Having Enclosed Rotary Member For Directly Impelling Blood Flow Patents (Class 623/3.13)
  • Patent number: 11801377
    Abstract: A pump head includes a casing including a blood inlet configured to receive a flow of a blood and a blood outlet configured to allow the blood to flow out of the casing. The pump head also includes a shaft disposed in the casing. The pump head also includes a magnetic structure mounted onto the shaft. The pump head further includes an impeller having an open structure and mounted to an exterior surface of the magnetic structure through an opening provided at the open structure.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: October 31, 2023
    Assignee: Chinabridge (Shenzhen) Medical Technology Co., Ltd
    Inventor: Yijiang Li
  • Patent number: 11724093
    Abstract: A rotary pump housing having a cylindrical bore, a pumping chamber and a motor stator including an electrically conductive coil located within the housing and surrounding a portion of the cylindrical bore. A rotor has a cylindrical shaft with an impeller and one or of magnets located within the shaft that are responsive to the motor stator to drive actuation of the rotor. The housing bore is closely fitted to the outer surface of the shaft forming a hydrodynamic journal bearing with an annular clearance defining a leakage flow path. One or more of radial or axial thrust bearings may be provided to provide rotation stability to the rotor and flow within the leakage flow path. The relative orientation of positions of the inflow, outflow, and leakage flow paths may be varied within the pump, such as to accommodate different intended methods for implantation and/or use.
    Type: Grant
    Filed: July 5, 2020
    Date of Patent: August 15, 2023
    Assignee: VADOVATIONS, INC.
    Inventors: J. Ryan Stanfield, Michael Vladovich, Timothy R. Maher
  • Patent number: 11666748
    Abstract: A seal assembly is configured to seal a portion of a blood pump from the blood. The seal assembly includes a first seal; and a second seal. The second seal includes a lower contact-pressure seal than the first seal.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: June 6, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Joseph A. Kronstedt, Umang Anand
  • Patent number: 11478627
    Abstract: A blood pump comprises a pump casing having a blood flow inlet and a blood flow outlet, and an impeller arranged in said pump casing and rotatably supported in the pump casing by a bearing so as to be rotatable about an axis of rotation. The impeller has blades for conveying blood from the blood flow inlet to the blood flow outlet. The bearing comprises at least one stationary bearing portion coupled to the pump casing and having a stationary bearing surface that faces radially outwards. The bearing further comprises a rotating bearing surface interacting with the stationary bearing surface to form the bearing, wherein the rotating bearing surface faces radially inwards and is formed on an exposed radially inner edge of the blades. The blades are designed to draw blood deposit on the stationary bearing surface in a radially outward direction.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: October 25, 2022
    Assignee: Abiomed Europe GmbH
    Inventors: Thorsten Siess, Walid Aboulhosn, Wolfgang Kerkhoffs, Ellen Keysselitz, Peter Skrodsky
  • Patent number: 11458296
    Abstract: A ventricular assist assembly, for assisting a heart, includes an anchoring device, a cardiac pump and a stabilizing device. The anchoring device anchors a cardiac pump, is intended to be assembled with an opening in a ventricular wall of the heart, and delimits an internal passage. The cardiac pump is intended to be attached to the anchoring device, is configured for intra-ventricular insertion into the heart, and has a distal end. The cardiac pump extends through the internal passage into the heart when attached to the anchoring device implanted in the opening so that its distal end is placed in a ventricular chamber. The stabilizing device stabilizes the cardiac and includes at least two elongate, biocompatible and flexible connecting members, each elongate connecting member being intended to connect a part of the cardiac pump that is positioned in the ventricular chamber to an internal wall of the ventricular chamber.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: October 4, 2022
    Inventors: Stéphane Garrigue, Arnaud Mascarell
  • Patent number: 11344716
    Abstract: A rotor for an axial-flow blood pump has blades projecting outwardly from a hub and channels between the blades. The blades incorporate hydrodynamic bearing surfaces capable of suspending the rotor during operation. The rotor has a configuration which provides superior pumping action and reduced shear of blood passing through the pump. The forwardly facing pressure surfaces of the blades may include outflow corner surface at their downstream ends. The outflow corner surfaces desirably slope rearwardly and intersect the rearwardly-facing suction surfaces of the blades at outflow ends of the blades.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 31, 2022
    Assignee: HeartWare, Inc.
    Inventor: Mustafa Ertan Taskin
  • Patent number: 10905807
    Abstract: Blood pumps discussed herein may be suitable for use as a ventricular assist device (VAD) or the like. The blood pumps cause minimal blood damage, are energy efficient, and can be powered by implanted batteries for extended periods of time. Further, these pumps are also beneficial because they may improve the quality of life of a patient with a VAD by reducing restrictions on the patient's lifestyle. The blood pumps can provide radial and axial stability to a rotating impeller that is driven by a separate rotor. Both radial and axial stability can be provided, at least in part, by one or more permanent magnetic couplings between the rotor and the impeller and/or one or more permanent magnetic bearings between the pump housing and the impeller.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 2, 2021
    Assignee: CORVION, INC.
    Inventors: Greg S. Aber, Edward D. Grainger
  • Patent number: 10828408
    Abstract: A blood pump may be provided that includes an inlet, an outlet and a rotor for delivering fluid from the inlet to the outlet, wherein the rotor is suspended within the blood pump by radial passive magnetic forces and axially is preloaded in one direction at least by way of passive magnetic forces so that, during a fluid-delivering rotation of the rotor, the axial thrust of the rotor acts counter to the magnetic attraction acting axially in the direction of the outlet.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: November 10, 2020
    Assignee: BERLIN HEART GMBH
    Inventors: Marcus Granegger, Kim Peter Winterwerber, Hendryk Richert, Bodo Schmidt, Oliver Peters
  • Patent number: 10806839
    Abstract: A ventricular assist system including an implantable rotary pump, a pump drive circuit for supplying power to the pump, and a signal processing circuit receiving one or more electrophysiological signals and one or more physiological signals of the subject. The signal processing circuit is operable to receive inputs from the one or more electrophysiological sensors and the physiological sensor, and determine the presence or absence of a non-normal sinus cardiac rhythm condition based on the input from the electrophysiological sensors. In the presence of a non-normal sinus rhythm, the circuit operates the pump in a modified mode of operation. In the absence of a non-normal sinus rhythm, the circuit operates the pump in a normal mode of operation. In either case, the circuit controls the power to the pump and/or speed of the pump based on the input from the physiological sensor and the mode of operation.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 20, 2020
    Assignee: HeartWare, Inc.
    Inventors: Barry M. Yomtov, Fernando Casas
  • Patent number: 10806838
    Abstract: To provide a simple embodiment of a rotor (2) for a fluid pump which is nevertheless very flexible in handling and compressible, in accordance with the invention a conveying blade is provided having at least two struts (12, 13, 14) and a membrane spanned between them in the expanded state, wherein the struts each have at least one joint, in particular more than one joint, which enables an angling in a first direction in a first movement plane and bounds an overelongation beyond an elongation angle of in particular 180° in the opposite second direction. In particular when a plurality of joints (15, 16, 17) are provided at the struts, they, and with them the conveying blades, are particularly flexible for simple compressibility.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: October 20, 2020
    Assignee: ECP ENTWICKLUNGSGESELLSCHAFT MBH
    Inventor: Sami Er
  • Patent number: 10780208
    Abstract: A blood pump comprises a pump casing having a blood flow inlet and a blood flow outlet, and an impeller arranged in said pump casing and rotatably supported in the pump casing by a bearing so as to be rotatable about an axis of rotation. The impeller has blades for conveying blood from the blood flow inlet to the blood flow outlet. The bearing comprises at least one stationary bearing portion coupled to the pump casing and having a stationary bearing surface that faces radially outwards. The bearing further comprises a rotating bearing surface interacting with the stationary bearing surface to form the bearing, wherein the rotating bearing surface faces radially inwards and is formed on an exposed radially inner edge of the blades. The blades are designed to draw blood deposit on the stationary bearing surface in a radially outward direction.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: September 22, 2020
    Assignee: ABIOMED EUROPE GMBH
    Inventors: Thorsten Siess, Walid Aboulhosn, Wolfgang Kerkhoffs, Ellen Keysselitz, Peter Skrodsky
  • Patent number: 10744248
    Abstract: A cardiac assistance system is provided that comprises two pumps and cannulae connected thereto. A first pump of the two pumps is configured to connect to a right heart system via a first fluid channel. The first fluid channel formed at least partially by a first two cannulae of the cannulae. A second pump of the two pumps is configured to connect to a left heart system via a second fluid channel. The second fluid channel formed at least partially by a second two of the cannulae. The two pumps are configured as rotary pumps for arrangement outside a patient's body.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 18, 2020
    Assignee: BERLIN HEART GMBH
    Inventors: Peter Nüsser, Nedim Arslan, Kurt Graichen, Jörg Müller
  • Patent number: 10702642
    Abstract: The present invention relates to a blood pump. The blood pump according to the present invention includes: a housing including an inlet, through which blood flows, at an upper part of the housing and an outlet, through which the blood is discharged, along an edge of the housing; an impeller part, which is rotatable and disposed inside the housing, including a plurality of blades on the surface thereof so as to move the blood flowing in through the inlet toward the outlet by using a centrifugal force; a rotary shaft member disposed to penetrate the center part of the impeller part so as to support the impeller part to be rotatable which moves the blood to the lower part thereof; and a magnetic body disposed on the impeller part for rotating the impeller part in a predetermined direction according to a change in a magnetic field outside the housing.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 7, 2020
    Assignee: SNU R&DB FOUNDATION
    Inventors: Jung Chan Lee, Hee Chan Kim
  • Patent number: 10391217
    Abstract: A mechanical circulatory support device includes an inner housing having an inlet end, an outlet end, and a flow path there between. The flow path defines a longitudinal axis. A volute downstream of the outlet end has an outlet port. A rotor mounted within the inner housing upstream of the volute and configured to rotate about the longitudinal axis is included. The volute includes an inner surface having a minimum radius immediately adjacent the rotor and a maximum radius at the outlet port that is larger than the minimum radius.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 27, 2019
    Assignee: HeartWare, Inc.
    Inventors: Mustafa Ertan Taskin, Charles R. Shambaugh, Jr.
  • Patent number: 10307575
    Abstract: The procedure to place antegrade hemodynamic support (AHS) combine currently available procedures and devices in a unique fashion to solve a significant problem for patients who need large bore hemodynamic support. The AHS procedure involves delivering an AHS device or a catheter connected to an AHS device to a patient's aorta in an antegrade fashion, alleviating the workload on the patient's heart and supporting the patient hemodynamically to maintain normal functions of the body organs.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: June 4, 2019
    Assignee: Henry Ford Health System
    Inventor: Khaldoon Alaswad
  • Patent number: 10213537
    Abstract: A ventricular assist device for intraventricular placement inside a heart of a mammalian subject includes a pump including a housing having an inlet end, an inlet at the inlet end, and an outlet. The pump further includes a moveable element disposed in the pump housing for pumping blood from the inlet to the outlet. A base member is included as well as a spacer member connected to the pump housing and the base member. The base member is positioned a distance from the inlet end of the pump housing to define a gap therebetween. One or more sensor elements are mounted to at least one from the group consisting of the base member and the housing, the one or more sensor elements being configured to measure one or more blood parameters prevailing within the gap during operation of the pump.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: February 26, 2019
    Assignee: HeartWare, Inc.
    Inventors: Nathalie Jeannette Nunez, Timothy McSweeney
  • Patent number: 9694124
    Abstract: A cardiac support system comprising an intake region for the intake of blood, an outlet region for discharging the intake blood, a pump arrangement for conveying the blood from the intake region to the outlet region, a pump-aorta connection, and a suction connection from the intake region to the pump, parts of the function of the heart being taken on by said cardiac support system, and a cardiac support method having the steps of taking in blood from within the left half of the heart, pumping, and transferring aspirated blood into the aorta with the cardiac support system.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: July 4, 2017
    Assignee: Universitaet zu Luebeck
    Inventor: Hans-Hinrich Sievers
  • Patent number: 9610417
    Abstract: A portable, rechargeable, discontinuous positive airway pressure (DPAP) device for use by an individual as a breathing assist device. The DPAP device comprises a sensor for tracking an exhalation phase of a respiration cycle of the individual relative to a stimulation period, E0. A stimulation source responsive to a sensor determination that the exhalation phase has entered the stimulation period, E0, to discontinuously deliver a stimulation, during the stimulation period, E0. A controller regulates the delivery of the stimulation by the stimulation source. A rechargeable power cell for power the controller. The rechargeable power cell includes a Seebeck element that is placed in contact with the individual's body for thermoelectrically converting the individual's body heat into an electrical current that recharges the power cell.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: April 4, 2017
    Inventors: Gabrielle M Kassatly, Danielle M Kassatly, Michelle M Kassatly, L. Samuel A Kassatly
  • Patent number: 9173985
    Abstract: A total artificial heart having a rotor with an impeller, wherein the rotor is mounted within a pump housing on a hollow shaft. The rotor is magnetically driven to produce rotary motion of the impeller for pumping blood. The motor is disposed within the pump housing such that axial translation within the housing acts as a shuttle valve to alternate flow between pulmonary and systemic circulation.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: November 3, 2015
    Assignee: OREGONHEART, INC.
    Inventor: Richard Wampler
  • Patent number: 9138517
    Abstract: A heart pump includes: a rotative impeller partly inserted into the systemic ventricle, this rotative impeller being equipped with: a membrane sutured to the outer wall of the heart in such a way as to secure the rotative impeller to the wall of the heart, a housing arranged inside the systemic ventricle in such a way as to draw up then discharge blood, a motor connected to the housing and arranged partly outside the systemic ventricle in such a way as to facilitate maintenance; an integrated management unit in the epigastric region including a power supply and a rotative impeller control unit; and a wired link between the management unit and the rotative impeller.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 22, 2015
    Assignee: FINEHEART
    Inventor: Stéphane Garrigue
  • Patent number: 9011312
    Abstract: In order to produce a pulsatile blood flow pattern that includes time periods of relatively high blood flow rates and time periods of relatively low blood flow rates, the operating speed of a blood pump can be selectively controlled to produce an operating speed pattern that includes time periods of relatively high rotation speeds and periods of relatively low rotation speeds. For example, the blood pump is rotated at a first speed for a first period of time. The speed of the blood pump is then decreased from the first speed to a second speed and is operated at the second speed for a second amount of time. The speed of the blood pump is then decreased to a third speed for a third amount of time. If desired, the operating speed pattern can be repeated to continue the pulsatile blood flow pattern.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: April 21, 2015
    Assignee: Thoratec Corporation
    Inventor: Kevin Bourque
  • Publication number: 20150066142
    Abstract: An artificial heart for use in a human recipient includes a housing within which a quartet of turbine pump segments are operative. The quartet of turbine pump segments provides a redundancy which in turn enhances the safety factor provided by the artificial heart. A controller is powered by a rechargeable battery and is operative to apply appropriate drive signals to the motor drives of the turbine pump segments. The battery may be implanted along with the controller to avoid the need for any external connections to the artificial heart. An inductively coupled battery charger for use outside the recipient's body is positioned proximate the battery charger to provide inductively coupled charging for use in driving the artificial heart.
    Type: Application
    Filed: December 3, 2013
    Publication date: March 5, 2015
    Inventors: Steve Smith, Peter DeSilva
  • Patent number: 8961388
    Abstract: In order to produce a pulsatile blood flow pattern that includes time periods of relatively high blood flow rates and time periods of relatively low blood flow rates, the operating speed of a blood pump can be selectively controlled to produce an operating speed pattern that includes time periods of relatively high rotation speeds and periods of relatively low rotation speeds. For example, the blood pump is rotated at a first speed for a first period of time. The speed of the blood pump is then decreased from the first speed to a second speed and is operated at the second speed for a second amount of time. The speed of the blood pump is then decreased to a third speed for a third amount of time. If desired, the operating speed pattern can be repeated to continue the pulsatile blood flow pattern.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 24, 2015
    Assignee: Thoratec Corporation
    Inventor: Kevin Bourque
  • Patent number: 8961390
    Abstract: A method of estimating the blood flow rate of a heart ventricle assist device which is positioned externally of, or implanted in, a patient. The assist device comprises a blood pump having a rapidly rotating, electrically powered impeller, and comprises briefly interrupting power to the impeller to cause its rotation to slow. From this, blood viscosity can be estimated, which viscosity is used to obtain real time, estimated blood flow rates and pressure heads. Apparatus for accomplishing this is disclosed.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: February 24, 2015
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey LaRose, Udai Singh
  • Publication number: 20140371849
    Abstract: Embodiments of the disclosed technology are directed to a self-contained, totally implantable blood pump that replaces the whole heart. It is a small spherical device that encloses all of its blood propulsion dynamics. The dynamics are controlled by a built-in microcontroller that regulates the speed of the motor in response to hemodynamic changes like blood pressure fluctuations, level of body activity, and/or posture. The hemodynamic changes are detected using a plurality of sensors disposed around the body. An implantable transcutaneously rechargeable battery provides power to the microcontroller, motor and/or sensors.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 18, 2014
    Inventors: Wilmo C. Orejola, Cedric A. Orejola
  • Patent number: 8888728
    Abstract: An improved intravascular blood pump and related methods involving the broad inventive concept of equipping the intravascular blood pump with guiding features such that the intravascular blood pump can be selectively positioned at a predetermined location within the circulatory system of a patient.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: November 18, 2014
    Assignee: MAQUET Cardiovascular LLC
    Inventors: Walid N. Aboul-Hosn, William R. Kanz, Bruce A. Baker
  • Patent number: 8870552
    Abstract: A pump assembly and estimation and control system therefor, the pump adapted for continuous flow pumping of blood. In a particular form, the pump is a centrifugal pump wherein the impeller is entirely sealed within the pump housing and is exclusively hydrodynamically suspended therein against movement in three translational and two rotational degrees of freedom as the impeller rotates within the fluid urged by electromagnetic means external to the pump cavity. Hydrodynamic suspension is assisted by the impeller having deformities therein such as blades with surfaces tapered from the leading edges to the trailing edges of bottom and top surfaces thereof.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: October 28, 2014
    Assignee: Thoratec Corporation
    Inventors: Peter Joseph Ayre, Geoffrey Douglas Tansley, Peter Andrew Watterson, John Campbell Woodard
  • Patent number: 8870951
    Abstract: The present invention is TAH system for auto-regulating blood flow and maintaining the asymmetric pressure balance in the mammalian cardiovascular system by decreasing the resistance in blood flow and minimizing the pressure gradients to exploit the in-flow pressure sensitivities of continuous flow pumps. The system further includes laminar flow generating manifolds connected to the atrium at one end and attached to pumps linked to the great vessels at the other, such that the in-let flow sensitivities of the pumps are maximized to auto-regulate blood flow, providing adequate pulmonary and systemic arterial flow to support normal metabolism and end-organ function and maintain the appropriate asymmetric physiologic pressure balance between the systemic and pulmonary systems of the mammalian cardiovascular system.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: October 28, 2014
    Assignee: Newheart Medical Devices LLC
    Inventors: Oscar H. Frazier, William E. Cohn
  • Patent number: 8852072
    Abstract: A ventricular assist device includes a pump such as an axial flow pump, an outflow cannula connected to the outlet of the pump, and an anchor element. The anchor element is physically connected to the pump, as by an elongate element. The pump is implanted within the left ventricle with the outflow cannula projecting through the aortic valve but desirably terminating short of the aortic arch. The anchor element is fixed to the wall of the heart near the apex of the heart so that the anchor element holds the pump and outflow cannula in position.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: October 7, 2014
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey A. LaRose, Charles R. Shambaugh, Jr., Steve A. White, Daniel Tamez
  • Patent number: 8821365
    Abstract: A centrifugal blood pump apparatus includes an impeller provided in a blood chamber, a plurality of permanent magnets provided in the impeller, and a plurality of sets of magnetic materials and coils provided in a motor chamber for driving the impeller to rotate with a diaphragm interposed therebetween. The plurality of permanent magnets are aligned with a gap therebetween in a rotation direction of the impeller. Accordingly, if the weight of the permanent magnets is maintained at a constant value, a magnetic field can be strengthened even with a wide motor gap due to the diaphragm, as compared to an example where there is no gap between the permanent magnets.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 2, 2014
    Assignee: Thoratec Corporation
    Inventors: Takayoshi Ozaki, Hiroyuki Yamada, Kenichi Suzuki, Ken Sugiura
  • Patent number: 8814933
    Abstract: A foldable intravascularly insertable blood pump employs an impeller with radially delivering vanes in combination with an annular deflection channel. The impeller is driven by a shaft extending through a catheter wherein the impeller and its envelope are foldable by relative displacement of the shaft and catheter.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: August 26, 2014
    Assignee: Abiomed Europe GmbH
    Inventor: Thorsten Siess
  • Patent number: 8801590
    Abstract: In a catheter (2) to assist the performance of a heart (1) with at least one pump (7), the pump is formed as a rotary pump at the distal end of the catheter (2), the rotor (6) lying distally on the outer side being coupled via a magneto coupling with a drive wheel (21), formed as a hydraulically or pneumatically operated paddle wheel, arranged inside the catheter (2). The driving fluid is supplied to the paddle wheel via a lumen (22) of the catheter (2) and is carried off via a further lumen (23) of the catheter.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 12, 2014
    Assignee: Miracor Medical Systems GmbH
    Inventor: Werner Mohl
  • Publication number: 20140207232
    Abstract: The heart pump includes: a rotary impeller inserted in the systemic ventricle, the rotary impeller being provided with: a sealing membrane sutured onto the outer wall of the heart so as to secure the rotary impeller to the wall of the heart; a casing arranged inside the systemic ventricle such as to be able to suction and then discharge the blood; a preferably brushless motor connected to the casing and arranged inside the systemic ventricle and/or in the body of the ventricle, so as to facilitate maintenance; a managing unit installed in the epigastric region and including a preferably rechargeable power source and a unit for controlling the rotary impeller; a wired link between the managing unit and the rotary impeller; and a system for transmitting haemodynamic and rhythmic data measured by the heat pump via telemedicine.
    Type: Application
    Filed: July 28, 2011
    Publication date: July 24, 2014
    Applicant: FINEHEART
    Inventor: Stephane Garrigue
  • Publication number: 20140155998
    Abstract: A total artificial heart having a rotor with an impeller, wherein the rotor is mounted within a pump housing on a hollow shaft. The rotor is magnetically driven to produce rotary motion of the impeller for pumping blood. The motor is disposed within the pump housing such that axial translation within the housing acts as a shuttle valve to alternate flow between pulmonary and systemic circulation.
    Type: Application
    Filed: November 19, 2013
    Publication date: June 5, 2014
    Inventor: Richard Wampler
  • Patent number: 8721719
    Abstract: A blood pump controller includes a microcontroller and a communication interface. The microcontroller is configured to communicate with various types of blood pump communication modules. The microcontroller is further configured to determine, based on communication with a particular type of blood pump communication module, the particular type of blood pump communication module communicated with. The microcontroller is further configured to select, based on the determination of the particular type of blood pump communication module, control logic used to control the particular type of blood pump communication module. The microcontroller is further configured to generate, based on the selected control logic, commands for controlling the blood pump communication module. The communication interface is configured to connect the microcontroller to the particular type of blood pump communication module.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: May 13, 2014
    Assignee: Thoratec Corporation
    Inventor: David J. Burke
  • Publication number: 20140067056
    Abstract: A molded interconnect device can carry a Hall sensor for transducing a position of a rotor of the implantable blood pump. The molded interconnect device includes one or more integrated electronic circuit traces configured to electrically connect the hall sensor with a printed circuit board of the implantable blood pump, and the molded interconnect device is configured to be mounted to the printed circuit board.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 6, 2014
    Inventors: Samuel Schimpf, Mark McChrystal, Joseph C. Stark, III, Andre Siebenhaar
  • Patent number: 8657875
    Abstract: At least one aspect is directed to a totally artificial heart, and at least another aspect is directed to a method of controlling blood flow in a patient. The totally artificial heart may include a first rotary pump having an input to receive blood and an output to provide blood to a patient's lungs, a second rotary pump having an input to receive blood and an output to provide blood to the patient's body, a first sensor associated with the first rotary pump, a second sensor associated with the second rotary pump, and a control system coupled to the first sensor, the second sensor, the first rotary pump and the second rotary pump and configured to control characteristics of the first rotary pump and the second rotary pump based on signals received from at least one of the first sensor and the second sensor such that an average flow of blood through the second rotary pump is greater than an average flow of blood through the first rotary pump.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: February 25, 2014
    Assignee: Abiomed, Inc.
    Inventors: Robert T. V. Kung, Farhad Zarinetchi, Robert M. Hart
  • Patent number: 8608798
    Abstract: A total artificial heart having a rotor with an impeller, wherein the rotor is mounted within a pump housing on a hollow shaft. The rotor is magnetically driven to produce rotary motion of the impeller for pumping blood. The motor is disposed within the pump housing such that axial translation within the housing acts as a shuttle valve to alternate flow between pulmonary and systemic circulation.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: December 17, 2013
    Inventor: Richard Wampler
  • Publication number: 20130331934
    Abstract: An artificial heart with a centrifugal pump is disclosed. In one embodiment, the artificial heart includes an impeller disposed in a housing. The impeller is configured to rotate to circulate blood through the housing. The impeller may include a set of blades on a first side of the impeller and a set of vanes on a second side opposite the first. The blades on the first side and the vanes on the second side allow blood circulation from both the first and the second sides of the impeller. The artificial heart may also or instead include a diffuser with adjustable vanes that enable variation in the output characteristics of the artificial heart pump. Various other artificial hearts, pumps, systems, and methods, including control systems and methods, are also disclosed.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Applicant: CAMERON INTERNATIONAL CORPORATION
    Inventors: Omar M. Kabir, Ronald W. Webb, Mark A. Patterson, Gerrit M. Kroesen, John C. Etcheverry, Daniel B. Baxter, Robert Small
  • Patent number: 8562508
    Abstract: A blood pump system includes a first implantable housing, an implantable blood pump independent from the first implantable housing, and a percutaneous extension. The first implantable housing includes a rechargeable power storage device. The implantable blood pump supplements the pumping function of a heart. The rechargeable power storage device supplies electrical power to the implantable blood pump. The percutaneous extension is coupled to the rechargeable power storage device and adapted to traverse the skin. The percutaneous extension is configured to releasably connect to an external power supply adapted to provide power for recharging or supplementing the rechargeable power storage device to power the implantable blood pump.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 22, 2013
    Assignee: Thoratec Corporation
    Inventors: Charles Dague, Kevin Bourque
  • Publication number: 20130218268
    Abstract: A heart assistance device for the pulsatile delivery of blood. A first and a second pump chamber are provided, and also a pump. Both pump chambers each have a fluid chamber and a blood-carrying chamber. By means of the pump, each fluid chamber can be filled with a fluid or emptied thereof in such a way that an expansion or contraction of the fluid chamber takes place. During the expansion of the fluid chamber of one pump chamber, a compression of the blood-carrying chamber of the same blood chamber takes place. The pump is designed as a roller cell pump or vane pump.
    Type: Application
    Filed: April 21, 2011
    Publication date: August 22, 2013
    Inventors: Thomas Schmid, Bernhard Vodermayer, Heinrich Gmeiner, Alexandra Wimmer, Andreas Kunz, Wolfgang Schiller
  • Patent number: 8506470
    Abstract: A method of estimating the blood flow rate of a heart ventricle assist device which is positioned externally of, or implanted in, a patient. The assist device comprises a blood pump having a rapidly rotating, electrically powered impeller, and comprises briefly interrupting power to the impeller to cause its rotation to slow. From this, blood viscosity can be estimated, which viscosity is used to obtain real time, estimated blood flow rates and pressure heads. Apparatus for accomplishing this is disclosed.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 13, 2013
    Assignee: Heartware, Inc.
    Inventors: Jeffrey A. LaRose, Udai Singh
  • Patent number: 8506471
    Abstract: In order to produce a pulsatile blood flow pattern that includes time periods of relatively high blood flow rates and time periods of relatively low blood flow rates, the operating speed of a blood pump can be selectively controlled to produce an operating speed pattern that includes time periods of relatively high rotation speeds and periods of relatively low rotation speeds. For example, the blood pump is rotated at a first speed for a first period of time. The speed of the blood pump is then decreased from the first speed to a second speed and is operated at the second speed for a second amount of time. The speed of the blood pump is then decreased to a third speed for a third amount of time. If desired, the operating speed pattern can be repeated to continue the pulsatile blood flow pattern.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 13, 2013
    Assignee: Thoratec Corporation
    Inventor: Kevin Bourque
  • Publication number: 20130204362
    Abstract: The invention relates to a blood pump for the invasive application within a body of a patient comprising a rotor (43, 27) which is drivable about an axis of rotation and is radially compressible or expandable and which has a hub (18, 28) and at least one impeller blade (14, 15, 16, 17, 29, 30) fastened thereto, as well as comprising a housing (19, 19?) which is compressible or expandable in the radial direction by an axial stretching or axial compression. The object of making both the rotor and the housing expandable and compressible in as simple a manner as possible is achieved in accordance with the invention in that a control body (21) is provided which passes through the hub (18) in the longitudinal direction and which is coupled to the housing on the distal side of the rotor such that it exerts pulling and/or compression forces on the housing by a movement in the longitudinal direction with respect to the housing.
    Type: Application
    Filed: July 1, 2011
    Publication date: August 8, 2013
    Applicant: ECP ENTWICKLUNGSGESELLSCHAFT MBH
    Inventors: Thomas Toellner, Mario Scheckel
  • Patent number: 8409276
    Abstract: A heart assist device comprising a rotary pump housing having a cylindrical bore, a pumping chamber and a motor stator including an electrically conductive coil located within the housing and surrounding a portion of the cylindrical bore. A rotor has a cylindrical shaft, at least one impeller appended to one end of the shaft, and a plurality of magnets located within the shaft. The rotor shaft is positioned within the housing bore with the magnets opposite the motor stator, and the impeller is positioned within the pumping chamber. The housing bore is closely fitted to the outer surface of the shaft forming a hydrodynamic journal bearing, with the pumping chamber and journal bearing connected by a leak path of blood flow between the pumping chamber and the journal bearing. A backiron of the motor stator attracts the rotor magnets to resist longitudinal displacement of the rotor within the housing during operation.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 2, 2013
    Inventor: Richard Wampler
  • Publication number: 20130041460
    Abstract: An implantable pump system for assisting blood flow includes a conduit adapted to be placed in fluid connection with a blood vessel and at least one movable valve in fluid connection with the conduit. The valve includes at least one closure member in operative connection with an opening therein. The pump system further includes and an activating system adapted to actively move the closure member toward at least one of a closed position or an open position and a drive system to move the valve. The closure member can, for example, be biased toward an open position.
    Type: Application
    Filed: February 9, 2012
    Publication date: February 14, 2013
    Inventors: MARLIN STEPHEN HEILMAN, DOUGLAS J. KOEBLER, CHARLES ROBERT KOHLER, JON DAVID WAGNER, DAVID M. REILLY
  • Patent number: 8226712
    Abstract: The present invention is TAH system for auto-regulating blood flow and maintaining the asymmetric pressure balance in the mammalian cardiovascular system by decreasing the resistance in blood flow and minimizing the pressure gradients to exploit the in-flow pressure sensitivities of continuous flow pumps. The system further includes laminar flow generating manifolds connected to the atrium at one end and attached to pumps linked to the great vessels at the other, such that the in-let flow sensitivities of the pumps are maximized to auto-regulate blood flow, providing adequate pulmonary and systemic arterial flow to support normal metabolism and end-organ function and maintain the appropriate asymmetric physiologic pressure balance between the systemic and pulmonary systems of the mammalian cardiovascular system.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: July 24, 2012
    Assignee: Newheart Medical Devices LLC
    Inventors: Oscar H. Frazier, William E. Cohn
  • Patent number: 8210829
    Abstract: A pump (10) includes a housing, a stator (20) supported in the housing, and a rotor assembly (30). The rotor assembly (30) includes a rotor (32) supported in the housing for rotation relative to the stator (20) about an axis (12). The rotor assembly (30) also includes a first impeller (34) operatively coupled to a first axial end of the rotor (32) for rotation with the rotor about the axis (12). The rotor assembly further includes a second impeller (36) operatively coupled to a second axial end of the rotor (32), opposite the first axial end, for rotation with the rotor about the axis (12). The rotor assembly (30) is movable along the axis (12) relative to the housing to adjust hydraulic performance characteristics of the pump (10).
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 3, 2012
    Assignee: The Cleveland Clinic Foundation
    Inventors: David Horvath, Leonard A. R. Golding, Alex Massiello
  • Patent number: 8157721
    Abstract: An artificial heart pump system is provided independently with a controlling processor for controlling an operation status of a blood pump so as to perform in a preset condition and with an observing processor for controlling a display unit displaying an operation status and an operation condition of the blood pump. In addition, a memory device is mounted in an outside-the-body type battery pack included in the artificial heart pump system; data such as pump data, event log or the like is stored therein; and data are collected and managed automatically by a battery charger when charging the battery charger for a daily performance. Further, an interface unit of an artificial heart pump is proposed where a user can confirm displayed contents of the controller without exposing the controller externally.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: April 17, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Naoya Sugiura
  • Publication number: 20120089225
    Abstract: A high efficiency blood pump includes a pump housing, wherein the pump housing provides an inlet and outlet. The pump includes a motor housing, wherein the motor housing contains a motor. An impeller is housed in the pump housing, wherein the impeller is radially supported by a hydrodynamic bearing providing at least one row of pattern grooves. A diaphragm provided by the pump housing separates the impeller chamber from the motor chamber. A magnetic coupling is provided between the motor and the impeller, wherein the magnetic coupling causes the impeller to rotate when the motor rotates and provides axial restraint of the impeller.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: EverHeart Systems LLC
    Inventors: Neil H. Akkerman, Greg S. Aber