Heart Patents (Class 623/913)
  • Patent number: 8230717
    Abstract: An apparatus and method for measuring paravalvular leakage from a prosthetic heart valve in vitro. The apparatus has a pulse chamber pressure vessel and a pulsatile pump. The sewing ring of a prosthetic heart valve is mounted to a mounting member which is affixed to the pressure chamber, and paravalvular leakage from the heart valve is collected and measured.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 31, 2012
    Assignee: Ethicon, Inc.
    Inventor: John P. Matonick
  • Patent number: 8057396
    Abstract: Devices for assessing the size, shape, and topography of vessel lumens and hollow portions of organs are described. The devices are particularly adapted for determining the size, shape, topography, and compliance of the native heart valves to facilitate the later implantation of a prosthetic heart valve. The devices are typically catheter-based having an assessment mechanism fixed to a distal end of the catheter. The assessment mechanism generally includes an expandable member, such as a balloon. The assessment mechanism may also include an imaging member, a physical assessment member, an electronic mapping construction, an alignment mechanism, a valvuloplasty balloon, or any combination thereof.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Phoenix Biomedical, Inc.
    Inventors: David C. Forster, Brian Beckey, Brandon Walsh, Scott Heneveld
  • Patent number: 7621192
    Abstract: Apparatuses and methods for determining particle shed rates of implantable or inter-dwelling devices are disclosed. Durability test apparatuses with integrated particle counters produce time-dependent particle shed rate profiles. The apparatuses are designed to accommodate pulsatile flow, resembling a heartbeat at the implantable device. In an embodiment, the pulsatile flow is converted to a steady flow before fluid enters the integrated particle counter.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: November 24, 2009
    Assignee: Dynatek Laboratories, Inc.
    Inventors: James C. Conti, Elaine R. Strope
  • Patent number: 7254988
    Abstract: A method for testing the pulsatile endurance of a vascular implant 3 comprises placing a resilient insert 4 into the implant and repeatedly expanding and contracting the insert, thereby expanding and contracting the implant. The insert preferably has a cavity therein and is repeatedly expanded and contracted by repeatedly increasing and decreasing the pressure in the cavity.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: August 14, 2007
    Assignee: Anson Medical Limited
    Inventor: Duncan Robert Keeble
  • Patent number: 6837902
    Abstract: Heart valve leaflet selection methods and apparatuses which subject individual leaflets to loads and measure the resulting deflection to more reliably group leaflets of similar physical characteristics for later assembly in prosthetic heart valves. The deflection testing may be accomplished using a variety of test set ups which are designed to impart a load on the leaflet which simulates the actual loading within a heart valve. The results from a number of deflection tests are used to categorize individual leaflets, which data can be combined with other data regarding the characteristics of the leaflet to better select leaflets for assembly into a multi-leaflet heart valve. In one embodiment, the deflection test is combined with an intrinsic load test, and leaflets having similar deflection and intrinsic load values used in the same heart valve.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: January 4, 2005
    Assignee: Edwards Lifesciences Corporation
    Inventors: Than Nguyen, Hung Ly Lam, Jianbo Zhou, Carlos M. Romero, Ralph Kafesjian, Xiaoming G. Guo, Van Le Huynh
  • Publication number: 20040082991
    Abstract: Heart valve leaflet selection methods and apparatuses which subject individual leaflets to loads and measure the resulting deflection to more reliably group leaflets of similar physical characteristics for later assembly in prosthetic heart valves. The deflection testing may be accomplished using a variety of test set ups which are designed to impart a load on the leaflet which simulates the actual loading within a heart valve. The results from a number of deflection tests are used to categorize individual leaflets, which data can be combined with other data regarding the characteristics of the leaflet to better select leaflets for assembly into a multi-leaflet heart valve. In one embodiment, the deflection test is combined with an intrinsic load test, and leaflets having similar deflection and intrinsic load values used in the same heart valve.
    Type: Application
    Filed: October 20, 2003
    Publication date: April 29, 2004
    Inventors: Than Nguyen, Hung Ly Lam, Jianbo Zhou, Carlos M. Romero, Ralph Kafesjian, Xiaoming G. Guo, Van Le Huynh
  • Publication number: 20030074059
    Abstract: Heart valve leaflet selection methods and apparatuses which subject individual leaflets to loads and measure the resulting deflection to more reliably group leaflets of similar physical characteristics for later assembly in prosthetic heart valves. The deflection testing may be accomplished using a variety of test set ups which are designed to impart a load on the leaflet which simulates the actual loading within a heart valve. The results from a number of deflection tests are used to categorize individual leaflets, which data can be combined with other data regarding the characteristics of the leaflet to better select leaflets for assembly into a multi-leaflet heart valve. In one embodiment, the deflection test is combined with an intrinsic load test, and leaflets having similar deflection and intrinsic load values used in the same heart valve.
    Type: Application
    Filed: May 7, 2002
    Publication date: April 17, 2003
    Inventors: Than Nguyen, Hung Ly Lam, Jianbo Zhou, Carlos M. Romero, Ralph Kafesjian, Xiaoming G. Guo, Van Le Huynh
  • Patent number: 6458155
    Abstract: A donor heart valve sizer and method of sizing to increase the quality and yield of, and decrease the expense of fabricating, prosthetic heart valves. The sizer includes an axially-extending sizing portion sized to fit within the lumen of a donor heart valve. The sizing portion may be conical such that a resistance to further insertion is felt when the exterior of the sizing portion contacts the annulus of the valve. A measuring bracket attached to the sizing portion includes a scale aligned with the sizing portion that indicates the final expected valve size based on the position of the fresh donor valve on the sizing portion. The measuring bracket includes regions of acceptable valve sizes, and may also include regions of unacceptable valve sizes. A method of sizing includes utilizing the sizer in the slaughterhouse to reduce the overall number of valves shipped to the valve assembly facility to obtain a particular valve size.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: October 1, 2002
    Assignee: Edwards Lifesciences Corporation
    Inventors: Son Van Nguyen, Hung Lam, Cuong Ton-That
  • Publication number: 20020116054
    Abstract: In some embodiments, a flow system includes a medical device mount, fluid and a conduit containing the fluid and medical device mount. The conduit is mounted on an assembly that moves the conduit along with the medical device mount to induce relative motion of the fluid relative to the medical device mount. In preferred embodiments, pulsatile fluid motion is generated. In some embodiments, the fluid includes viable cells. In alternative embodiments, a flow system includes a continuous flow pump connected to a conduit loop having multiple branch conduits downstream from the pump providing alternative paths over a section of the conduit loop. Each branch conduit has a valve controlling flow through the branch. In some embodiments, at least one branch includes a medical device mount.
    Type: Application
    Filed: February 20, 2001
    Publication date: August 22, 2002
    Inventors: Beverley I. Lundell, Robert L. Meisch, John R. Wilson, Matthew W. Weston, M. William Mirsch, Doug A. Page
  • Patent number: 6432136
    Abstract: A catheter having a first magnet is guided into a pocket of air entrapped in a pumping chamber for an artificial heart using a probe having a second magnet, a Hall-effect sensor an electronic circuit and an indicator disposed thereon. The Hall-effect sensor generates a voltage signal that is related to the distance between the catheter tip and the probe tip and that is measured by the electronic circuit and thereafter used to actuate the indicator. The indicator indicates when the probe is close enough to the catheter such that the catheter tip has been magnetically captured by the probe tip. Once magnetically captured, the probe tip, while remaining outside of the pumping chamber, is used to guide the catheter tip to an elevated portion of the pumping chamber wherein the pocket of entrapped air is located. A vacuum generating device attached to a distal end of the catheter tube is then used to withdraw the air from the pumping chamber.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: August 13, 2002
    Assignee: The Penn State Research Foundation
    Inventors: William J. Weiss, Marjorie Rawhouser
  • Patent number: 6413275
    Abstract: Heart valve leaflet selection methods and apparatuses which subject individual leaflets to loads and measure the resulting deflection to more reliably group leaflets of similar physical characteristics for later assembly in prosthetic heart valves. The deflection testing may be accomplished using a variety of test set ups which are designed to impart a load on the leaflet which simulates the actual loading within a heart valve. The results from a number of deflection tests are used to categorize individual leaflets, which data can be combined with other data regarding the characteristics of the leaflet to better select leaflets for assembly into a multi-leaflet heart valve. In one embodiment, the deflection test is combined with an intrinsic load test, and leaflets having similar deflection and intrinsic load values used in the same heart valve.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: July 2, 2002
    Assignee: Edwards Lifesciences Corporation
    Inventors: Than Nguyen, Hung Ly Lam, Jianbo Zhou, Carlos M. Romero, Ralph Kafesjian, Xiaoming G. Guo, Van Le Huynh
  • Publication number: 20020072794
    Abstract: A patch prosthesis includes at least one cusp extending from a length of an associated valve wall. An elongated sheet of biocompatible material is attached to the valve wall, such that a portion of the elongated sheet extends beyond an inflow end of the cusp. A measurement system may be employed to measure the size of a patient's native cusp(s), which measurement may be utilized to select a patch prosthesis having an appropriately sized cusp.
    Type: Application
    Filed: December 11, 2000
    Publication date: June 13, 2002
    Inventor: Shlomo Gabbay