene or a precursor thereof by microbial fermentation. Typically, the method involves culturing a recombinant bacterium in the presence of a gaseous substrate whereby the bacterium produces a terpene or a precursor thereof, such as mevalonic acid, isopentenyl pyrophosphate, dimethylallyl pyrophosphate, isoprene, geranyl pyrophosphate, farnesyl pyrophosphate, and/or farnesene. The bacterium may comprise one or more exogenous enzymes, such as enzymes in mevalonate, DXS, or terpene biosynthesis pathways.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: February 9, 2021
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventor: Michael Koepke
  • Patent number: 10888854
    Abstract: Catalytic compositions comprising permethylpentalene based metallocene complexes supported on solid methylaluminoxane are disclosed. The compositions are effective catalysts/initiators in the polymerisation of olefins. Also disclosed are uses of the compositions in olefin polymerisation.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 12, 2021
    Assignee: Oxford University Innovation Limited
    Inventors: Dermot O'Hare, Jean-Charles Buffet, Zoe Turner, Duncan Fraser
  • Patent number: 10752562
    Abstract: The present invention relates generally to methods for producing renewable detergent compounds. More specifically, the invention relates to methods for producing detergent intermediates, including bio-linear alkylbenzene (LAB), bio-alcohols, and long chain bio-paraffins, from natural oils.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: August 25, 2020
    Assignee: The Procter & Gamble Company
    Inventors: Jeffrey John Scheibel, Scott Leroy Cron, Stephen Anthony Derose, Ryan Michael West, Phillip Kyle Vinson, Thomas Earl Williams, Kevin Lee Garber, Praveen Kumar Depa
  • Patent number: 10351782
    Abstract: A single step catalytic process for the preparation of aromatic rich aviation fuel from renewable resource in the presence of a hydrogen stream, and one or more hydroprocessing catalysts, under operating conditions for hydroconversion reactions, as defined herein, with mixed hot and cold streams of the renewable feed and getting desired product after separation of water, lighter hydrocarbon gases and carbon oxides, the said product comprising of hydrocarbons C6-C24, rich in aromatic content in the aviation fuel range, including kerosene range.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 16, 2019
    Assignee: COUNCIL OF SCIENTIFIC AND INDUSTRIAL
    Inventors: Anil Kumar Sinha, Mohit Anand, Saleem Akhtar Farooqui, Rakesh Kumar, Rakesh Kumar Joshi, Rohit Kumar, Tasleem Khan, Parvez Alam
  • Patent number: 10287174
    Abstract: A method for revamping a front-end of an ammonia plant, said front-end comprising a reforming section (1, 2) with air-fired secondary reformer or autothermal reformer (2), a treatment section (3) of the effluent from said reforming section, and an air feed compressor (6), wherein an O2-containing stream (8) is directed to said reforming section (2) for use as oxidant, at least one nitrogen stream (9) is introduced at a suitable location of the front-end, to provide a desired molar ratio between hydrogen and nitrogen in the product gas, and at least part of said nitrogen stream (9) is compressed via said feed compressor (6).
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 14, 2019
    Assignee: Casale SA
    Inventors: Ermanno Filippi, Raffaele Ostuni
  • Patent number: 10246652
    Abstract: A process for the continuous dearomatization of a petroleum cut to produce a hydrocarbon-containing fluid with a very low sulphur content and very low aromatic compounds content, includes at least one stage of catalytic hydrogenation at a temperature between 80 and 180° C. and at a pressure between 50 and 160 bar. The stage of catalytic hydrogenation of the dearomatization process comprises several interchangeable reactors linked in series.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 2, 2019
    Assignee: Total Marketing Services
    Inventors: Xavier Chouan, Patrick Vedrine
  • Patent number: 10150055
    Abstract: Method for the processing of a mixture of organic compounds, in particular of an oil, in order to recover different constituents therefrom. This method makes it possible to separate a fraction of iso-alkanes and cycloalkanes from a sample of a mixture of organic compounds, said method comprising a separation step by liquid chromatography.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: December 11, 2018
    Assignee: Total SA
    Inventors: Coralie Serres Piole, Jean-Bernard Berrut
  • Patent number: 10080980
    Abstract: Method for separating the diamondoids by liquid chromatography from a sample of iso-alkanes and cycloalkanes, or from a mixture of organic compounds, this method comprising introducing the sample into a column comprising a stationary phase comprising a material capable of forming inclusion complexes with the diamondoids, eluting with an eluent, and collecting the eluted fraction.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: September 25, 2018
    Assignee: TOTAL SA
    Inventors: Coralie Serres Piole, Jean-Bernard Berrut
  • Patent number: 10053539
    Abstract: A composition comprises a compound comprising a partial structure represented by formula (1) and comprising an intermolecular bond-forming group; and a solvent. X1 and X2 each independently represent a substituted or unsubstituted ring structure having 4 to 10 ring atoms constituted taken together with a spiro carbon atom and carbon atoms of an aromatic ring. R1 and R2 each independently represent a halogen atom, a hydroxy group, a nitro group or a monovalent organic group. a1 and a2 are each independently an integer of 0 to 8. n1 and n2 are each independently an integer of 0 to 2; k1 and k2 are each independently an integer of 0 to 8. A sum of k1 and k2 is no less than 1, and a sum of a1 and k1. A sum of a2 and k2 are no greater than 8.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: August 21, 2018
    Assignee: JSR Corporation
    Inventors: Shin-ya Nakafuji, Goji Wakamatsu, Tsubasa Abe, Kazunori Sakai
  • Patent number: 10005972
    Abstract: Disclosed are processes for forming an oligomer product by contacting a feedstock olefin containing trisubstituted olefins with a solid acid catalyst. The oligomer product can be formed at an oligomerization temperature in a range from ?20° C. to 40° C. Polyalphaolefins produced from the oligomer product can have reduced viscosities at low temperatures.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: June 26, 2018
    Assignee: Chevron Phillips Chemical Company
    Inventors: Hu Yang, Kenneth D. Hope, Jeff C. Gee
  • Patent number: 9914071
    Abstract: The present disclosure generally relates to systems for isolating and/or purifying byproducts of anaerobic fermentation processes, and methods of using same. In one embodiment, gas compositions comprising conjugated diolefins (e.g., 1,3-biobutadiene and/or isoprene) and various amounts of impurities (e.g., water vapor from fermentation media, carbon dioxide from microbe respiration, and organic bio-byproducts such as propanol) are produced in a fermentation process. In some embodiments, the system includes one or more compressors and/or one or more distillers suitable for low-temperature separation of the conjugated olefin(s) from a substantial amount of the impurities in the gas composition.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: March 13, 2018
    Assignee: Braskem S.A.
    Inventors: Luiz Felipe de Souza Tavares, Bruno Maia Moreira, Roberto Werneck Do Carmo, Paulo Luiz de Andrade Coutinho
  • Patent number: 9688919
    Abstract: The present invention relates to process for producing hydrocarbons, wherein starting material comprising tall oil material and polar co-feed, which polar co-feed comprises fatty acids, is diluted with a non-polar diluent to obtain feedstock, and said feedstock is catalytically hydroprocessed to obtain hydrocarbons, suitable as fuels, fuel blending components and fuel additives.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: June 27, 2017
    Assignee: UPM-KYMMENE CORPORATION
    Inventors: Kati Vilonen, Isto Eilos, Jari Kotoneva, Jaakko Nousiainen
  • Patent number: 9682897
    Abstract: A method for the efficient synthesis of useful deoxygenated terpenoids from an abundant renewable source, using catalytic conversion of oxygenated terpenoids. Oxygenated terpenoids such as 1,4-cineole and 1,8-cineole are, for example, major components of turpentine and essential oils. These oxygenated terpenoids can also be produced from sugars via a biosynthetic approach. Catalytic deoxygenation of these substrates can be used to efficiently generate commercially important chemicals and high density fuels for turbine or diesel propulsion.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: June 20, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 9206095
    Abstract: The present invention relates to a low viscosity lubricant process, product, and composition characterized by low Noack volatility, low pour point, useful low temperature viscometrics, and high viscosity index and more particularly concerns a PAO composition having a kinetic viscosity at 100° C. in the range of about 4 cSt.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 8, 2015
    Assignee: INEOS USA LLC
    Inventors: Vahid Bagheri, Lionel D. Moore, Peter M. DiGiacinto, Michel Sanchezrivas
  • Patent number: 9162886
    Abstract: The invention relates to a process for the production of synthesis gas by the use of autothermal reforming in which tail gas from downstream Fischer-Tropsh synthesis is hydrogenated and then added to the autothermal reforming stage.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: October 20, 2015
    Assignee: Haldor Topsoe A/S
    Inventors: Kim Aasberg-Petersen, Peter Seier Christensen, Thomas Sandahl Christensen
  • Publication number: 20150147288
    Abstract: The invention generally relates to environmental friendly pesticide compounds, formulations, methods of preparation and application and utilities thereof. More particularly, the invention relates to pesticide compounds and formulations that include terpenes or terpenoids having chemical formula of (C5H8)n, and its derivatives and analogs thereof, as active insecticidal ingredients; certain botanical essential oils as synergists, and other select ingredients as additives.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventor: Tao Zhong
  • Publication number: 20150148573
    Abstract: The invention relates to a synthetic hydrocarbon fuel composition, and a process for making such a fuel composition, in which the fuel composition has the following properties: a) a boiling point distribution having (i) a 10% recovery of 205° C. or less and (ii) an end point of 300° C. or less; b) a freezing point of ?47° C. or less; and c) a density at 15° C. of at least 775 kg/m3. A process for producing the fuel composition comprises the oligomerisation of olefins over an oligomerisation catalyst.
    Type: Application
    Filed: May 21, 2013
    Publication date: May 28, 2015
    Applicant: IGTL TECHNOLOGY LTD
    Inventors: Richard Hyman, Alfred Ecker
  • Publication number: 20150141714
    Abstract: The disclosed invention provides methods and compositions for increasing terpenoid production, such as sesquiterpenoids, such as farnesene, in plant cells.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 21, 2015
    Inventors: Joshua Blakeslee, Katrina Cornish, Oswald Crasta, Otto Folkerts, Dave Jessen, Ramesh Nair
  • Publication number: 20150126787
    Abstract: The present invention is directed to renewable compositions derived from fermentation of biomass, and integrated methods of preparing such compositions.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 7, 2015
    Applicant: Gevo, Inc.
    Inventors: Patrick R. Gruber, Matthew W. Peters, Josefa M. Griffith, Yasin Al Obaidi, Leo E. Manzer, Joshua D. Taylor, David E. Henton
  • Publication number: 20150119612
    Abstract: For an n-component mixture (n?3), an array of new distillation columns is disclosed with vertical partitions that allow independent control of the vapor flowrates in each partitioned zone, while operating the columns to produce constituent product streams. Specifically, all such more operable columns with vertical partitions for ternary and quaternary feed mixtures are illustrated. For a ternary feed, through extensive computation, the minimum heat duty for each of the new columns is same as for the FTC configuration. The new columns with vertical partitions become even more attractive when the vapor split between column sections must be controlled within a narrow range. Finally, it is disclosed how a new column with vertical partition(s) drawn for an n-component mixture can be adapted to distil feed mixtures that contain more than n-components.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Rakesh Agrawal, Gautham Madenoor Ramapriya
  • Patent number: 9012710
    Abstract: Fuel compositions containing an isomerized component of a single carbon number may contain at least 97 wt. %, based on the total weight of the fuel composition, of an isomerized component consisting of aliphatic paraffin isomers all having the formula CnH2n+2, where 10?n?22 and n has the same value for each aliphatic paraffin isomer in the isomerized component. The fuel compositions have a normal alkane content of less than 10 wt. %, based on the total weight of the fuel composition. Methods for preparing the fuel compositions include hydroisomerizing a normal alkane starting material to form an isomerized mixture and subsequently removing remnant normal alkanes from the isomerized mixture by solvent dewaxing and/or distillation. Some of the fuel compositions may have freezing points at or below ?47° C., making them amenable for use a surrogate fuels in the place of JP-8.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: April 21, 2015
    Assignee: University of Dayton
    Inventors: Heinz J. Robota, Jhoanna C. Alger
  • Publication number: 20150087139
    Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, the precursor comprises a compound represented by one of following Formulae A through E below: In one particular embodiment, the organoaminosilane precursors are effective for a low temperature (e.g., 350° C. or less), atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) of a silicon-containing film. In addition, described herein is a composition comprising an organoaminosilane described herein wherein the organoaminosilane is substantially free of at least one selected from the amines, halides (e.g., Cl, F, I, Br), higher molecular weight species, and trace metals.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 26, 2015
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Mark Leonard O'Neill, Manchao Xiao, Xinjian Lei, Richard Ho, Haripin Chandra, Matthew R. MacDonald, Meiliang Wang
  • Publication number: 20150087031
    Abstract: The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 26, 2015
    Inventors: Robert Jansen, Claire Gregoire, philip Travisano, Lee Madsen, Neta Matis, Yael Har-Tal, Shay Eliahu, James Alan Lawson, Noa Lapidot, Luke Burke, Aharon M. Eyal, Timothy Allen Bauer, Hagit Sade, Paul Mcwilliams, Ziv-Vladimir Belman, Bassem Hallac, Michael Zviely, Yelena Gershinksy, Adam Carden
  • Publication number: 20150075238
    Abstract: (EN)The invention relates to the preparation of doped plant complexes by a process of fermenting a compost CP in particular of straw and of horse manure fermented for 3-6 days, with coverage by a special carbonated plant complex CVC. A doped or overdoped plant complex is obtained that has a very high concentration in particular of humic acid nuclei, mycorrhizae, and fixed gases (nitrogen, carbon), having an extremely improved biological activity with an application in the improvement of methanization, up to 200-350%.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 19, 2015
    Inventor: Marcel Léon MEZY
  • Publication number: 20150068113
    Abstract: There is provided an apparatus (1) and methods for processing biomass to produce charcoal, bio-oil(s) activated carbon, recarburiser carbon, or nut coke by means of microwave energy. The apparatus has a rotatable tube (5) for receiving biomass (108), an electromagnetic generator (7). One method provides applying electromagnetic energy to the biomass (108) and an absorbing material (109). An alternative method provides allowing an indirect, black body radiation field to develop, and exposing the biomass (108) to the black body radiation field and the electromagnetic energy. Another method provides allowing plasma to form and exposing the biomass to the plasma and the electromagnetic energy. Another method provides introducing the biomass to a second container (205), introducing the second container to a first reaction container (5), applying electromagnetic energy to the biomass and an absorbing material (109), allowing a plasma to form in the first container, which heats the biomass in the second container.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 12, 2015
    Inventors: Gregory Thomas Conner, Forrest John Tyrrell-Baxter
  • Publication number: 20150072298
    Abstract: The invention provides a process for the production of a fully synthetic heavy fuel oil, said process including at least fractionation of hydrocarbons obtained from the hydroconversion of C5 and heavier Fischer-Tropsch (FT) process products to obtain a product that is heavier than a middle distillate and has an ASTM D86 cut-off temperature in excess of 350° C. Further, the invention provides a fuel made in accordance with the process.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 12, 2015
    Inventors: Luis Pablo Fidel Dancuart Kohler, Paulus Stephanus Gravett, Jacques Van Heerden
  • Patent number: 8975457
    Abstract: Described herein are methods for producing fuels and solvents from fatty acid resources. In general, the pyrolysis products of fatty acids are extracted in order to remove residual fatty acids and produce very pure hydrocarbon compositions composed of alkanes and alkenes. The fatty acids removed from the extraction step can be further pyrolyzed to produce additional hydrocarbons or, in the alternative, the fatty acids can be isolated and used in other applications. Also disclosed herein are fuels and solvents produced by the methods described herein.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 10, 2015
    Assignee: The Governors of the University of Alberta
    Inventor: David Bressler
  • Publication number: 20150064092
    Abstract: Methods of producing fibrous solid carbon forests include reacting carbon oxides with gaseous reducing agents in the presence of a catalyst having a predetermined grain size to cause growth of fibrous solid carbon forests upon a surface of the metal. The fibrous solid carbon forests are substantially perpendicular to the surface of the metal thus creating the “forests”. A bi-modal forest composition of matter is described in which a primary distribution of fibrous solid carbon comprises the forest and a secondary distribution of fibrous solid carbon is entangled with the primary distribution. A reactor includes a catalyst, a means for facilitating the reduction of a carbon oxide to form solid carbon forests on a surface of the catalyst, and a means for removing the solid carbon forest from the surface of the metal catalyst.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Applicant: SEERSTONE LLC
    Inventor: Dallas B. Noyes
  • Publication number: 20150065762
    Abstract: Methods and apparatus for producing bio-oil that include providing a catalyst that includes red mud in a catalyst bed in a fluid state, the catalyst being maintained at a temperature suitable for pyrolysis; providing a flow of a non-reactive fluid into the catalyst bed; entraining a biomass that includes olive mill waste in the flow of non-reactive fluid, so that the biomass is delivered to the catalyst bed; pyrolyzing the biomass; collecting gases and vapors that result from pyrolysis; and condensing the gases and vapors into bio-oil.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Inventors: Foster Agblevor, Kamel Halouani
  • Publication number: 20150059354
    Abstract: A process for upgrading pyrolysis oil that includes heating pyrolysis oil in the absence of added catalyst at 100° C. to 200° C. temperature and 50 bar to 250 bar pressure, and heating the product of the first heating in the absence of added catalyst at 200° C. to 400° C. temperature and 50 bar to 250 bar pressure. Also, the product obtained by this process and the use of treated pyrolysis oil. Further, methods where the treated pyrolysis oil is fed to a power plant for producing electricity; is burned in a boiler for producing heating oil and/or is used as transportation fuel or as a blending component in transportation fuel.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 5, 2015
    Applicant: UPM-KYMMENE CORPORATION
    Inventors: Andrea Gutierrez, Pekka Jokela, Jaakko Nousiainen
  • Publication number: 20150065761
    Abstract: Provided is a hydrotreating step (A) containing a hydroisomerization step (A1) that obtains a hydroisomerized oil (a1) by bringing a FT synthesis oil into contact with a hydroisomerization catalyst and/or a hydrocracking step (A2) that obtains a hydrocracked oil (a2) by bringing it into contact with a hydrocracking catalyst, and a fractionation step (B) that transfers at least a portion of the hydrotreated oil (a) composed of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) to a fractionator and, at the very least, obtains a middle distillate (b1) with a 5% distillation point of 130 to 170° C. and a 95% distillation point of 240 to 300° C., and a heavy oil (b2) that is heavier than the middle distillate (b1).
    Type: Application
    Filed: March 27, 2013
    Publication date: March 5, 2015
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Takuya Niitsuma, Marie Iwama
  • Publication number: 20150057474
    Abstract: A process for catalytically converting crude tall oil into hydrocarbons suitable as biofuel components. The crude tall oil is treated in a reactor system including a catalytically active guard bed phase and a catalytically active main reaction phase. At least one of the phases includes a catalyst bed with a combination of hydrodeoxygenating (HDO) and hydrodewaxing (HDW) catalysts. The process provides biofuel with acceptable ignition and cold flow properties.
    Type: Application
    Filed: April 17, 2013
    Publication date: February 26, 2015
    Applicant: UPM-KYMMENE CORPORATION
    Inventors: Jaakko Nousiainen, Arto Rissanen, Andrea Gutierrez, Teemu Lindberg, Heli Laumola, Pekka Knuuttila
  • Publication number: 20150052807
    Abstract: The present invention relates to a process for the purification of biological feed material and to a process for catalytically converting the purified biological feed material into hydrocarbons suitable as biofuel components. The purified feed material is treated in a reactor system including a catalytically active guard bed phase and a catalytically active main reaction phase. At least one of the phases includes a catalyst bed with a combination of hydrodeoxygenating (HDO) and hydrodewaxing (HDW) catalysts. The process provides biofuel with acceptable ignition and cold flow properties.
    Type: Application
    Filed: April 17, 2013
    Publication date: February 26, 2015
    Applicant: UPM-KYMMENE CORPORATION
    Inventors: Jaakko Nousiainen, Jari Kotoneva, Heli Laumola, Teemu Lindberg, Kosti Mokkila
  • Patent number: 8962899
    Abstract: Provided is a lubricant for metal working comprising a vinylidene compound having 12 to 64 carbon atoms obtained by oligomerizing ?-olefins, having 4 to 20 carbon atoms, using a metallocene catalyst. The lubricant for metal working is excellent in a workability and a surface detergency property and has a high flash point and can reduce environmental pollution.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: February 24, 2015
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Fumiaki Takagi, Youichiro Jido
  • Publication number: 20150050708
    Abstract: Provided herein are non-naturally occurring microbial organisms having a formaldehyde fixation pathway and a formate assimilation pathway, which can further include a methanol metabolic pathway, a methanol oxidation pathway, a hydrogenase and/or a carbon monoxide dehydrogenase. These microbial organisms can further include a butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 19, 2015
    Applicant: Genomatica, Inc.
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20150045593
    Abstract: A jet-range hydrocarbon product includes a mixture of paraffins. The mixture exhibits a freeze point of less than or equal to about ?70° C., a 95% distillation point of greater than or equal to about 275° C., and a smooth boiling point curve that is characterized as having no intervals of the boiling point curve having a slope that is steeper than 4° C./mass % as defined by ASTM standard D2887 between mass recovered ranges of about 20% to about 80%. The steepness of the boiling point curve slope is calculated over any 10 mass % increments within the specified mass % ranges.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Stanley Joseph Frey, Geoffrey William Fichtl, Paul Barger, Scott M. Roney, Christopher P. Nicholas
  • Publication number: 20150031927
    Abstract: A fuel and method for conversion of sesquiterpenes to high density fuels. The sesquiterpenes can be either extracted from plants or specifically produced by bioengineered organisms from waste biomass. This approach allows for the synthesis of high performance renewable fuels.
    Type: Application
    Filed: November 14, 2012
    Publication date: January 29, 2015
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Publication number: 20150024277
    Abstract: An object of the present invention is to provide a carbonaceous material for a non-aqueous electrolyte secondary battery having excellent output characteristics and exhibiting excellent cycle characteristics, and a negative electrode using the same. The problem described above is solved by a carbonaceous material for a non-aqueous electrolyte battery having a true density of 1.4 to 1.7 g/cm3, an atom ratio (H/C) of hydrogen atoms to carbon atoms of at most 0.1, as determined by elemental analysis, an average particle size Dv50 of 3 to 35 ?m, a ratio Dv90/Dv10 of 1.05 to 3.00, and a degree of circularity of 0.50 to 0.95.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 22, 2015
    Inventors: Mayu Komatsu, Yasuhiro Tada, Naohiro Sonobe
  • Patent number: 8933003
    Abstract: A multifunctional, high-performance hydrocarbon composition is demanded.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 13, 2015
    Assignee: Nippon Oil Corporation
    Inventors: Junichi Shibata, Hiroshi Kametsuka, Masahiro Hata, Satoshi Suda, Masanori Ibi, Tadaaki Motoyama
  • Publication number: 20150011808
    Abstract: A method/fuels for making high-density, high-octane fuels, the high-density, high-octane including, dimerizirig terpene monomer(s), crude mixture of terpene(s), and/or oxygenated terpenoid(s) with at least one heterogeneous dimerization acid catalyst at temperatures ranging from about 25° C. to about 160° C. to produce a mixture of residual/isomerized monomer(s) cymene(s), and terpene dimer(s), hydrogenating the mixture of residual/isomerized monomer(s), p-cymene(s), and terpene dimer(s) with at least one heterogenous catalyst(s) under a hydrogen atmosphere to produce a hydrogenated mixture of cymene(s), saturated cyclic molecules of terpene(s), other aromatic(s), and/or saturated terpene dimer(s), and isolating the hydrogenated mixture of cymene(s), saturated cyclic terpene(s), other aromatic(s), and saturated terpene dimer(s) by fractional distillation to yield a high boiling fraction composed of terpene dimers and mixture low boiling fraction composed of hydrogenated monomer(s) and cymenes.
    Type: Application
    Filed: February 4, 2014
    Publication date: January 8, 2015
    Inventors: Benjamin G. Harvey, Heather A. Meylemans, Michael E. Wright