And Recycle Of Gas For Further Contact Patents (Class 95/204)
  • Patent number: 8961664
    Abstract: A carbon dioxide recovery unit is provided with: an absorption tower for bringing an exhaust gas into contact with a CO2 absorbing liquid to thereby absorb and recover CO2 from the exhaust gas; a regeneration tower for taking out the CO2 from the CO2 absorbing liquid; a CO2 delivery line L3 for delivering the taken-out CO2 to a storage process; and a CO2 return line L5 for returning the taken-out CO2 to the absorption tower. When a CO2 recovery unit and a CO2 compressing device are activated, if a storage process side has some kind of trouble and cannot receive the CO2, a destination part to which the CO2 is delivered from the regeneration tower is switched from the CO2 delivery line L3 to the CO2 return line L5, whereby the CO2 gas is mixed with the exhaust gas in the absorption tower.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Koji Nakayama, Takahito Yonekawa, Masayuki Inui, Tatsuya Tsujiuchi, Yoshiki Sorimachi
  • Patent number: 8864879
    Abstract: Disclosed herein is a method comprising contacting a residual flue gas stream with a lean solution stream in an appendix stripper; where the residual flue gas stream comprises nitrogen, oxygen and moisture; and where the lean solution stream comprises ammonium, ammonium carbonate, ammonium bicarbonate and ammonium sulfate; forming a vapor phase that comprises ammonia vapor, water vapor, carbon dioxide and nitrogen; forming a liquid phase that comprises water, ammonium sulfate and ammonia; discharging the vapor phase to a capture system; and discharging the liquid phase to a direct contact cooler.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 21, 2014
    Inventors: Jalal Askander, Fred Kozak
  • Patent number: 8845788
    Abstract: A syngas treatment plant is configured to remove sulfurous compounds from syngas in a configuration having two flash stages for a physical solvent to so enrich the acid gas to at least 40 mol % H2S or higher as required by the Claus unit and to flash and recycle CO2 back to the syngas feed. Contemplated methods and configurations advantageously remove sulfur to less than 10 ppmv while increasing H2S selectivity at high pressure operation to thereby allow production of an H2S stream that is suitable as feed gas to a Claus plant.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: September 30, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8840707
    Abstract: A gas condensate production plant comprises a plurality of separation units in which C2 and/or C3 lighter components are stripped from the separator feeds using compressed heated stripping vapor produced from the feed in respective downstream separation units. Contemplated plants substantially reduce heating and cooling duties by using the waste heat from the compressor discharges in the separation process. Furthermore, the multi-stage fractionation according to the inventive subject matter provides improved gas condensate recovery at reduced energy costs.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 23, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8834617
    Abstract: A system is configured to remove volatile organic compounds from a container. The system includes an enclosed contactor vessel having a first inlet to receive vapor containing volatile organic compounds from the container and a second inlet. The second inlet receives a vapor capture medium from a source. A contactor facilitates entrainment of the volatile organic compounds with the vapor capture medium while a first outlet recirculates treated vapor back to the container to effect a closed loop.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: September 16, 2014
    Assignee: Nanovapor Fuels Group, Inc.
    Inventor: Elliott Moorhead
  • Patent number: 8808430
    Abstract: The present invention relates to a process for purifying a gas mixture comprising dinitrogen monoxide, at least comprising the treatment of a gas mixture G-0 comprising dinitrogen monoxide to obtain a gas mixture G-A, at least comprising the absorption of the gas mixture G-0 in a solvent mixture S-I to obtain an offgas stream and a composition C-A, and the desorption of a gas mixture G-1 from the composition C-A to obtain a solvent mixture S-I?, subsequent condensation of the gas mixture G-A to obtain a liquid composition C-1 comprising dinitrogen monoxide and a gaseous mixture G-K, wherein the gaseous mixture G-K is recycled into the process.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: August 19, 2014
    Assignee: BASF SE
    Inventors: Beatrice Röβler-Feigel, Joaquim Henrique Teles, Dieter Baumann
  • Patent number: 8728200
    Abstract: A system for recycling a work gas used in a thermal reactor for treating sample materials includes a thermal reactor using a work gas from a first source mixed with carrier gases. The work gas has a boiling point higher than the carrier gases. The system includes a pump, a condenser which converts the work gas into a liquid, and a scrubber.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 20, 2014
    Assignee: Stion Corporation
    Inventor: Robert D. Weiting
  • Patent number: 8647477
    Abstract: Water can be separated from a liquid composition (e.g., salt water) by directing a carrier gas flow through an evaporator and directly contacting the carrier gas flow with the liquid composition in the evaporator to humidify the carrier gas with water evaporated from the liquid composition, producing a humidified gas flow, which is then compressed by injecting a fluid that includes steam and/or an organic compound at an elevated pressure at least five times greater than the pressure in the evaporator and at a temperature at least as high as a saturation temperature of the steam/organic compound at the elevated pressure of the fluid. After being compressed, the humidified gas flow is directed through at least one condenser where water is condensed from the compressed humidified gas flow and collected; and the dehumidified gas flow is re-circulated back through the evaporator for reuse as the carrier gas.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: February 11, 2014
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Prakash N. Govindan, Karan H. Mistry, John H. Lienhard, Syed M. Zubair
  • Patent number: 8524180
    Abstract: The invention provides a process for minimizing the emission of particulate matter and precursors thereof from a flue gas stream of an engine comprising particulate matter and precursors thereof and at least one gaseous component. The process includes the steps of obtaining a flue gas stream of an engine comprising particulate matter and precursors thereof; increasing the moisture content of the stream by contacting it with a first aqueous medium in an amount and at a temperature at which at least 50% of the water content of the first aqueous medium is evaporated; whereby a moisture laden gas stream, optionally containing suspension droplets, is formed; cooling the moisture laden gas stream whereby suspension droplets are formed; and applying a centrifugal force to the moisture laden gas stream and to the suspension droplets to effect the swirling thereof, whereby a treated gaseous stream and an aqueous stream are formed.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: September 3, 2013
    Assignees: Vortex Ecological Technologies Ltd., Clue AS, Clean Marine AS
    Inventors: Riki Canari, Aharon Eyal, Nils Christian Hoy-Petersen, Matitiahu Fichman, Carl Christian Hauge, Carmi Raz
  • Patent number: 8480790
    Abstract: Method of producing syngas in an IGCC system, comprising compressing and heating carbon dioxide-rich gas to produce heated compressed carbon dioxide-rich gas, mixing the heated compressed carbon dioxide-rich gas with oxygen and feedstock to form a feedstock mixture, subjecting the feedstock mixture to gasification to produce syngas, cooling the syngas in a radiant syngas cooler, contacting syngas cooled in the radiant syngas cooler with compressed carbon dioxide-rich gas to further cool the syngas, and removing an amount of carbon dioxide-rich gas from the product mixture and compressing the removed carbon dioxide-rich gas prior to mixing with oxygen and feedstock.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: John Duckett Winter, Paul Steven Wallace, George Gulko, Pradeep S. Thacker
  • Patent number: 8333828
    Abstract: Various embodiments of the present invention are directed to degassing and cleaning of hydrocarbon fuel. Degassing of hydrocarbon fuel is a way to remove the dissolved gases which aid in the oxidation of the fuel as well as the removal of sulfur, water and other particulate matter through radial cavitation. This process allows for both improvements in efficiency as well as decrease in emissions of standard fuel and the re-refining of fuels which have broken down. University of Idaho did a study on the breakdown of diesel fuel and found out that 26% of the efficiency is lost by the 28th day after fuel processing. In one embodiment, the fuel is subjected to fluid-shear forces and cavitation.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 18, 2012
    Assignee: Donnelly Labs LLC
    Inventor: Joseph L. Donnelly
  • Patent number: 8303684
    Abstract: A pressurized gaseous mixture acidic gas and a useful gas is directly in a first absorption column with a physically acting absorption agent. Then the absorption agent loaded with the acid gas and useful gas is subdivided into first and second streams. The first stream is fed directly to a recycle flash container and there decompressed to reclaim the useful gas, extract the acidic gas from the absorption agent, and form a recycled gas containing the useful gas and acidic gas. The second stream is through a second absorption column to the recycle flash container. Some of the recycled gas from the recycle flash container is compressed and fed through the second absorption column so as to therein directly contact the second stream, and then the recycle gas that has passed through the second absorption column and contacted the second stream is returned to the gaseous mixture.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 6, 2012
    Assignee: UHDE GmbH
    Inventor: Johannes Menzel
  • Patent number: 8282899
    Abstract: Solvent absorption processes for separating components of an impure feed gas are disclosed. The processes involve two stages of gas-liquid contacting, namely a first, absorption stage and a second, stripping stage. In the case of a carbon dioxide (CO2)-containing methane gas as an impure feed gas, contacting, in the stripping stage, the solvent effluent from the absorption stage with a recycled vapor fraction of the solvent effluent from the stripping stage can improve the recovery and purity of not only the methane (and/or other light hydrocarbons in the impure feed gas), but also that of the CO2 contaminant gas.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: David A. Bahr, Lamar A. Davis
  • Patent number: 8268050
    Abstract: An improved process for the separation of carbon dioxide from the flue gas of an oxy-combustion power plant is provided. The flue gas is compressed, cleaned, cooled and dried. This clean, compressed dry flue gas is then further cooled, partially condensed and separated into liquid and vapor streams. The liquid streams, which contain a high concentration of carbon dioxide, are vaporized, compressed and exported to an end user. The vapor streams are heated and expanded, in order to extract useable energy. At least two expanders are used to extract this energy, with an intermediate warming step.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: September 18, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bao Ha
  • Patent number: 8241404
    Abstract: Method of producing syngas in an IGCC system, comprising compressing and heating carbon dioxide-rich gas to produce heated compressed carbon dioxide-rich gas, mixing the heated compressed carbon dioxide-rich gas with oxygen and feedstock to form a feedstock mixture, subjecting the feedstock mixture to gasification to produce syngas, cooling the syngas in a radiant syngas cooler, contacting syngas cooled in the radiant syngas cooler with compressed carbon dioxide-rich gas to further cool the syngas, and removing an amount of carbon dioxide-rich gas from the product mixture and compressing the removed carbon dioxide-rich gas prior to mixing with oxygen and feedstock.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: August 14, 2012
    Assignee: General Electric Company
    Inventors: John Duckett Winter, Paul Steven Wallace, George Gulko, Pradeep S. Thacker
  • Publication number: 20120107202
    Abstract: The present invention provides a process for minimizing the emission of particulate matter and precursors thereof from a flue gas stream of an engine comprising particulate matter and precursors thereof and at least one gaseous component, which process comprises the steps of: a. Obtaining a flue gas stream of an engine comprising particulate matter and precursors thereof; b. Increasing the moisture content of the stream by contacting the same with a first aqueous medium in an amount and at a temperature at which at least 50% of the water content of the first aqueous medium is evaporated; whereby a moisture laden gas stream, optionally containing suspension droplets, is formed; c. Cooling the moisture laden gas stream whereby suspension droplets are formed; and d.
    Type: Application
    Filed: October 1, 2009
    Publication date: May 3, 2012
    Inventors: Riki Canari, Aharon Eyal, Nils Christian Hoy-Petersen, Matitiahu Fichman, Carl Christian Hauge, Carmi Raz
  • Patent number: 8119073
    Abstract: Described is a device for conditioning a comminuted light alloy feedstock to heat and remove impurities from the feedstock. The conditioner device includes a reaction chamber having a substrate feed port for feeding the comminuted light alloy feedstock into the reaction chamber and a discharge port for allowing the conditioned feedstock to exit the reaction chamber. A scrubber gas baffle is positioned at one end of the reaction chamber and coupled to a scrubber gas injector which is configured to inject a scrubber gas through the scrubber gas baffle at a volume and rate of flow sufficient to fluidize the feedstock in the reaction chamber. A scrubber gas heater is also provided for heating the scrubber gas to a temperature sufficient to condition the feedstock as desired.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 21, 2012
    Inventors: Ashley Stone, Martin Kestle
  • Patent number: 8080090
    Abstract: An improved process for the separation of carbon dioxide from the flue gas of an oxy-combustion power plant is provided. An inlet stream containing carbon dioxide and oxygen is at least partially condensed in the reboiler of a stripping column. The condensed inlet stream is then separated in a separator, thereby producing a first liquid stream and a first gas stream. The first liquid stream is then separated into a top gas stream and a bottom liquid stream in the stripping column. The top gas stream is then warmed by indirect heat exchange in the heat exchanger. The warmed top gas stream is then recycled and combined with the inlet stream.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: December 20, 2011
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bao Ha
  • Publication number: 20110265647
    Abstract: The present invention relates to a method for removing at least one contaminant from a gaseous stream substantially comprising carbon dioxide. More specifically said method comprising the step of subjecting the gaseous stream to an absorption step in which the absorbent is liquid carbon dioxide.
    Type: Application
    Filed: July 3, 2009
    Publication date: November 3, 2011
    Inventors: Rasmus Find, Jan Flensted Poulsen
  • Patent number: 8007569
    Abstract: The invention relates to a method for removing hydrogen sulphide and other acidic gas components from pressurized technical gases by means of a physical detergent and for obtaining sulphur from hydrogen sulphide by using a Claus system. The hydrogen sulphide and the other acidic gas components are removed in an absorbent manner from the physical detergent, the physical detergent undergoes multi-step regeneration, said multi-step regeneration comprising at least one device for CO enrichment, a device for H2S enrichment, a device for CO2 stripping and a device for thermal regeneration. The various regeneration steps consist of various pressure steps and have a lower pressure than that of the absorption. A hydrogen sulphide rich Claus gas is withdrawn from one of the regeneration steps and is guided to a Claus system where sulphur is produced. The residual gas exiting from the Claus system is hydrated and is condensed under pressure, corresponding to one of the regeneration steps.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: August 30, 2011
    Assignee: Uhde GmbH
    Inventors: Georg Saecker, Johannes Menzel
  • Publication number: 20110084020
    Abstract: A method for removing methane from biogas is described. The method includes: (i) receiving biogas including methane and other components into a first tank; (ii) receiving water into the first tank; (iii) contacting the biogas with the water inside the first tank; (iv) dispensing methane gas from an outlet of the first tank; and (v) producing from the tank an effluent stream that includes other components of the biogas.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 14, 2011
    Inventor: Christopher OTT
  • Publication number: 20110067994
    Abstract: A system is configured to remove volatile organic compounds from a container. The system includes an enclosed contactor vessel having a first inlet to receive vapor containing volatile organic compounds from the container and a second inlet. The second inlet receives a vapor capture medium from a source. A contactor facilitates entrainment of the volatile organic compounds with the vapor capture medium while a first outlet recirculates treated vapor back to the container to effect a closed loop.
    Type: Application
    Filed: December 9, 2009
    Publication date: March 24, 2011
    Inventors: Elliott Moorhead, Bryant Hickman
  • Patent number: 7896955
    Abstract: Disclosed is a process for removing coarse solids and fine solids from a gas, which includes wetting the coarse solids and fine solids in a first chamber thereby separating the coarse solids and fine solids from the gas. The first chamber also contains liquid to cool the coarse solids and the fine solids. The coarse solids and fine solids are routed to a liquid-filled second chamber where the coarse solids settle to the bottom. The liquid in the second chamber, still containing the fine solids is flushed into a third chamber where the fine solids are separated from the liquid. The separated fine solids and coarse solids are then routed to a fourth chamber.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: March 1, 2011
    Assignee: General Electric Company
    Inventors: Paul Steven Wallace, Jyung-Hoon Kim
  • Patent number: 7837768
    Abstract: A system and method are disclosed for purifying a waste fluid stream. The system includes a recirculation pump having an inlet for a recirculation stream and an outlet to expel a pressurized stream. The system includes a compressor having an inlet for an evaporation stream and an outlet for a pressurized evaporation stream. A primary heat exchanger has inlets for the pressurized stream and the pressurized evaporation stream, an internal surface area for heat transfer from the evaporation stream to the pressurized stream, and outlets for a cooled product stream and a heated pressurized stream. The heated pressurized stream is formed by heating the pressurized stream and the cooled product stream is formed by cooling the evaporation stream. The system includes an evaporation unit having an inlet for the heated pressurized stream and outlets for an evaporation stream and the recycled liquid bottoms stream.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 23, 2010
    Assignee: General Electric Capital Corporation as Administrative Agent
    Inventors: Larry D. Sanderson, James W. Schleiffarth, Leslie D. Merrill, Bradford M. Rohwer
  • Patent number: 7819942
    Abstract: The invention relates to a method for producing a high-molecular polyester from a solidified polyester prepolymer by solid phase polycondensation. The polycondensation cleavage products of the solid phase polycondensation reaction are extracted from the product by means of a process gas, and the process gas is then cleaned and essentially recycled. According to the invention, the process gas is cleaned by means of an aqueous washing liquid. The invention also relates to an installation for carrying out the inventive method, said installation containing a crystallisation appliance (1) and a reaction appliance (2). A gas outlet (2d) of the reaction appliance (2) is directly or indirectly connected to a gas inlet (3c) in a gas cleaning system (3), and a gas outlet (3d) of the gas cleaning system (3) is connected to a gas inlet (2c) of the reaction appliance (2).
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: October 26, 2010
    Assignee: Buhler AG
    Inventors: Andreas Christel, Claudemiro Ferreira
  • Patent number: 7811361
    Abstract: One exemplary embodiment can be a process for increasing an efficiency of an acid gas removal zone. The process can include sending a sour gas stream including at least one gas to a first absorber providing an overhead stream absorbing the at least one gas; withdrawing a side-stream from the first absorber and passing the side-stream through a holding tank, a side-stream fluid transfer device, and a side-stream chiller before returning the side-stream to the absorber; and passing the first absorber overhead stream to a pump-around circuit for a second absorber. Usually, the pump-around circuit may include a flash drum, a pump-around fluid transfer device and a pump-around chiller before providing a slipstream to the first absorber and another portion to the second absorber.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Lamar A. Davis, David Alden Bahr, Carla F. Roberts
  • Patent number: 7674325
    Abstract: An absorber (110) in a gas treatment plant (100) produces a rich solvent (116) that is flashed to produce flashed rich solvent (134D) and recycle gas (132D), wherein the recycle gas (132D) is not mixed with the absorber feed gas (112) as commonly practiced, but mixed with the rich solvent (116). Such configurations exhibit superior rich solvent loading, thereby reducing solvent circulation. Further contemplated gas treatment plants (100)may also include a regenerator (150) in which carbon dioxide from atmospheric flashed vapor (142) of the rich solvent (144) is employed as a stripping gas in a regenerator (150) to strip hydrogen sulfide from the rich solvent (144), and wherein sweet gas (114) is employed to strip the carbon dioxide from the rich solvent (144).
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: March 9, 2010
    Assignee: Fluor Technologies Corporation
    Inventor: Ray Won
  • Publication number: 20090120290
    Abstract: Disclosed is a process for removing coarse solids and fine solids from a gas, which includes wetting the coarse solids and fine solids in a first chamber thereby separating the coarse solids and fine solids from the gas. The first chamber also contains liquid to cool the coarse solids and the fine solids. The coarse solids and fine solids are routed to a liquid-filled second chamber where the coarse solids settle to the bottom. The liquid in the second chamber, still containing the fine solids is flushed into a third chamber where the fine solids are separated from the liquid. The separated fine solids and coarse solids are then routed to a fourth chamber.
    Type: Application
    Filed: November 12, 2007
    Publication date: May 14, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Paul Steven Wallace, Jyung-Hoon Kim
  • Publication number: 20080210092
    Abstract: Method and apparatus for separating acid gas from a natural gas stream. The method includes the steps of: contacting the natural gas stream with a semi-lean amine solution and a lean amine solution to produce a rich amine solution, separating a first portion of carbon dioxide from the rich amine solution to produce the semi-lean amine solution, and heating a portion of the semi-lean amine solution to separate a second portion of carbon dioxide and produce the lean amine solution. The rich amine solution and semi-lean amine solution are heated from using recovered waste heat derived from one or more of a land based facility or an off-shore facility located on a platform or floating vessel.
    Type: Application
    Filed: February 1, 2008
    Publication date: September 4, 2008
    Applicant: CHEVRON U.S.A. INC.
    Inventors: John J. Buckles, Anthony P. Eaton, Kaman I. Chan
  • Publication number: 20080196587
    Abstract: An improved process for the separation of carbon dioxide from the flue gas of an oxy-combustion power plant is provided. The flue gas is compressed, cleaned, cooled and dried. This clean, compressed dry flue gas is then further cooled, partially condensed and separated into liquid and vapor streams. The liquid streams, which contain a high concentration of carbon dioxide, are vaporized, compressed and exported to an end user. The vapor streams are heated and expanded, in order to extract useable energy. At least two expanders are used to extract this energy, with an intermediate warming step.
    Type: Application
    Filed: April 2, 2007
    Publication date: August 21, 2008
    Inventor: Bao HA
  • Patent number: 7147691
    Abstract: The arrangements described herein are based upon a theory of selective absorption of hydrogen sulphide over carbon dioxide from gas based on countercurrent contact between gas and tertiary or other amines which exhibit preferential affinity for H2S over CO2 primarily because of differential rates of absorption of the two gases. The process of enhanced selective absorption is accomplished by performing the absorption in two steps. The first operation is to contact lean amine with sour gas which contains both H2S and CO2. The object of the first operation is to produce an overhead gas that meets an arbitrary standard for content of H2S and CO2. The second operation is to enhance the selectivity for H2S by contacting the rich amine leaving the first operation with a second gas which is a highly concentrated acid gas having a higher H2S/CO2 ratio than the first acid gas.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: December 12, 2006
    Assignee: 1058238 Alberta Ltd.
    Inventor: Gary Palmer
  • Patent number: 6755979
    Abstract: A propylene oxide/styrene monomer aqueous purge stream is contacted with a catalyst at conditions effective to decompose peroxides contained therein, and oxygen formed by the decomposition swept from the decomposition with a nitrogen vapor stream from ethylbenzene oxidation.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: June 29, 2004
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Carl L. Williams, Shaw-Chan Lin, David W. Leyshon, Lawrence M. Candela
  • Publication number: 20040118280
    Abstract: A gas reduction apparatus 12 is provided for reducing the amount of gas 15 emitted from a cooling tower 10 into the atmosphere. The apparatus 12 in accordance with the principles of this invention includes a first air conduit 13 which collects the gas 15 and chemical particles therein released from the cooling tower 10 before they are released into the atmosphere. The conduit 13 then provides a path for the gas 15 and chemical particles formed therein to flow to a liquefier 16. The liquefier 16 converts the gas 15 to a liquid 17. A filter 32 is coupled adjacent the liquefier 16 to separate the chemical particles released into the liquefier from the liquid 17 formed in the liquefier. The liquid 17 is then directed through an outlet conduit 34 to a cooling tower reservoir 36 where it finds itself back into the cooling tower 10.
    Type: Application
    Filed: April 10, 2002
    Publication date: June 24, 2004
    Inventor: Larry B. Tinguee
  • Patent number: 6712880
    Abstract: A cryogenic process and apparatus for separating multi-component gaseous hydrocarbon streams to recover both gaseous and liquid compounds. More particularly, the cryogenic processes and apparatus of this invention utilize a high pressure absorber to improve the energy efficiency of processing natural gas for pipeline gas sales and recovering natural gas liquids (NGL) gas from gaseous hydrocarbon streams.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: March 30, 2004
    Assignee: ABB Lummus Global, Inc.
    Inventors: Jorge H. Foglietta, Hazem Haddad, Earle Ross Mowrey, Sanjiv N. Patel, Ajit Sangave
  • Publication number: 20040031389
    Abstract: An improved apparatus and method for use with a natural gas dehydrator. The apparatus and method of the invention provide for recirculation of gaseous or combustible materials so that they are not released into the atmosphere and to provide fuel for the process. Likewise, liquid hydrocarbons are collected. Various components, including separators, an absorber, wet glycol, dry glycol, an effluent condenser, heat exchangers, and a reboiler are utilized in accordance with the present invention.
    Type: Application
    Filed: April 18, 2003
    Publication date: February 19, 2004
    Inventors: Rodney T. Heath, Forrest D. Heath
  • Patent number: 6485003
    Abstract: A method and apparatus for dissolving a gas into a fluid which may contain at least one dissolved gas. The apparatus includes an inlet through which fluid enters the apparatus. The fluid is then housed in a chamber. The apparatus also includes a feed for the introduction of the gas into the fluid housed in the chamber. The chamber has a first portion having a diverging interior surface and a second portion having a cylindrical surface, which configuration enhances gas absorption. Further, the apparatus includes an acceleration plate which accelerates the flow of fluids and gas bubbles in the chamber. In addition, the apparatus includes a helix-shaped bubble harvestor which removes fugitive (undissolved) gas bubbles from the fluid flow and returns them to the chamber above the harvester to increase the probability that those bubbles will be dissolved in the fluid. Fluid having gas dissolved therein exits the chamber through an aperture through the bottom surface of the chamber into an outlet.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: November 26, 2002
    Inventor: Richard E. Speece
  • Patent number: 6474627
    Abstract: A method and apparatus for dissolving a gas into a fluid which may contain at least one dissolved gas. The apparatus includes a conventional U-tube oxygenator which includes a U-tube member having an inlet for the introduction of the fluid and the gas to be dissolved into the fluid, and an outlet. The fluid is housed in the U-tube member. The apparatus further includes a helix-shaped bubble harvestor located proximate the bottom of the inlet side of the U-tube member. The helix-shaped bubble harvester removes fugitive (undissolved) gas bubbles from the fluid flow and returns them to the bubble swarm located above the helix-shaped bubble harvestor. The resulting fluid, which contains a high concentration of dissolved gas, exits the outlet of the U-tube member.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: November 5, 2002
    Assignee: Eco-Oxygen Technologies, LLC
    Inventor: Richard E. Speece
  • Patent number: 6270681
    Abstract: Water in an aeration pond is treated with substantially pure oxygen. The oxygen originates from a pressurized oxygen supply, and is conducted through a conduit to the bottom of the pond. Perforations located around the perimeter and along the length of the conduit allow oxygen to bubble through the pond. A hood disposed to float above the surface of the pond collects unreacted oxygen, and this oxygen flows, through a suitable gas line, back to the original conduit. The unreacted oxygen mixes with fresh oxygen from the pressurized source, and is recycled through the pond. In one embodiment, before mixing with fresh oxygen, the recovered oxygen is pressurized by a double-diaphragm pump which is operated by pressure from the oxygen supply. The pressurized oxygen is the sole source of motive force for moving gas through the system. The rate of gas flow through the system is controlled by adjusting the supply pressure, through the use of a control valve.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: August 7, 2001
    Assignee: MG Industries
    Inventor: Steven P. Gray
  • Patent number: 6214242
    Abstract: A method and apparatus for stripping a volatile compound from waste water comprises creating a high velocity spray of air and stream of water at a first inlet to a first expansion chamber to volatize the compound, recombining the water and air flow through a second and successive expansion chambers and recreating a spray at each such chamber, whereby additional volatile compounds are released from the water at each stage to steadily reduce the contamination of the water. The decontaminated water and volatile compound-laden air are separately collected after exiting the last expansion chamber.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: April 10, 2001
    Inventor: Frederick B. Swensen
  • Patent number: 6203599
    Abstract: The present invention provides a process for removing gas contaminants such as hydrogen sulfide and carbon dioxide from a product gas such as natural gas or synthesis gas. According to the invention the product gas is contacted with a solvent which includes dialkyl ethers of polyethylene glycols and water, and a high pressure recycle loop is utilized to desorb a portion the gas contaminants and co-absorbed product gas from the solvent. The solvent is provided with an amount of water sufficient to increase recovery of co-absorbed product gas while at the same time providing a reduced circulation rate requirement for the solvent and reduced re-compression and cooling requirements for the recycle gas.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: March 20, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Craig Norman Schubert, William I. Echt
  • Patent number: 6139605
    Abstract: A double-loop process for the removal of specified gas or gases from a process gas by absorption with a liquid absorbent for said specified gas or gases wherein the process gas is contacted counter-currently in a first absorption stage with semi-lean absorbent liquid and then in a second absorption stage with lean absorbent liquid to give a sweet process gas and the absorbed gases are stripped from the laden absorbent liquid in a first stage giving a semi-lean absorbent liquid. Part of the semi-lean absorbent is recycled to the first absorption stage while the remainder is subjected to further stripping by counter-current contact with an auxiliary gas that has a concentration of the specified gas or gases that is lower than the concentration of the specified gas or gases in the process gas to give the lean absorbent liquid which is recycled to the second absorption stage.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: October 31, 2000
    Assignee: Imperial Chemical Industries PLC
    Inventors: Peter John Herbert Carnell, Hiren Krishnakant Shethna, Gavin Paul Towler, Edwin Stephen Willis
  • Patent number: 6001153
    Abstract: A method of treating a fluid containing at least methane and at least one acid gas and producing the acid gas or gases in liquid form. The method includes a step of regenerating the solvent, operated at a pressure whose value is at least equal to the bubble pressure of the mixture of acid gases produced in liquid form, a step in which the gaseous fraction from the regeneration step is rectified in a contact zone by separating at least some of the solvent from the gaseous fraction, a step in which the gaseous fraction from the modification step is cooled to a given temperature to cause at least some of the gaseous faction to condense forming at least one liquid fraction enriched with liquid acid gases and a step during which the liquid fraction of gases is separated from the remaining gaseous fraction.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: December 14, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Etienne Lebas, Alexandre Rojey
  • Patent number: 5935299
    Abstract: A spray dryer/bag filter apparatus for removing flue gas from an incinerator, which is structurized to re-circulate the purified gas as the shield air for protecting the slurry spraying nozzle thermally from hot gas without using any additional blower to introduce external air, that the flue gas is not diluted.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: August 10, 1999
    Assignee: Daewoo Corporation
    Inventors: Chil-Lim Park, Eui Sin Lee, Byung-Hwan Kim, Gi-Ho Park, Hee Jin In
  • Patent number: 5863316
    Abstract: A recirculating fume scrubber system in which fume is evolved from an aqueous bath in a process vessel, such as an HCl pickling tank, and the evolved fume is scrubbed with water and then the scrubbed gas is divided into two portions, one of which is released to a stack vented to atmosphere and the other portion is recirculated to the scrubber.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: January 26, 1999
    Assignee: Danieli Wean, Division of Danieli Corporation
    Inventors: Richard K. Lordo, Stephen L. Feldbauer, Timothy L. Cox
  • Patent number: 5830260
    Abstract: The waste gas accumulating in the drying of products containing volatile ingredients is cooled, the condensate obtained is subjected to crossflow membrane filtration and part of the cleaned waste gas is returned to the drying process. The concentrate obtained is put to a material, thermal or other use. The both effective and economic process is suitable for eliminating the aerosols, particularly the organic aerosols, present in the waste gas.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: November 3, 1998
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Levent Yueksel, Wilhelm Johannisbauer, Katrin Burmeister, Heike Fleischmann
  • Patent number: 5762687
    Abstract: The invention relates to a process for solution of a quantity of gas in a flowing quantity of liquid, in particular for solution of CO2 gas in beer, a flow of liquid and a flow of gas being combined and the gas in the liquid being dispersed, mixed with, and a part of it being mixed in the liquid. The object of the invention is to increase the amount of gas actually soluble in a liquid under certain conditions in comparison to prior art processes. In addition, the device for application of the process is to be simple in structure, cleanable in continuous flow (CIP-compatible), and its adaptation to specific practical requirements and its control are to be as simple as possible. From the process engineering viewpoint this is accomplished by guiding the gas/liquid mixture into curved paths, as a result of which separation into a bubblefree liquid flow (L1*) and a gas/liquid flow (G*/L2) to be recirculated.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: June 9, 1998
    Assignee: Otto Tuchenhagen GmbH & Co. KG
    Inventor: Holger J. Grossmann
  • Patent number: 5681369
    Abstract: An apparatus is provided for recovering volatile liquid vapor from an air-volatile liquid vapor mixture. The apparatus includes first and second reaction vessels. Each of these reaction vessel includes a bed of adsorbent having an affinity for the volatile liquid vapor. The apparatus also includes a pump and an absorber for regenerating either bed of adsorbent. Further, the apparatus includes a polisher including a polisher bed of adsorbent having an affinity for the volatile liquid vapor. This polisher bed adsorbs volatile liquid vapor and substantially clean air is exhausted when initially regenerating one of the two beds of adsorbent in the first and second reaction vessels. Still further, the apparatus also includes a cooperating valve and conduit system for interconnecting the other components. Further, the invention relates to a related process for recovering volatile liquid vapor and a method of reducing backpressure in a volatile liquid vapor recovery system or unit.
    Type: Grant
    Filed: May 10, 1996
    Date of Patent: October 28, 1997
    Assignee: Jordan Holding Company
    Inventor: John B. Osborne
  • Patent number: 5681371
    Abstract: A waste gas scrubber includes a hollow, cylindrical atomizer, mounted for rotation about its longitudinal axis. The atomizer is partially submerged in a pool of liquid. The atomizer has relatively large openings at its two ends, and has a plurality of closely-spaced vanes along its middle section. Waste gas is drawn into the openings at one end of the atomizer, and is combined with liquid scooped in by the vanes when the atomizer rotates. The liquid tends to absorb and/or encapsulate particulates in the gas stream. The resulting fluid is then drawn out of the atomizer through the openings at its other end. A blower provides negative pressure which draws the fluids through the desired path, and which overcomes the centrifugal force produced by rotation of the atomizer. Substantially the entire interior region of the atomizer is used for scrubbing, so that the scrubber is much more efficient than waste gas scrubbers of the prior art.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: October 28, 1997
    Inventor: William J. Carr
  • Patent number: 5637442
    Abstract: A method is disclosed for using the simple, environmentally friendly organic compounds gamma-butyrolactone and benzyl alcohol to develop and to strip free radical-initiated, addition polymerizable resists, cationically cured resists and solder masks and Vacrel photoresists. In all cases the developers and strippers include gamma butyrolactone or benzyl alcohol. The developers and strippers optionally also include a minor amount of methanol, ethanol, isopropyl alcohol, propylene glycol monomethylacetate, ethylene glycol monomethyl ether, formamide, nitromethane, propylene oxide, or methyl ethyl ketone, acetone and water. During development of the photopatterned resist or solder mask, the unpolymerized regions are dissolved in the disclosed developers. During stripping of the resist or solder mask, the polymerized regions are debonded from a circuit board in the disclosed strippers.
    Type: Grant
    Filed: November 6, 1995
    Date of Patent: June 10, 1997
    Assignee: International Business Machines Corporation
    Inventors: Anilkumar C. Bhatt, Gary S. Ksenak, Kostas I. Papathomas, James A. Shurtleff, Jerome J. Wagner
  • Patent number: 5634962
    Abstract: A method for removing hazardous gases having water solubility from storage tanks by scrubbing steps is described. Additionally, a method for removing ethylene dichloride contamination from soil is disclosed.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: June 3, 1997
    Assignee: Serv-Tech, In.
    Inventors: Timothy W. Trahan, Robert R. Cradeur, Nishanath K. Mehta