Plural Parallel Syntheses Patents (Class 585/300)
  • Patent number: 10421698
    Abstract: Systems and methods are provided for production of high octane hydrocarbon from an isoparaffin feed using oxidation acid catalysis chemistry.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: September 24, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jihad M. Dakka, Matthew S. Ide, David B. Spry, Sumod Kalakkunnath, Guang Cao, Patrick L. Hanks, Cynthia F. Omilian
  • Patent number: 10059639
    Abstract: A process, comprising: providing an olefin feed comprising pentenes, butenes, and isopentane; and alkylating the olefin feed with isobutane using an acidic ionic liquid catalyst; wherein less than 5 mol % of C5 olefins in the olefin feed are converted to isopentane, and the alkylate gasoline has defined final boiling points and high RONs. A process comprising: alkylating an olefin feed comprising pentenes and isopentane, with isobutane using an acidic ionic liquid catalyst; wherein less than 5 mol % of C5 olefins in the olefin feed are converted to isopentane; and wherein an n-pentane product yield is low. An alkylate gasoline, comprising less than 0.1 wt % olefins and aromatics, less than 1.8 wt % C12+hydrocarbons, and greater than 60 wt % combined C8 and C9 hydrocarbons, wherein the trimethylpentane in the C8 hydrocarbons and the trimethylhexane in the C9 hydrocarbons are defined.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: August 28, 2018
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Cho Timken, Bong-Kyu Chang, Sven Ivar Hommeltoft
  • Patent number: 9862654
    Abstract: A method for producing xylene from feedstock oil includes a cracking/reforming reaction step of bringing the feedstock oil into contact with a catalyst to produce monocyclic aromatic hydrocarbons; a separation/recovery step of separating and recovering, from a product obtained by the cracking/reforming reaction step, a fraction A containing monocyclic aromatic hydrocarbons having a 10 vol % distillation temperature of 75° C. or higher and a 90 vol % distillation temperature of 140° C. or lower, a xylene fraction containing xylene, and a fraction B containing monocyclic aromatic hydrocarbons having a 10 vol % distillation temperature of 145° C. or higher and a 90 vol % distillation temperature of 215° C. or lower; and a xylene conversion step of bringing a mixed fraction obtained by mixing the fractions A and B with each other into contact with a catalyst containing a solid acid to convert the mixed fraction into xylene.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: January 9, 2018
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yuichiro Fujiyama, Yasuyuki Iwasa, Ryoji Ida, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Akira Utatsu
  • Publication number: 20150137043
    Abstract: A method of processing a coal feed to produce aromatic hydrocarbon compounds includes providing a coal tar stream and converting the coal tar stream to a conversion product comprising at least olefins, paraffins, and aromatics. The process further includes separating the olefins and C5? paraffins from the conversion product, and contacting the separated olefins and the C5? paraffins with a catalyst to dehydrogenize, oligomerize, and cyclize the olefins and the C5? paraffins, to form aromatic hydrocarbon compounds.
    Type: Application
    Filed: August 26, 2014
    Publication date: May 21, 2015
    Inventors: John Q. Chen, Peter K. Coughlin, Stanley J. Frey, James A. Johnson, Vasant P. Thakkar
  • Patent number: 9035118
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 19, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 9029618
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 12, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Patent number: 9024098
    Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
  • Patent number: 9024099
    Abstract: A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark D. Moser, Kurt M. VandenBussche, David A. Wegerer, Gregory J. Gajda
  • Patent number: 9024097
    Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20150073186
    Abstract: A hydrotreater reactor device includes a reactor chamber including a first bed and a second bed. A first input is disposed to provide a hydrocarbon stream to the first bed and a second input is disposed to bypass the first bed and provide a hydrocarbon stream to the second bed. A differential temperature controller measures a temperature difference across the first bed. A control valve at the second input adjusts an amount of the hydrocarbon stream admitted through the second input based on the measured temperature difference. A charge heater provides a hydrocarbon stream as an output through a split output line having a first branch connected to the first input and in fluid communication with the first bed, and a second branch connected to the second input and in fluid communication with the second bed. A restrictor downstream of the split controls a pressure drop at the first input.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Applicant: UOP LLC
    Inventors: Soumendra M. Banerjee, Richard K. Hoehn, Srinivasa Gopalan Rajan Varadarajan, Parthasarathy Kothandaraman
  • Publication number: 20150065767
    Abstract: Disclosed is a hydrocarbon conversion process that is less energy intensive than comparable processes. The hydrocarbon conversion process is particularly desirable for converting alkanes, such as methane into C2+ olefins, such as ethylene and propylene, particularly with increasing selectivity to ethylene production. It is also desirable for effectively removing a C2 composition (i.e., ethane, ethylene and/or acetylene) produced from the catalytic conversion of hydrocarbon comprised of C2+ olefins. In addition, the hydrocarbon process is desirable for providing a substantially non-cryogenic separation of the desired C2 compositions from the hydrocarbons (e.g., methane) present in the reaction mixture.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: Juan D. Henao, Paul F. Keusenkothen, Abhimanyu O. Patil
  • Patent number: 8957267
    Abstract: The invention concerns a process for the production of gasoline and for the co-production of propylene using a catalytic cracking unit comprising a catalyst regeneration zone and a reaction zone with two risers functioning in parallel under different severity conditions, the catalyst circulating between the regeneration zone and the reaction zone in two parallel circuits, a circuit termed the principal circuit comprising a first external catalyst cooling system, and a circuit termed the secondary circuit comprising a second external catalyst cooling system.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: February 17, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Frederic Feugnet, Thierry Gauthier
  • Publication number: 20150045598
    Abstract: A process for increasing the yields of light olefins or shifting to increase the hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream, and to convert components from the reforming stream to the cracking stream.
    Type: Application
    Filed: April 24, 2014
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Steven T. Arakawa, Matthew Lippmann, Mary Jo Wier
  • Publication number: 20150045597
    Abstract: A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream.
    Type: Application
    Filed: April 24, 2014
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Steven T. Arakawa
  • Patent number: 8926830
    Abstract: Processes for producing aromatics from a naphtha feedstream are provided. An exemplary process includes passing the feedstream to a fractionation unit, thereby generating a first stream including hydrocarbons having less than 8 carbon atoms and a second stream including hydrocarbons having at least 8 carbon atoms. The first stream is passed to a first reformer operated at a first set of reaction conditions to generate a first product stream. The first set of reaction conditions includes a first temperature and a first pressure. The second stream is passed to a second reformer operated at a second set of reaction conditions to generate a second product stream. The second set of reaction conditions includes a second temperature and a second pressure. The first pressure is lower than the second pressure.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mary J. Wier, Clayton Colin Sadler
  • Patent number: 8926828
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche
  • Patent number: 8926827
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Manuela Serban, Kurt M. VandenBussche, Mark D. Moser
  • Publication number: 20150005553
    Abstract: Vortex separation technology quickly and efficiently separates vapor from catalyst from two or more risers, in a singular separation vessel, controlling residence time and improving product conversion. One riser enters concentrically through the reactor vessel, then through the center of the separation vessel, ending in horizontal swirl arms. The second and any additional risers run external to the reactor vessel. The external risers transition to a 90° elbow and tangentially enter the reactor vessel, and then the separation vessel.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: UOP LLC
    Inventors: Paolo Palmas, Paul S. Nishimura
  • Patent number: 8921632
    Abstract: 1-butene is recovered as a purified product from an MTO synthesis and especially from an integrated MTO synthesis and hydrocarbon pyrolysis system in which the MTO system and its complementary olefin cracking reactor are combined with a hydrocarbon pyrolysis reactor in a way that facilitates the flexible production and recovery of olefins and other petrochemical products, particularly butene-1 and MTBE.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: December 30, 2014
    Assignee: UOP LLC
    Inventors: Joseph A. Montalbano, Steven Lee Krupa, John Joseph Senetar, Joseph H. Gregor, Andrea G. Bozzano, Gary S. Sandhu
  • Publication number: 20140378722
    Abstract: The process of producing an alkylbenzene compound from the alkylation of an aromatic compound with an acyclic monoolefin is an exothermic process. A process for maintaining a relatively constant temperature improves the process and allows for controlling the yields. The process includes recycling a compound through the reactor that is relatively inert, but will moderate the exotherm, while maintaining the 2-phenyl content of the final alkylbenzene product.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Inventors: Debarshi Majumder, Stephen W. Sohn
  • Publication number: 20140371503
    Abstract: A single stage dehydrogenation reactor system including a charge heater and one or more reactors is described. The hydrocarbon feed is combined with hydrogen and heated in a charge heater to a temperature lower than the dehydrogenation temperature to avoid thermal cracking. Before entering the dehydrogenation reactors, oxygen is added. The oxidative preheat then takes place in the presence of the dual functional catalyst which has dehydrogenation and selective oxidation activities. The oxygen selectively burns hydrogen and raises the reaction temperature, and the dehydrogenation reaction then occurs.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Daniel H. Wei, Laurence O. Stine
  • Publication number: 20140257001
    Abstract: The present invention relates to a tube joint for joining first and second tubes located in a fired heater for heating process fluids, e.g., process heaters and heated tubular reactors both with and without catalyst. The tubes are joined in face-to-face contact, e.g., by welding the tube joint of the first tube to the tube joint of the second tube.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 11, 2014
    Inventors: David B. Spicer, Christopher C. Penney
  • Patent number: 8829259
    Abstract: An integrated MTO synthesis and hydrocarbon pyrolysis system is described in which the MTO system and its complementary olefin cracking reactor are combined with a hydrocarbon pyrolysis reactor in a way that facilitates the flexible production of olefins and other petrochemical products, such as butene-1 and MTBE.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: September 9, 2014
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Joseph H. Gregor, John J. Senetar
  • Publication number: 20140179965
    Abstract: A reactor design and configuration and a process for the catalytic dehydration of butanol to butylenes where the reactor train is comprised of a multi-stage single reactor vessel or multiple reactor vessels wherein each stage and/or vessel has different length, internal diameter, and volume than the other stages and/or vessels and in addition the stages and/or reactor vessels are connected in series or in parallel arrangement, preferably used with an improved means of introducing the butanol feedstock and a heat carrying inert gas to the improved reactor train.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: PETRON SCIENTECH INC.
    Inventors: Hassan Taheri, Yogendra Sarin, Brian Ozero
  • Publication number: 20140163274
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 12, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Publication number: 20140135543
    Abstract: Disclosed is a process and apparatus for switching oligomerization feed between a first oligomerization zone that includes a uni-dimensional small pore zeolite to make more diesel and a second oligomerization zone that includes SPA catalyst for making more gasoline. The diesel can be recycled to make more propylene. The process and apparatus will provide refiners with flexibility to produce the most valuable product commensurate with fluctuating market conditions.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Christian D. Freet, Steven L. Krupa, Kurt M. Vanden Bussche, Todd M. Kruse
  • Patent number: 8679321
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Manuela Serban, Kurt M. VandenBussche, Mark D. Moser
  • Patent number: 8502004
    Abstract: Process for evaluating the effect of a refinery feedstock on a refinery process by (i) providing a refinery feedstock (ii) treating the refinery feedstock to produce a plurality of fractions each representative of a feedstock for the refinery process, the plurality of fractions having at least two fractions with different properties; (iii) treating each of the plurality of fractions under experimental conditions representative of those in the refinery process, the treatments being carried out in an essentially parallel manner; and (iv) determining one or more performance criteria for each fraction for the refinery process by analyzing the respective product streams produced from each fraction at least partially in parallel.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: August 6, 2013
    Assignee: BP Oil International Limited
    Inventors: Graham Butler, John William Couves, Paul Greenough, Nicholas John Gudde, Michael Graham Hodges
  • Publication number: 20130178674
    Abstract: A reactor design and configuration and a process for the catalytic dehydration of ethanol to ethylene where the reactor train is comprised of a multi-stage single reactor vessel or multiple reactor vessels wherein each stage and/or vessel has different length, internal diameter, and volume than the other stages and/or vessels and in addition the stages and/or reactor vessels are connected in series or in parallel arrangement, preferably used with an improved means of introducing the ethanol feedstock and a heat carrying inert gas to the improved reactor train.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 11, 2013
    Inventors: Hassan Taheri, Yogendra Sarin, Brian Ozero
  • Publication number: 20130165720
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 27, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Publication number: 20130150640
    Abstract: The inventive method is directed to the production of xylenes by methylation of aromatic compounds with methanol. The process uses fixed bed reactors, operates at lower pressure, and without the need for hydrogen or other gas recycle.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 13, 2013
    Applicant: GTC Technology US, LLC
    Inventor: GTC Technology US, LLC
  • Patent number: 8450543
    Abstract: Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 28, 2013
    Assignee: Gevo, Inc.
    Inventors: Matthew W. Peters, Joshua D. Taylor, David E. Henton, Leo E. Manzer, Patrick R. Gruber, Josefa M. Griffith, Yassin Al Obaidi
  • Publication number: 20130066032
    Abstract: The present invention provides a process for preparing ethylene and/or propylene, comprising providing a hydrocarbon stream, comprising C4+ normal and C4+ iso-olefins; subjecting the hydrocarbon stream to an etherification process wherein the iso-olefins are converted with alcohol to an tert-alkyl ether, and retrieving a first etherification product stream; separating the first etherification product stream into a first ether-enriched stream and an iso-olefin-depleted hydrocarbon stream; converting the normal olefins in the iso-olefin-depleted hydrocarbon stream to ethylene and/or propylene with a molecular sieve-comprising catalyst and retrieving an olefinic product; decomposing the tert-alkyl ether in the ether-enriched stream into alcohol and an iso-olefin; isomerising the obtained iso-olefins to normal-olefins and retrieving an normal-olefin-enriched hydrocarbon stream; and converting the normal olefins in the normal-olefin-enriched hydrocarbon stream to ethylene and/or propylene by contacting the normal-
    Type: Application
    Filed: September 7, 2012
    Publication date: March 14, 2013
    Applicant: SHELL OIL COMPANY
    Inventors: Leslie Andrew CHEWTER, Rajaram RAMESH, Sivakumar SADASIVAN VIJAYAKUMARI, Jeroen VAN WESTRENEN
  • Publication number: 20130006028
    Abstract: The present invention discloses catalytic cracking apparatus and process, which are useful for catalytic cracking of heavy oils with a high heavy oil conversion, a high propylene yield and low dry gas and coke yields.
    Type: Application
    Filed: October 29, 2010
    Publication date: January 3, 2013
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Chaogang Xie, Yongcan Gao, Weimin Lu, Jun Long, Yan Cui, Jiushun Zhang, Yinan Yang, Jianguo Ma, Zheng Li, Nan Jiang
  • Publication number: 20120277504
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Gregory J. Gajda, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20120277500
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves increasing the processing temperatures in the reformers. The reformers are operated under different conditions to utilize advantages in the equilibriums, but require modifications to prevent increasing thermal cracking and to prevent increases in coking. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: April 5, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Mark D. Moser, Clayton C. Sadler, Mark P. Lapinski, Kurt M. VandenBussche
  • Publication number: 20120277503
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
  • Publication number: 20120253089
    Abstract: The present invention provides a process for producing aromatic hydrocarbons which comprises: (a) alternately contacting a lower alkane feed with an aromatization catalyst under aromatization reaction conditions in a reactor for a short period of time, preferably 30 minutes or less, to produce aromatic reaction products and then contacting the aromatization catalyst with a hydrogen-containing gas at elevated temperature for a short period of time, preferably 10 minutes or less, (b) repeating the cycle of step (a) at least one time, (c) regenerating the aromatization catalyst by contacting it with an oxygen-containing gas at elevated temperature and (d) repeating steps (a) through (c) at least one time.
    Type: Application
    Filed: October 29, 2010
    Publication date: October 4, 2012
    Inventors: Mahesh Venkataraman Iyer, Ann Marie Lauritzen, Ajay Madhav Madgavkar
  • Publication number: 20120172643
    Abstract: A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction, an optional intermediate fraction, and heavy fraction based on their boiling points. The light fraction and optional intermediate fraction can be upgraded via hydrotreatment to produce a renewable gasoline and a renewable diesel, which may be combined with their petroleum-derived counterparts. The heavy fraction may be subjected to cracking and further separated into light, intermediate, and heavy fractions in order to increase the yield of renewable gasoline and renewable diesel.
    Type: Application
    Filed: August 23, 2011
    Publication date: July 5, 2012
    Applicant: KIOR INC.
    Inventors: MARIA MAGDALENA RAMIREZ CORREDORES, VICENTE SANCHEZ IGLESIAS
  • Publication number: 20120108867
    Abstract: The invention is directed to a process to produce paraxylene and orthoxylene, including reducing the amount of isomerate recycle from vapor phase xylenes isomerization by providing a parallel configuration of vapor phase and liquid phase isomerization units.
    Type: Application
    Filed: October 24, 2011
    Publication date: May 3, 2012
    Inventors: Dana Lynn Pilliod, John Di-Yi Ou
  • Publication number: 20120108868
    Abstract: A process for the purification of aromatic feedstream to produce paraxylene is disclosed, including the separation of a C8+ aromatic feedstream into a steam comprising C8 aromatic species and a stream comprising C9+ aromatic species. After separation of PX from the C8 aromatic stream, a PX-depleted stream is separated and processed in a liquid phase isomerization unit and a vapor phase isomerization unit in parallel.
    Type: Application
    Filed: October 24, 2011
    Publication date: May 3, 2012
    Inventors: Dana Lynn Pilliod, John Di-Yi Ou
  • Publication number: 20110245556
    Abstract: A simulated moving bed adsorptive separation process for preparing the separate feed streams charged to naphtha reforming unit and a steam cracking unit has been developed. The feed stream to the overall unit is passed into the adsorptive separation unit. The desorbent in the adsorptive separation is C12 hydrocarbons. The simulated moving bed adsorptive separation separates the components of the feed stream into a normal paraffin stream, which is charged to the steam cracking process, and non-normal hydrocarbons which are passed into a reforming zone. The desorbent is readily separated from the normal paraffin stream and from the non-normal paraffin stream and the simulated moving bed adsorption zone is operated at an A/Fn ratio of from about 0.90 to about 0.92.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Stephen W. Sohn, Lynn H. Rice, Santi Kulprathipanja
  • Publication number: 20110218372
    Abstract: Processes and systems for synthesizing alkyl bromides to hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, wherein one or more streams of alkyl bromides may be synthesized in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 8, 2011
    Applicant: MARATHON GTF TECHNOLOGY, LTD.
    Inventors: John J. Waycuilis, William J. Turner
  • Patent number: 8013197
    Abstract: A method for the absorption of alkynes and diolefins from an ethylene or propylene containing stream with conversion to alkenes by catalytic hydrogenation in a solvent over a fixed bed comprising a supported catalyst.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: September 6, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Edward R. Peterson, Sean C. Gattis
  • Patent number: 7956227
    Abstract: Methods of oligomerizing hydrocarbons are disclosed. These methods include contacting olefins with an oligomerization catalyst in an oligomerization zone under oligomerization reaction conditions.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: June 7, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bruce B. Randolph, Jason J. Gislason, M. Bruce Welch, Richard L. Anderson, Dhananjay B. Ghonasgi, Robert W. Morton, Roland Schmidt
  • Patent number: 7883618
    Abstract: Systems and processes for producing one or more olefins. A feed containing 90% by weight or more C4 and higher hydrocarbons can be cracked at conditions sufficient to provide an olefinic mixture and an aromatic mixture. The olefinic mixture can comprise 90% by weight or more C1 to C3 hydrocarbons. The aromatic mixture can comprise 90% by weight or more C4 and higher hydrocarbons and one or more aromatics. The aromatic mixture can be contacted with one or more solvents to selectively separate at least a portion of the one or more aromatics therefrom to provide an aromatic-rich mixture and an aromatic-lean mixture. At least a portion of the aromatic-lean mixture can be recycled to the feed prior to cracking.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 8, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Alan Claude, Anand Subramanian
  • Publication number: 20100305375
    Abstract: Process for the preparation of an olefinic product, which process comprises reacting an oxygenate feedstock and an olefinic co-feed in a reactor in the presence of an oxygenate conversion catalyst comprising a molecular sieve having one-dimensional 10-membered ring channels, and a further molecular sieve having more-dimensional channels, wherein the weight ratio between the one-dimensional molecular sieve and the further molecular sieve is in the range of from 1:1 to 100:1, to prepare an olefinic reaction effluent; separating the olefinic reaction effluent into at least a first olefinic fraction and a second olefinic fraction; recycling at least part of the second olefinic fraction; and recovering at least part of the first olefinic fraction as olefinic product.
    Type: Application
    Filed: November 19, 2008
    Publication date: December 2, 2010
    Inventors: Jeroen Van Westrenen, Leslie Andrew Chewter, Ferry Winter
  • Publication number: 20100217054
    Abstract: Disclosed is a method for production of lower olefins from a raw material containing dimethyl ether (DME), which can produce lower olefins (e.g. propylene) with good yield and in an economically advantageous manner by prolonging the time until the reversible deactivation of a zeolite catalyst and preventing the irreversible deactivation of the catalyst, can reduce the amount of water to be recycled to increase the thermal efficiency of the process, and can simplify the facilities and operations. Also disclosed is a method for improving the yield of propylene with good efficiency under practical operating conditions. A feed gas which comprises a DME-containing feedstock gas and an additive gas and further contains steam at a specific proportion is introduced into an olefin synthesis reactor to contact the feed gas with a zeolite catalyst, thereby producing a hydrocarbon product containing C2-C5 olefins.
    Type: Application
    Filed: November 13, 2006
    Publication date: August 26, 2010
    Applicant: JGC Corporation
    Inventors: Hirofumi Ito, Kazunori Honda, Koji Oyama, Nobuyasu Chikamatsu, Kazutaka Hiraoka, Atsushi Okita
  • Publication number: 20100137664
    Abstract: Disclosed is a method of recovering 1,3-butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3-butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3-butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.
    Type: Application
    Filed: July 18, 2008
    Publication date: June 3, 2010
    Inventors: Hee Du Lee, Kyung Jong Oh, Min Su Ko, Min Gyoo Park, Seong Jun Lee, Yoon Jae Yim, Seung Hoon Oh, Tae Jin Kim, Yong Seung Kim, Deuk Soo Park, Hong Chan Kim
  • Patent number: 7651606
    Abstract: The invention concerns a process for the hydrodesulphurization of gasoline cuts for the production of gasolines with a low sulphur and mercaptans content. Said process comprises at least two hydrodesulphurization steps, HDS1 and HDS2, operated in parallel on two distinct cuts of the gasoline constituting the feed. The flow rate of hydrogen in the hydrodesulphurization step HDS2 is such that the ratio between the flow rate of hydrogen and the flow rate of feed to be treated is less than 80% of the ratio of the flow rates used to desulphurize in the hydrodesulphurization step HDS1.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Florent Picard, Quentin Debuisschert, Annick Pucci