Reaction Start-up Procedure Patents (Class 585/951)
  • Patent number: 8834710
    Abstract: A process for starting up a hydrotreating process using a bulk metal catalyst. The process comprises the steps of providing a hydrocarbon feed stream containing less than 100 ppmw nitrogen containing species; and adding a nitrogen-containing compound to the hydrocarbon feed stream followed by contacting the resulting feed stream with the bulk metal catalyst in the presence of hydrogen and a sulfur-containing species.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 16, 2014
    Assignee: Shell Oil Company
    Inventors: László Domokos, Hermanus Jongkind, Pieter Van Der Laan, Marcello Stefano Rigutto
  • Patent number: 8685212
    Abstract: A start-up method of a fractionator which fractionally distills FT synthesized hydrocarbons produced by the Fischer-Tropsch synthesis reaction, the method includes: discharging light FT synthesized hydrocarbons which exist in a gaseous state in an FT reactor performing the Fischer-Tropsch synthesis reaction from the FT reactor to the outside; cooling down the light FT synthesized hydrocarbons discharged from the FT reactor for liquefaction; supplying the liquefied light FT synthesized hydrocarbons to the fractionator; and heating the light FT synthesized hydrocarbons and circulating the light FT synthesized hydrocarbons to the fractionator.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 1, 2014
    Assignees: JX Nippon Oil & Energy Corporation, Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Hidekatsu Honda
  • Patent number: 8227654
    Abstract: In a process for reducing the amount of benzene produced in a startup procedure for purification of an aromatic feedstream, the improvement comprising a start-up procedure including contacting said catalyst with said feedstream at elevated LHSV for a period of time sufficient to reduce benzene and/or toluene levels to a predetermined level, and proceeding under normal operational conditions.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 24, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Timothy F. Kinn, Michael C. Clark
  • Patent number: 7875754
    Abstract: A method of operation for producing high yield of alkylate product using catalytic reactors. The catalytic reactors which cycle between reaction mode and catalyst regeneration mode have their contents exchanged with each other at the beginning of each cycle in order to increase the yield of the desired product. This exchange increases the yield by minimizing the contact of reactant in reaction mode with regenerant utilized in regeneration mode. Thus, reducing/preventing the undesirable alternate reaction between the two, which consumes the reactant making it unavailable for the production of the desired product.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: January 25, 2011
    Assignee: Lummus Technology Inc.
    Inventor: Vincent James D′Amico
  • Patent number: 7309806
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 7270740
    Abstract: A method for starting up an olefin production plant without venting gases to the atmosphere wherein an artificial feed is employed in the compression zone of the plant while the furnace and quench zones remain idle, and gases from the compression and refrigeration zones of the plant are recycled to the inlet of the compression zone during startup, after which the furnace and quench zones are started up using natural feed.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 18, 2007
    Assignee: Equistar Chemicals, LP
    Inventor: James H. Walker
  • Patent number: 7259287
    Abstract: The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: August 21, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem, Stephen Neil Vaughn
  • Patent number: 7048831
    Abstract: The present application discloses a method and apparatus for purging oxygen from a sealed container interior and a purge substance used in such method. The method is exemplified herein in an improved batch process and apparatus for the thermal decomposition of hydrocarbon containing material in a sealed reactor interior. According to the present invention the improved batch process may comprise, 1) loading the hydrocarbon containing material into and sealing the reactor, 2) purging or expelling oxygen from said reactor, and 3) heating said reactor to a predetermined temperature so as to obtain decomposition products, the improvement residing in the purging step including loading the reactor with an oxyphilic solution prior to sealing and heating the interior of the sealed reactor to a predetermined temperature to induce the oxyphilic solution to drive oxygen out of the interior of the container through said gas evacuation component.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 23, 2006
    Inventors: Richard Bouziane, Gilles Tremblay
  • Patent number: 6872867
    Abstract: A catalytic conversion process using a fluidized conversion zone, which requires a minimum superficial gas velocity to function properly, and a motor-driven, capacity-limited product compressor zone is started up using a thermal compressor by establishing two start-up gas recirculation circuits, one using the product compression zone running at high pressure to recirculate about 40 to 60 vol-% of the effluent gas stream from the conversion zone and the other running at low pressure and carrying the remaining portion of the effluent gas stream from the fluidized conversion zone where the high pressure circuit supplies motive gas to the thermal compression zone and the low pressure circuit supplies suction gas to the thermal compressor and the resulting compressed discharge gas enables the catalytic process to start up without the use of a dedicated motor-driven start-up compressor.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: March 29, 2005
    Assignee: UOP LLC
    Inventor: John J. Senetar
  • Publication number: 20040260140
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 6348635
    Abstract: A process for starting up a reaction for the polymerization of an olefin in the gas phase carried out using a catalyst based on chromium oxide in a fluidized bed reactor through which moves a reaction gas mixture containing the olefin, wherein in the start-up of the reaction, the olefin is introduced into the reactor until the desired production of polymer is reached by means of a two-stage process, during the first stage of which the introduction of the olefin is carried out so as to maintain a constant partial pressure of olefin in the reactor and during the second stage, the introduction of olefin is regulated at a constant flow rate.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: February 19, 2002
    Assignee: BP Chemicals, Limited
    Inventor: Marc Herzog
  • Patent number: 6037515
    Abstract: The invention relates to a process for producing ethylene from a hydrocarbon feedstock, whereby the hydrocarbon feedstock is subjected to cracking. The crude gas thus produced undergoes quenching with water washing, crude gas compression, and crude gas drying and precooling. The gas is then sent to a separation section, wherein a C2/C3 separation of the precooled crude gas into a C2- stream and a C3+ stream is conducted. The C2- stream is sent through C2 hydrogenation, and the C3+ stream is separated into a C3 stream and a C4+ stream by means of a C3/C4 separation. According to the invention, when the process is started up, at times foreign ethylene and/or foreign C3 is fed to crude gas compression. In addition, a stream from C2 hydrogenation and a C3 stream from the C3/C4 separation are merged and recycled as a first recycle stream before crude gas compression.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: March 14, 2000
    Assignee: Linde Aktiengesellschaft
    Inventor: Johann-Peter Wimmer
  • Patent number: 5726321
    Abstract: Process for carrying out gas/liquid reactions at from (-50.degree.) to 300.degree. C. and from 0.1 to 100 bar by carrying out the reaction in the absence of a continuous gas phase, and, as a special case, a process for the batchwise reaction of acetylene in the liquid phase at from 0.degree. to 300.degree. C. and from 2 to 30 bar, in which acetylene is introduced a) in the absence of a continuous gas phase and b) under isobaric conditions to a degree of saturation of from 5 to 100%.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: March 10, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Klaus Bittins, Marc Heider, Martin Schmidt-Radde, Jochen Kellenbenz, Kurt Josef Wagner, Peter Zehner, Stefan Berg
  • Patent number: 5474671
    Abstract: This invention concerns a process and apparatus for removing oil from liquefied petroleum gases. In a preferred embodiment, the activated carbon bed is pretreated with odorant thereby enabling oil to be removed from odorized liquefied petroleum gases with negligible removal of odorant.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: December 12, 1995
    Assignee: Phillips Petroleum Company
    Inventor: John W. O'Connor
  • Patent number: 4541915
    Abstract: A start-up procedure wherein a halogenated rhenium-containing catalyst, to improve its performance in reforming naphtha feeds, is contacted with water, added with the hydrogen and said feed. During the start-up period, preferably on initiation of the start-up period after aromatics production has begun, a naphtha feed, hydrogen and water are passed cocurrently through the several reactors of a reforming unit and reacted over the halogenated rhenium-containing catalyst. Water is generally added with the naphtha and hydrogen, preferably to the initial reactor of the series of reactors of the reforming unit, in concentration ranging from about 100 vppm of hydrogen to about 10,000 vppm of hydrogen, preferably from about 100 vppm to about 5000 vppm of hydrogen.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: September 17, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventors: William C. Baird, Jr., Charles H. Mauldin
  • Patent number: 4482696
    Abstract: A coherent explosive gas phase in a gas/liquid reactor comprising a tubular body which is closed at the top and into which one or more jets of liquid which are fed from a liquid circulation and are directed downward, emerge from one or more nozzles located at the highest point of the reactor, and entrain a gas phase which is to be dispersed, introduce it into the liquid and finally produce complete dispersion of the gas, is avoided by a method wherein, before start-up of the liquid circulation, the inactive reactor is charged with an amount of liquid reactant such that a gas space corresponding to the subsequent gas hold-up of dispersed bubbles under operating conditions remains at the top of the reactor, this gas space is filled with a gas, at a pressure p.sub.
    Type: Grant
    Filed: February 11, 1983
    Date of Patent: November 13, 1984
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans H. Schuster, Hermann Dreher, Juergen Hambrecht
  • Patent number: 4415441
    Abstract: A process for reforming, with hydrogen, a naphtha in a reforming reactor provided with a rhenium promoted platinum catalyst over which the naphtha is contacted and reacted at reforming conditions to produce a C.sub.5.sup.+ liquid product of improved octane. The catalyst is contacted, on initiation of the reforming reaction, with a maximum of about 75 percent of the rate of hydrogen required for maintaining the optimum C.sub.5.sup.+ liquid yield over the length of the operating cycle. The hydrogen rate is increased not later than the time of line-out of the C.sub.5.sup.+ liquid yield to that required to maintain said optimum C.sub.5.sup.+ liquid yield.
    Type: Grant
    Filed: September 13, 1982
    Date of Patent: November 15, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gerald E. Markley, William E. Winter
  • Patent number: 4261810
    Abstract: Process for reforming a hydrocarbon charge under reforming conditions in a reforming zone containing a sulfur-sensitive metal containing reforming catalyst wherein over-cracking of the charge stock and excessive temperature rise in the reforming zone is suppressed by pre-conditioning the catalyst, prior to contact with the charge, with a reformate of specified octane number and aromatics content.
    Type: Grant
    Filed: March 17, 1980
    Date of Patent: April 14, 1981
    Assignee: Mobil Oil Corporation
    Inventors: William D. McHale, Hans J. Schoennagel
  • Patent number: RE31647
    Abstract: Process for reforming a hydrocarbon charge under reforming conditions in a reforming zone containing a sulfur-sensitive metal containing reforming catalyst wherein over-cracking of the charge stock and excessive temperature rise in the reforming zone is suppressed by pre-conditioning the catalyst, prior to contact with the charge, with a reformate of specified octane number and aromatics content.
    Type: Grant
    Filed: May 27, 1982
    Date of Patent: August 14, 1984
    Assignee: Mobil Oil Corporation
    Inventors: William D. McHale, Hans J. Schoennagel