Diverse Parallel Syntheses Patents (Class 585/304)
  • Patent number: 11555154
    Abstract: The process removes hydrogen sulfide from hydrotreated gas by TSA. Hydrogen sulfide adsorbs on the adsorbent while allowing hydrogen in the hydrotreated gas to pass the adsorbent to provide a desulfided hydrogen gas stream and a sulfided adsorbent. A regenerant gas stream can be contacted with the sulfided adsorbent at a swing temperature to desorb hydrogen sulfide from the adsorbent into the regenerant gas stream. The regenerant gas stream can then be recycled to a hydrotreating reactor for processing biorenewable feed to provide hydrogen sulfide to the reactor. The desulfided gas stream can be purified to remove impurities such as carbon oxides and recycled to the hydrotreating reactor and/or used as the regenerant gas stream.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: January 17, 2023
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Bradley P. Russell, Ashish Mathur, Hari S. Bajpai
  • Patent number: 10960343
    Abstract: The present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C2+), comprising introducing methane and an oxidant (e.g., O2) into an oxidative coupling of methane (OCM) reactor. The OCM reactor reacts the methane with the oxidant to generate a first product stream comprising the C2+ compounds. The first product stream can then be directed to a separations unit that recovers at least a portion of the C2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C2+ compounds.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 30, 2021
    Assignee: Lummus Technology LLC
    Inventors: Divya Jonnavittula, Gaurav Chachra, Guido Radaelli
  • Patent number: 10508066
    Abstract: Provided here are systems and methods that integrate a hydrodearylation process and a transalkylation process into an aromatic recovery complex. Various other embodiments may be disclosed and claimed.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 17, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Robert Hodgkins
  • Publication number: 20150141719
    Abstract: A process to efficiently convert organic feedstock material into liquid non-oxygenated hydrocarbons in the C5 to C12 carbon skeleton range is disclosed. The process can utilize gaseous, liquid or solid organic feedstocks containing carbon, hydrogen and, optionally, oxygen. The feedstock may require preparation of the organic feedstock for the process and is converted first into a synthesis gas containing carbon monoxide and hydrogen. The synthesis gas is then cleaned and conditioned and extraneous components removed, leaving substantially only the carbon monoxide and hydrogen. It is then converted via a series of chemical reactions into the desired liquid hydrocarbons. The hydrocarbons are suitable for combustion in a vehicle engine and may be regarded a replacement for petrol made from fossil fuels in the C5 to C12 carbon backbone range.
    Type: Application
    Filed: November 28, 2014
    Publication date: May 21, 2015
    Inventors: Karen Sue Kelly, Larry Jack Melnichuk
  • Publication number: 20150141717
    Abstract: A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 21, 2015
    Inventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
  • Patent number: 9035118
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 19, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 9029618
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 12, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Patent number: 9024099
    Abstract: A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark D. Moser, Kurt M. VandenBussche, David A. Wegerer, Gregory J. Gajda
  • Patent number: 9024098
    Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
  • Patent number: 9024097
    Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20150099911
    Abstract: A process is disclosed that includes brominating a C2, C3 , C4, C5 or C6 alkane with elemental bromine to form a bromo-alkane. The bromo-alkane is reacted to form a C2, C3, C4, C5 or C6 alkene and HBr. The HBr is oxidized to form elemental bromine.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Vivek JULKA, Sagar GADEWAR, Peter K. STOIMENOV, Philip GROSSO, Jeffrey H. SHERMAN, Aihua ZHANG, Eric W. MCFARLAND
  • Publication number: 20150065768
    Abstract: Methods and systems are provided for producing a xylene product. The method includes fractionating a feed stream in a feed fractionator to produce a feed bottoms stream and a feed overhead stream. The feed stream includes aromatic compounds and non-aromatic compounds, and more than 5 weight percent of the non-aromatic compounds have a boiling point above 105° C. at one atmosphere of pressure. The feed bottoms stream is de-ethylated in a heavy aromatics conversion zone to produce a de-ethylated aromatics stream and a light gases stream, where non-aromatic compounds are converted to light gases in the light gases stream. The de-ethylated aromatics stream is fractionated to produce a heavy aromatics stream and an intermediate aromatics stream, and a desired isomer stream is recovered from the intermediate aromatics stream and an isomerized stream in an isomer recovery process.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: UOP LLC
    Inventors: Leonid Bresler, Robert B. Larson, John B. Robertson
  • Patent number: 8969640
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 3, 2015
    Assignee: Virent, Inc.
    Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 8962902
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: February 24, 2015
    Assignee: Virent, Inc.
    Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
  • Publication number: 20150045597
    Abstract: A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream.
    Type: Application
    Filed: April 24, 2014
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Steven T. Arakawa
  • Publication number: 20150031928
    Abstract: Processes and apparatuses for preparing aromatic compounds are provided herein. In an embodiment, a process for preparing aromatic compounds includes providing a first stream that includes an aromatic component, a non-aromatic component, and a sulfur-containing component. The aromatic component and the sulfur-containing component are separated from the non-aromatic component of the first stream to form a separated aromatic stream and a raffinate stream. The separated aromatic stream includes the aromatic component and the sulfur-containing component. The raffinate stream includes the non-aromatic component. The separated aromatic stream is concurrently transalkylated and desulfurized in the presence of a catalyst that includes acid function and metal function to produce a transalkylated aromatic stream and a sulfur-containing gas stream that is separate from the transalkylated aromatic stream.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: UOP LLC
    Inventors: Jason L. Noe, Peter Kokayeff
  • Patent number: 8933283
    Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 13, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
  • Patent number: 8845884
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 10, 2012
    Date of Patent: September 30, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mary Jo Wier, Mark P. Lapinski, David A. Wegerer, Kurt M. VandenBussche, Mark D. Moser
  • Patent number: 8822747
    Abstract: The xylene isomerization process unit and the transalkylation process units are combined in the present invention. A fractionation column can be shared by the two units, reducing the capital cost of the complex. In some embodiments, a split shell fractionation column and a split separator can be used.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: September 2, 2014
    Assignee: UOP LLC
    Inventors: Jason T. Corradi, David W. Ablin, David W. Liu
  • Publication number: 20140221713
    Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140187833
    Abstract: The invention provides a process for preparing olefins, comprising: (a) reacting an oxygenate and/or olefinic feed in a first reactor in the presence of a molecular sieve catalyst to form a first effluent comprising olefins; (b) fractionating at least part of the first effluent into an olefinic product fraction comprising ethylene and propylene and an olefinic product fraction comprising olefins containing 4 or more carbon atoms; (c) subjecting a paraffin-containing hydrocarbon feedstock in a second reactor to a steam cracking process to form a second effluent comprising olefins including butadiene; (d) fractionating the second effluent into an olefinic product fraction comprising ethylene and/or propylene and an olefinic product fraction comprising mono-olefins containing 4 or more carbon atoms; and (e) recycling the olefinic product fraction comprising at least part of the ethylene and/or propylene as obtained in step (d) to the reactor in step (a).
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Shell Oil Company
    Inventors: Leslie Andrew CHEWTER, Sivakumar SADASIVAN VIJAYAKUMARI, Jeroen VAN WESTRENEN
  • Patent number: 8710286
    Abstract: A process for the coupling of hydrocarbons and utilizing the heat energy produced by the reaction is disclosed. In one embodiment the process can include reacting methane with oxygen to form a product stream containing ethane and further processing the ethane to ethylene in an existing ethylene production facility while using the heat energy produced by the reaction within the facility.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 29, 2014
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Patent number: 8680351
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8563793
    Abstract: Processes utilizing the integration of (i) processes and the associated equipment used to purify and recover propylene from propane- and/or C4+-containing refinery hydrocarbon streams, with (ii) catalytic dehydrogenation are disclosed. This integration allows for elimination of some or all of the conventional fractionation section of the dehydrogenation process, normally used to purify propylene from unconverted propane in the reactor effluent. Significant capital and utility savings are therefore attained.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: October 22, 2013
    Assignee: UOP LLC
    Inventors: Joseph E. Zimmermann, Larry C. Erickson, Gregory J. Nedohin
  • Publication number: 20130253240
    Abstract: A method for producing a linear paraffin product from natural oil and kerosene includes providing a first feed stream comprising kerosene, pre-fractionating the first feed stream to produce a heart cut paraffin stream comprising paraffins in a heart cut range, and combining the heart cut paraffin stream with a second feed stream comprising natural oil to form a combined stream. The method further includes deoxygenating the natural oil and fractionating the combined stream to remove paraffins that are heavier than the heart cut range.
    Type: Application
    Filed: April 2, 2013
    Publication date: September 26, 2013
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Stephen W. Sohn
  • Publication number: 20130253239
    Abstract: A process for producing heavy alkyl aromatics is presented. The process utilizes low molecular weight hydrocarbons for generating larger alkyl groups. The hydrocarbons can be generated from a variety of sources including Fischer-Tropsch liquids. The process includes oligomerization of low molecular weight olefins to larger olefins. The larger olefins are passed to an alkylation reactor to alkylate aromatic compounds.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Jeffery C. Bricker, Bryan K. Glover
  • Patent number: 8536392
    Abstract: The invention relates to series reactor beds containing different oligomerization catalysts and having independent temperature control, and processes for the oligomerization of light olefins to heavier olefins using such series reactor beds.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: September 17, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Jon Edmond Randoph Stanat, Jose Manuel Vargas, Stephen W. Beadle, Georges Marie K. Mathys, John Stephen Godsmark, Raphael Frans Caers
  • Publication number: 20130217934
    Abstract: The present invention provides a process for producing aromatic hydrocarbons and ethylene, comprising: a. contacting a lower alkane feed comprising at least one of ethane, propane and butane with an aromatic hydrocarbon conversion catalyst within an alkane-to-aromatic zone to obtain at least hydrogen and aromatic reaction products, including at least benzene; b. converting an oxygenate feedstock in an oxygenate-to-olefin zone to obtain olefins, including at least ethylene; wherein at least part of the oxygenate feedstock is obtained by providing at least part of the hydrogen obtained in step a) and a feed containing carbon monoxide and/or carbon dioxide to an oxygenate synthesis zone and synthesizing oxygenates. In another aspect the invention provides an integrated system for aromatic hydrocarbons and ethylene and the use of hydrogen obtained from a process to convert lower alkanes to benzene to produce an oxygenate feed for an oxygenate-to-olefin process.
    Type: Application
    Filed: April 19, 2011
    Publication date: August 22, 2013
    Inventors: Leslie Andrew Chewter, Hervé Henry, Ajay Madgavkar, Jeroen Van Westrenen
  • Publication number: 20130165715
    Abstract: The xylene isomerization process unit and the transalkylation process units are combined in the present invention. A fractionation column can be shared by the two units, reducing the capital cost of the complex. In some embodiments, a split shell fractionation column and a split separator can be used.
    Type: Application
    Filed: September 25, 2012
    Publication date: June 27, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Publication number: 20130144097
    Abstract: In a process for producing para-xylene, a naphtha feed is reformed under conditions effective to convert at least 50 wt % of the naphthenes in the naphtha feed to aromatics, but to convert no more than 25 wt % of the paraffins in the naphtha feed, and thereby produce a reforming effluent. A first stream containing benzene and/or toluene is removed from the reforming effluent and is fed to a xylene production unit under conditions effective to convert benzene and/or toluene to xylenes. In addition, a second stream containing C8 aromatics is removed from the reforming effluent and is fed, together with at least part of the xylenes produced in the xylene production unit, to a para-xylene recovery unit to recover a para-xylene product stream and leave a para-xylene-depleted C8 stream.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 6, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy P. Bender, John W. Rebeck, Rimas V. Vebeliunas, John R. Porter, Anthony Go, Larry L. Iaccino, Glenn C. Wood
  • Publication number: 20130131411
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: Virent Energy Systems, Inc.
    Inventors: Paul G. Blommel, Li Yuan, Matt Van Straten, Warren Lyman, Randy D. Cortright
  • Publication number: 20130102822
    Abstract: Processes are provided for the production of butadiene from C4 containing feed stocks that contain isobutene and/or isobutane in addition to n-butene(s) and/or n-butane. The processes of the present invention generally comprise feeding the feed stock to a combination butenes isomerization reaction and distillation tower for conversion of 1-butene to 2-butenes and separation from isobutene and isobutane, followed by an oxydehydrogenation unit to convert n-butenes to butadiene. The processes may also include additional isomerization and/or dehydrogenation steps for the tower overhead and bottoms streams to create additional isobutene and/or n-butenes for valued/uses, which may include additional production of butadiene. The feed to the system may comprise any mixture or separate feeding of C4 olefins and C4 paraffins, at least one of which contains isobutene and/or isobutane.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 25, 2013
    Applicant: Lummus Technology Inc.
    Inventor: Lummus Technology Inc.
  • Publication number: 20130102820
    Abstract: Processes and systems for synthesizing hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, from alkyl bromides wherein one or more streams of alkyl bromides may be reacted in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.
    Type: Application
    Filed: December 13, 2012
    Publication date: April 25, 2013
    Applicant: MARATHON GTF TECHNOLOGY, LTD.
    Inventor: MARATHON GTF TECHNOLOGY, LTD.
  • Publication number: 20130079570
    Abstract: Embodiments of methods for co-production of linear alkylbenzene and biofuel from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form paraffins. A first portion of the paraffins is hydrocracked to form a first stream of normal and lightly branched paraffins in the C9 to C14 range and a second stream of isoparaffins. The first stream is dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product. A second portion of the paraffins and the isoparaffins are processed to form biofuel.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: UOP LLC
    Inventors: Amarendra Anumakonda, Srikantiah Raghuram, Joao Jorge da Silva Ferreira Alves, Andrea G. Bozzano
  • Publication number: 20130066120
    Abstract: A process is disclosed that permits the manufacture of renewable diesel while simultaneously manufacturing petroleum based jet fuel and/or diesel fuel. The process provides for the sulfiding of hydroprocessing catalyst used to hydroprocess sulfur deficient biomass derived feedstocks and permits the use of petroleum derived feedstock deactivated hydoprocessing catalyst in biomass derived feedstock service.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: BP Corporation North America Inc.
    Inventor: John W. Shabaker
  • Patent number: 8377288
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 19, 2013
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Patent number: 8373013
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Publication number: 20120277508
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 10, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Gregory J. Gajda, Mary Jo Wier, Mark P. Lapinski, David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
  • Publication number: 20120277507
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8273930
    Abstract: A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 25, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zhiguo Wu, Wenhua Xie, Chaogang Xie, Qiang Liu, Xuhong Mu, Jiushun Zhang, Yibin Luo, Xingtian Shu, Chenghan Yan
  • Publication number: 20120172643
    Abstract: A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction, an optional intermediate fraction, and heavy fraction based on their boiling points. The light fraction and optional intermediate fraction can be upgraded via hydrotreatment to produce a renewable gasoline and a renewable diesel, which may be combined with their petroleum-derived counterparts. The heavy fraction may be subjected to cracking and further separated into light, intermediate, and heavy fractions in order to increase the yield of renewable gasoline and renewable diesel.
    Type: Application
    Filed: August 23, 2011
    Publication date: July 5, 2012
    Applicant: KIOR INC.
    Inventors: MARIA MAGDALENA RAMIREZ CORREDORES, VICENTE SANCHEZ IGLESIAS
  • Publication number: 20120149957
    Abstract: One exemplary embodiment can be a process for oligomerizing one or more hydrocarbons. The process can include providing a feed including one or more C3 and C4 hydrocarbons to a separation zone, separating at least a portion of C3 olefins, sending the C3 olefins to a first oligomerization zone for producing one or more C9 hydrocarbons, and returning at least a portion of an effluent from the first oligomerization zone to the separation zone.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: UOP, LLC
    Inventors: Steven Lee Krupa, Christian D. Freet, Mohamed Shakur
  • Publication number: 20120149956
    Abstract: One exemplary embodiment can be a process for oligomerizing one or more hydrocarbons. Usually, the process includes providing a feed including one or more C3 and C4 hydrocarbons to a separation zone, separating a first stream including an effective amount of C3 olefins for oligomerizing, separating a second stream including an effective amount of one or more C4 olefins for oligomerizing, providing at least a portion of the first stream to a first oligomerization zone for producing at least one of a C9 and a C12 hydrocarbon, and providing at least a portion of the second stream to a second oligomerization zone for producing at least one of a C8 and a C12 hydrocarbon.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: UOP, LLC
    Inventors: Steven Lee Krupa, Christian D. Freet, Mohamed Shakur
  • Publication number: 20120136187
    Abstract: One exemplary embodiment can be a fluid catalytic cracking unit. The fluid catalytic cracking unit can include a first riser, a second riser, and a disengagement zone. The first riser can be adapted to receive a first feed terminating at a first reaction vessel having a first volume. The second riser may be adapted to receive a second feed terminating at a second reaction vessel having a second volume. Generally, the first volume is greater than the second volume. What is more, the disengagement zone can be for receiving a first mixture including at least one catalyst and one or more products from the first reaction vessel, and a second mixture including at least one catalyst and one or more products from the second reaction vessel. Typically, the first mixture is isolated from the second mixture.
    Type: Application
    Filed: February 8, 2012
    Publication date: May 31, 2012
    Applicant: UOP LLC
    Inventors: Paolo Palmas, Robert Mehlberg
  • Publication number: 20120108864
    Abstract: A process for the production of propylene, the process including: fractionating a hydrocarbon stream comprising n-butenes, isobutylene, and paraffins into at least two fractions including a light C4 fraction comprising isobutylene and a heavy C4 fraction comprising n-butenes and paraffins; contacting at least a portion of the heavy C4 fraction with a metathesis catalyst to form a metathesis product comprising ethylene, propylene, C4+ olefins, and paraffins; fractionating the metathesis product into at least four fractions including an ethylene fraction, a propylene fraction, a C4 fraction comprising C4 olefins and paraffins, and a C5+ fraction; cracking the light C4 fraction and the C5+ fraction to produce a cracking product comprising ethylene, propylene, and heavier hydrocarbons; and fractionating the cracking product into at least two fractions including a light fraction comprising propylene and a fraction comprising C5 to C6 hydrocarbons.
    Type: Application
    Filed: January 4, 2012
    Publication date: May 3, 2012
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Robert J. Gartside, Bala Ramachandran
  • Patent number: 8147766
    Abstract: The present invention relates to methods and systems for processing biomass to selectively yield a variety of hydrocarbon molecules and hydrogen as products, wherein some or all of these products can be further utilized for other biomass processing sub-processes, particularly wherein they lead to the generation of biofuels and/or other high-value products.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 3, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kerry K. Spilker, Roger Vogel, James F. Stevens, Peter C. Ricci
  • Publication number: 20110288354
    Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
    Type: Application
    Filed: November 26, 2008
    Publication date: November 24, 2011
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
  • Patent number: 7956227
    Abstract: Methods of oligomerizing hydrocarbons are disclosed. These methods include contacting olefins with an oligomerization catalyst in an oligomerization zone under oligomerization reaction conditions.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: June 7, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bruce B. Randolph, Jason J. Gislason, M. Bruce Welch, Richard L. Anderson, Dhananjay B. Ghonasgi, Robert W. Morton, Roland Schmidt
  • Publication number: 20110040133
    Abstract: Process for the selective production of ethylene, propylene and isoprene from light hydrocarbons comprising: a) fractionating a butane fraction in a de-isobutanizer to obtain an enriched iso-butane fraction and an enriched normal-butane fraction, b) cracking said normal-butane fraction and optionally an ethane fraction, optionally a propane fraction, in a non-catalytic cracking zone to produce an olefin rich stream, c) treating said olefin rich stream in a separating section to recover: an ethylene stream, a propylene stream, d) transforming the recovered iso-butane of step a) into iso-butene or t-butyl hydroperoxide or partly into iso-butene and partly into t-butyl hydroperoxide, e) optionally reacting iso-butene of step d), if any, with formaldehyde to make isoprene, f) optionally reacting t-butyl hydroperoxide of step d), if any, with an olefin to give an epoxide and t-butanol and further separating t-butanol, or optionally having t-butyl hydroperoxide of step d), if any, decomposed to t-butanol and reacte
    Type: Application
    Filed: November 20, 2008
    Publication date: February 17, 2011
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Walter Vermeiren, Francois Bouvart
  • Publication number: 20100292519
    Abstract: Byproduct formation in aromatic alkylation processes is reduced when different polyalkylated aromatic compounds are first fractionated into separate streams enriched in these respective polyalkylated aromatic compounds, and the separate streams are sent to different transalkylation reaction zones, which may or may not be in the same reactor. The different transalkylation reaction zones allow for greater control of the transalkylation of the respective polyalkylated aromatic compounds, such as diisopropylbenzene (DIPB) and triisopropylbenzene (TIPB) that accompany the alkylation of benzene with propylene in a process for cumene production.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: Patrick J. Bullen, Steven P. Lankton, Robert J. Schmidt