And Electric Field Separation Apparatus Patents (Class 96/3)
  • Publication number: 20150068396
    Abstract: The present invention is directed to apparatuses and methods for pollution abatement. One embodiment provide methods of eliminating pollutants from an incoming optionally high temperature gaseous effluent stream, each method comprising directing the gaseous effluent stream sequentially through: (a) a sufficient volume of an aqueous liquid in a thermal shock vessel, such that the temperature of the gaseous effluent stream exiting the volume of liquid is in a range of about 5° C. to about 30° C., said liquid acting as filter to remove water, particles, soluble organic species, or a combination thereof from the gaseous stream; and one or more of: (b) an electronic bombardment module wherein the gaseous stream is ionized, forms molecular agglomerates, or both; (c) a magnetic rearrangement module, operating with a magnetic field in a range of about 0.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 12, 2015
    Inventor: JUAN JOSE CALDERON
  • Patent number: 8961651
    Abstract: Energy consumption of the society is increasing due to expanding economic activity and increasing population. As greater consumption of energy generates more air pollution, there is an ongoing need to find better methods of reducing pollutants in terms of effectiveness and reduced energy consumption. The solution proposed in this disclosure takes advantage of electrical characteristics such as electron affinity and dipole moment. There are many pollutants which exhibit positive electron affinity. Such a pollutant can be easily converted to a negative ion by providing an extra electron. Many of the pollutants have dipolar charge distributions which facilitate electrical interactions with charges. If one of the pollutants becomes charged, it can attract other pollutants which are dipoles to form clusters of pollutants. Furthermore, charged clusters are responsive to electric and magnetic fields. For example, they can be separated from the rest of the flue gas by manipulating with such fields.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 24, 2015
    Inventor: Halit Gokturk
  • Patent number: 8668883
    Abstract: A bio air sterilization system and method of use thereof is provided that can remove and render benign harmful contaminants and particulates, such as bacteria, viruses, and molds, from air within an enclosed area, as well as, in principle, from the exposed surfaces located within the enclosed area. In one aspect, the sterilization system includes a self contained, mobile sterilization unit that includes at least an ultraviolet array, an air flow control mechanism for diverting the air flow within the system through either a filter or through an ozone removal zone, an ozone generator, and a blower apparatus to pull the air through the system and out through ports, such as a nozzle system, to the surrounding environment.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 11, 2014
    Assignee: UV03, Inc.
    Inventor: Christopher John Garner
  • Patent number: 8298318
    Abstract: Embodiments of the present disclosure relate to a system and methods for the recovery of isotopes. In at least one exemplary method of the present disclosure at least one gas comprising a plurality of isotopes is provided. An electric field is generated in a radial direction to at least partially ionize the gas. A magnetic field is generated in an axial direction perpendicular to the radial direction and at least one isotope is recovered from the gas.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: October 30, 2012
    Inventor: Alfred Y. Wong
  • Patent number: 8123838
    Abstract: A method and apparatus for separating particles preferentially accelerates particles to a rotating collector, which then reliably conveys collected particles to a discharge with minimal re-entrainment of the particles in the fluid stream. The collector minimizes energy transfer to the fluid and maximizes separation under conditions of high particle loading, fine particle content, or both. The separator may be operated in any vertical, horizontal or oblique orientation, or within devices whose orientation varies over time.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: February 28, 2012
    Assignee: Wells Products Group, Inc.
    Inventors: John E. Kane, Robert L. Hance
  • Patent number: 7569094
    Abstract: A method and apparatus for separating particles preferentially accelerates particles to a rotating collector, which then reliably conveys collected particles to a discharge with minimal re-entrainment of the particles in the fluid stream. The collector minimizes energy transfer to the fluid and maximizes separation under conditions of high particle loading, fine particle content, or both. The separator may be operated in any vertical, horizontal or oblique orientation, or within devices whose orientation varies over time.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: August 4, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: John E. Kane, Robert L. Hance
  • Patent number: 7553353
    Abstract: A system for decontaminating a gas is provided. The system includes: a passageway containing at least one set of two or three electrodes. If the set contains three electrodes, it has two outer electrodes electrically connected together and one inner electrode.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: June 30, 2009
    Inventor: Jean-Pierre Lepage
  • Patent number: 7319222
    Abstract: A linear trap which allows for charge separation and ion mobility separation in a speedy manner, and enables measurement with high duty cycle. A mass spectrometer comprises an ion source, an ion trap for trapping ions ionized by the ion source, an ion trap controller for controlling a voltage on an electrode included in the ion trap, and a detector for detecting the ions ejected from the ion trap. The ion trap controller includes a table for each mass-to-charge ratio, the table containing a frequency of the voltage used for charge separation, and a gain of the voltage for ejecting a first ion with a first charge outside the ion trap, and retaining in the ion trap a second group of ions with a second charge that is lower than that of the first charge. The ion trap controller controls the voltage based on the mass-to-charge ratio set. The mass spectrometer has significantly improved sensitivity, as compared to the prior art.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: January 15, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuichiro Hashimoto, Hideki Hasegawa, Izumi Waki
  • Patent number: 7183104
    Abstract: The present invention is embodied in a system for collecting biological samples from air including a collection assembly to store at least one biological sample and a separator to remove selected particles from the air prior to entry into the collection assembly. In one embodiment, the selected particles are magnetic and the separator includes at least one magnet to attract the particles from the air.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: February 27, 2007
    Inventor: Clifford A. Megerle
  • Patent number: 7156897
    Abstract: The invention provides an apparatus for removing airborne pathogens and toxic substances from a surface of an article or a volume of air, comprising: a main processing chamber having a door for ingress to and egress from the main processing chamber, at least two high voltage electrodes for generating a current. The electrode can form ozone, if desired, to destroy pathogens. Optionally, the electrodes can be in a sealed or unsealed glass tube, with or without mercury, to generate ultraviolet light for photochemical reaction with pathogens or other contaminants. The apparatus also includes a post processing chamber comprising at least one filter for removing or absorbing airborne particulates and pathogens, and includes low voltage electrodes to neutralize charges in air transmitted from the main processing chamber.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: January 2, 2007
    Inventor: Sheree H. Wen
  • Patent number: 6956217
    Abstract: A device for separating particles according to their respective masses includes a substantially cylindrical wall of inner radius, “Rwall”, that surrounds a chamber and defines a longitudinal axis. A multi-species plasma having relatively cold ions is initiated at a first end of the chamber within a relatively small radius, “rsource”, from the longitudinal axis. A hollow cylinder having an outer radius, “Router”, is positioned at the second end of the chamber and centered on the axis. Cross electric and magnetic fields (E×B) are established in the chamber that are configured to send ions of relatively high mass on trajectories having a radial apogee, rapogee, that is greater than the cylinder's outer radius (r>Router). After reaching apogee, these ions lose energy and strike the cylinder where they are collected. Low mass ions are placed on small radius helical trajectories and pass through the hollow cylinder.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: October 18, 2005
    Assignee: Archimedes Operating, LLC
    Inventor: Tihiro Ohkawa
  • Patent number: 6939469
    Abstract: A band gap mass filter for separating particles of mass (M1) from particles of mass (M2) in a multi-species plasma includes a chamber defining an axis. Coils around the chamber generate an axially aligned magnetic field defined (B=B0+B1 sin ?t), with an antenna generating the sinusoidal component (B1 sin ?t) to induce an azimuthal electric field (E?) in the chamber. The resultant crossed electric and magnetic fields place particles M2 on unconfined orbits for collection inside the chamber, and pass the particles M1 through said chamber for separation from the particles M2. Unconfined orbits for particles M2 are determined according to an ?-? plot ( ? = ? 0 2 + ? 1 2 / 2 4 ? ? 2 , and ? ? ? ? = ? 0 ? ? 1 8 ? ? 2 ) , where ?0 is the cyclotron frequency for particles with mass/charge ratio M, and wherein ?0=B0/M and ?1=B1/M.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: September 6, 2005
    Assignee: Archimedes Operating, LLC
    Inventors: Tihiro Ohkawa, Robert L. Miller
  • Patent number: 6905029
    Abstract: A method, system, apparatus, and article of manufacture provide a cross-flow migration classifier capable of separating particles. The classifier provides a channel through which a sample, having one or more particles, passes in a first direction, wherein the channel comprises two or more walls that are permeable to a flow of fluid. A cross-flow enters the channel through one of the permeable walls and exits through another of the permeable walls. An imposed field is applied in a second direction that is counter to the cross-flow and having an orthogonal component to the first direction. The imposed field causes one or more of the particles to migrate at a first velocity opposite and/or equal to a second velocity of the cross-flow. The particles that migrate opposite to the cross-flow are continuously discharged from the cross-flow migration classifier.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: June 14, 2005
    Assignee: California Institute of Technology
    Inventor: Richard C. Flagan
  • Patent number: 6899748
    Abstract: A method and apparatus for removing contaminants from gas streams. A first step involves selecting a contaminant to be removed from a gas stream and determining a characteristic ionizing energy value required to selectively ionize the selected contaminant with minimal effect on other contaminants in the gas stream. A second step involves applying the characteristic ionizing energy value to the gas stream and selectively ionizing the selected contaminant. A third step involves capturing the selected contaminant after ionization.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: May 31, 2005
    Inventor: Moustafa Abdel Kader Mohamed
  • Patent number: 6824587
    Abstract: A method and apparatus for removing contaminants from gas streams. A first step involves selecting a contaminant to be removed from a gas stream and determining a characteristic ionizing energy value required to selectively ionize the selected contaminant with minimal effect on other contaminants in the gas stream. A second step involves applying the characteristic ionizing energy value to the gas stream and selectively ionizing the selected contaminant. A third step involves capturing the selected contaminant after ionization.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: November 30, 2004
    Inventor: Moustafa Abdel Kader Mohamed
  • Patent number: 6797176
    Abstract: A device for separating high mass to charge particles (M1) from low mass to charge particles (M2) in a plasma includes a cylindrical wall that surrounds a chamber and defines an axis. Rectangular shaped coils are mounted on the wall to establish a magnetic field, B0, in the chamber that is aligned substantially perpendicular to the axis and which rotates about the axis. Circularly shaped coils are provided to generate a time-constant, axially aligned magnetic field, Bz, in the chamber. Passive, ring-shaped electrodes are positioned at the ends of the wall and connected to resistors which are then grounded. The rotating magnetic field, B0, rotates the plasma in the axially aligned magnetic field, Bz, which in turn, induces a radially oriented electric field, Er, in the chamber. The crossed fields (i.e. Er×Bz) cause the particles, M1, to strike the wall while the particles, M2, transit through the chamber.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: September 28, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6787044
    Abstract: A material separator includes a chamber and electrode(s) to create a radially oriented electric field in the chamber. Coils are provided to generate a magnetic field in the chamber. The separator further includes a launcher to propagate a high-frequency electromagnetic wave into the chamber to convert the material into a multi-species plasma. With the crossed electric and magnetic fields, low mass ions in the multi-species plasma are placed on small orbit trajectories and exit through the end of the chamber while high mass ions are placed on large orbit trajectories for capture at the wall of the chamber.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: September 7, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Richard L. Freeman, Robert L. Miller, John Gilleland, Tihiro Ohkawa
  • Patent number: 6730231
    Abstract: A device for separating the constituents of a multi-constituent material includes a substantially cylindrical plasma chamber and two, axially opposed plasma injectors. The injectors convert the multi-constituent material into a multi-species plasma and inject the multi-species plasma into a core portion of the plasma chamber. Ions in the plasma diffuse from the core portion to an annular volume within the chamber where the ions are separated according to their respective mass to charge ratios. To effect separation, electrodes and coils are provided to establish crossed electric and magnetic fields in the annular volume. With the crossed electric and magnetic fields, low-mass ions in the annular volume are placed on small orbit trajectories and drift axially for capture at the ends of the plasma chamber. High-mass ions in the annular volume are placed on large orbit trajectories for capture at the cylindrical wall of the chamber.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: May 4, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Sergei Putvinski
  • Patent number: 6726844
    Abstract: An isotope separator includes a cylindrical chamber having first and second ends, and a length “L.” Inside the chamber, an E×B field is applied to produce plasma rotation. The energy in the plasma rotation is chosen to be much higher than the electron temperature which is clamped by radiation. As the plasma then transits the chamber through the length “L”, the electrons cool the thermal temperature of the isotope ions while maintaining the rotation. Under these conditions, the minority and majority isotopes become substantially separated from each other before they exit the chamber. To achieve this result, E×B is determined using mathematically derived expressions and, in compliance with these parameters, the length “L” of the chamber is determined so that the plasma residence time in the chamber, &tgr;1, will be greater than the cooling time, &tgr;2 (&tgr;1>&tgr;2) necessary to affect isotope separation.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: April 27, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Tihiro Ohkawa, Robert L. Miller
  • Patent number: 6723248
    Abstract: A high throughput plasma mass filter includes a substantially cylindrical shaped plasma chamber with structures for generating a magnetic field (B) that is crossed with an electric field (E) in the chamber (E×B). An injector introduces into the chamber a multi-species plasma having ions of different mass to charge ratios. To obtain high throughput (&Ggr;), the initial density of this multi-species plasma is considerably greater than a collisional density wherein there is a probability of “one” that an ion collision will occur within a single rotation of the ion under the influence of E×B. The length of the chamber is chosen to insure heavy ions can make their way to the wall before transiting the device.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: April 20, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6719909
    Abstract: A device and method for selectively establishing predetermined orbits, relative to an axis, for ions of a first mass/charge ratio (m1), requires crossing an electric field with a substantially uniform magnetic field (E×B). The magnetic field is oriented along the axis and the electric field has both a d.c. voltage component (∇&PHgr;0) and an a.c. voltage component (∇&PHgr;1). In operation, voltage &PHgr;0 is fixed to place the ions m1 on confined orbits around the axis when &PHgr;1 is zero. On the other hand, when &PHgr;1 is tuned to a predetermined value, the ions m1 are ejected away from the axis. With E×B established in a chamber, the ions m1 will pass through the chamber when on confined orbits (&PHgr;1=0), and they will be ejected into the wall of the chamber when on unconfined orbits (&PHgr;1=predetermined value).
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: April 13, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6709490
    Abstract: It is disclosed a combined system for the elimination of pollutants from gaseous effluents of the type that comprises means for carrying out at least one electronic bombardment operation and means for carrying out at least one electrostatic interaction operation, in which a heat diffusion and molecular destabilization operation is performed as a previous treatment in order to restrict the flow of gases in such a way that it causes the gas molecules and suspended particles to tend to split up and electronically destabilize at the time that the temperature of the same gases is reduced; and/or a magnetic molecular rearrangement operation is carried out prior to each electrostatic interaction operation, consisting of subjecting the gases to a magnetic field having such a force that achieve a rearrangement of the sub-particles and heavier molecules thus achieving a selective separation that prepares the gaseous stream for the electrostatic interaction operation.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: March 23, 2004
    Inventor: Juan José Calderón De Los Santos
  • Patent number: 6689930
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to form excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: February 10, 2004
    Assignee: Applied Materials Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Jr., Sebastion Raoux, Mark Fodor
  • Patent number: 6680420
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: January 20, 2004
    Assignee: Applied Materials Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Jr., Sebastien Raoux, Mark Fodor
  • Patent number: 6632369
    Abstract: A collector for use in removing metal ions from a plasma in a vacuum chamber includes a collector plate that is mounted inside the chamber and formed with an internal cooling channel. An injector introduces a dissociated salt into the chamber with a first throughput value, and it introduces a plasma including metal ions into the chamber with a lower second throughput value. A pump is used to pump a liquid coolant through the cooling channel to maintain the collector plate at a temperature that forms a portion of the salt as a protective layer on the collector plate, and causes the salt to thereafter deposit on the layer in a molten condition at a faster rate than evaporation therefrom to trap metal ions therein. The trapped metal ions are then removed with the molten salt from the chamber.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: October 14, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Brian P. Cluggish, Stephen F. Agnew, Sergei Putvinski
  • Patent number: 6515281
    Abstract: A stochastic cyclotron ion filter for separating ions in a multi-species plasma according to mass uses an electrical field (E) crossed with a magnetic field (B). In particular, the electric field is stochastically generated by an amplified noise source with a band pass filter that passes only frequencies in an interval between &ohgr;1 and &ohgr;2. The filter also includes a cylindrical chamber for receiving the multi-species plasma, and coils are used to generate the magnetic field inside the chamber. In operation, the stochastically generated electric field resonates with particles in the plasma that have a cyclotron frequency &OHgr; in the frequency interval (&ohgr;1<&OHgr;<&ohgr;2). In one embodiment, an electrode is mounted at one end of the chamber, and the electrode is connected with the amplifier to establish the electrical field in the chamber.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: February 4, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6355178
    Abstract: A cyclone or hydrocyclone for separating fluids and particles includes an electrostatic charge generator, a direct current power source, a magnet or an electromagnet for augmenting the centrifugal separation forces generated by the cyclone or hydrocyclone. The cyclone or hydrocyclone also includes a physical vibration generator or a sonic wave generator or both.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: March 12, 2002
    Inventors: Theodore Couture, Norman Arrison
  • Patent number: 6322706
    Abstract: A plasma filter for separating particles includes a hollow semi-cylindrical chamber that is enclosed by a wall. At least one plasma source is mounted in the chamber between the longitudinal axis of the chamber and the wall for generating a multi-species plasma containing light mass particles (M1) and heavy mass particles (M2). A magnetic coil is used to generate a magnetic field, Bz, in the chamber that is aligned parallel to the longitudinal axis, and electrodes at each end of the chamber generate an electric field, Er, in the chamber that is oriented perpendicular to the longitudinal axis. These crossed electric and magnetic fields rotate the multi-species plasma on a curved path around the longitudinal axis, and in a plane substantially perpendicular to the longitudinal axis, to separate M1 from M2.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: November 27, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6315819
    Abstract: There is provided a method of dry etching a nickel film formed on a substrate by means of plasma of an etching gas, wherein the etching gas includes at least one of CO and CO2 gases, and the substrate is designed to keep a temperature in the range of −25° C. to 40° C. both inclusive, while the substrate is being etched. For instance, the etching gas is a mixture gas including CO and CO2 gases, a mixture gas including CO, CO2 and H2 gases, or a mixture gas including CO and H2 gases. The above-mentioned method provides higher etching accuracy, higher etching rate, and less etching damage in a substrate.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: November 13, 2001
    Assignee: NEC Corporation
    Inventor: Masatoshi Tokushima
  • Patent number: 6287463
    Abstract: A collector cup for the collection and removal of the low-mass particles that exit from a plasma mass filter includes a cylindrical shaped wall, an internally cooled. getter plate and a plurality of internally cooled baffles. The baffles are concentrically mounted and are attached to the inside of the cylindrical wall, between the getter plate and the plasma mass filter thereby creating an enclosed volume that is defined by the getter plate, the baffles and the cylinder wall. Entryways are formed between the baffles to allow the gas formed at the baffles to enter the enclosed volume. When the ions and electrons exit from the filter, they collide with the cooler baffles, ano combine to form neutral atoms and vaporize. Once formed, the gas can pass through the entryways and into the enclosed volume where it can be condensed onto the surface of the temperature controlled getter plate.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: September 11, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6264842
    Abstract: A method and apparatus for magnetically separating magnetizable particles from a mixture of magnetizable and nonmagnetizable particles of similar size and density by passing the particles through a magnetic field generated by a cylindrical coil around the outside of the column of the separator, and enhanced by a ferrous metal mass or ring within the column located generally centrally of the coil.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: July 24, 2001
    Assignee: Outokumpu Technology, Inc.
    Inventor: Josef Boehm
  • Patent number: 6251282
    Abstract: A plasma mass filter using a helical magnetic field for separating low-mass particles from high-mass particles in a multi-species plasma includes a cylindrical outer wall located at a distance “a” from a longitudinal axis. Also included is a coaxial cylindrical inner wall positioned to establish a plasma chamber between the inner and outer walls. The magnetic field is generated in this chamber with an axial component (Bz) and an azimuthal component (B&thgr;), which interact together with an electric field to create crossed magnetic and electric fields. The electric field has a positive potential, Vctr, on the inner wall and a zero potential on the outer wall.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: June 26, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Sergei Putvinski, Tihiro Ohkawa, Richard L. Freeman
  • Patent number: 6251281
    Abstract: A plasma filter for separating positive ions from negative ions in a multi-species plasma includes a cylindrical shaped chamber. Magnetic coils surrounding the chamber generate a magnetic field that is aligned substantially parallel to the chamber's longitudinal axis. An electrode generates an electric field that is substantially perpendicular to the magnetic field to create crossed magnetic and electric fields inside the chamber. The inward directed electric field has a negative potential on the longitudinal axis and a substantially zero potential at the wall of the chamber. An injector injects the multi-species plasma into said chamber to interact with said crossed magnetic and electric fields.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: June 26, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6248240
    Abstract: A method for separating charged particles according to their mass requires providing a multi-species plasma in a chamber. The plasma includes both relatively low-mass charged particles (M1) and relatively high-mass charged particles (M2) which are influenced by crossed electric and magnetic fields (E×B) in the chamber. Specifically, the crossed fields (E×B) rotate the particles M1 and M2 in respective orbits that are characteristic of the mass of the particular particle. Inside the chamber, each charged particle has a respective cyclotron frequency (&OHgr;), and the plasma is maintained with a density wherein the collisional frequency (&ngr;) of particles in the chamber relates to the cyclotron frequency such that their ratio is greater than approximately one (&OHgr;/&ngr;≧1). Additionally, a collector is positioned to intercept the particles (M2) in their orbits and to thereby separate the particles (M2) from the particles (M1).
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: June 19, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6235202
    Abstract: A tandem plasma mass filter for separating low-mass particles from high-mass particles in a multi-species plasma includes a cylindrical shaped wall which surrounds a hollow chamber. A magnet is mounted on the wall to generate a magnetic field that is aligned substantially parallel to the longitudinal axis of the chamber. Also, an electric field is generated which is substantially perpendicular to the magnetic field and which, together with the magnetic field, creates crossed magnetic and electric fields in the chamber. Importantly, the electric field has a positive potential on the axis relative to the wall which is usually zero potential. When a vapor is injected into the chamber and ionized, the resultant multi-species plasma interacts with the crossed magnetic and electric fields to eject high-mass particles into the wall surrounding the chamber.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: May 22, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6217776
    Abstract: A centrifugal filter for separating low-mass particles from high-mass particles in a rotating multi-species plasma includes a pair of annular shaped coaxially oriented conductors. The conductors are both aligned along a central axis and are spaced apart to create a plasma passageway between them. In this configuration, the conductors generate respective magnetic field components which interact to create a magnetic field having an increased magnitude in the passageway and a decreased magnitude along the central axis. The filter also includes an electric field which has a positive potential along the central axis and a decreasing potential in an outwardly radial direction from the central axis. Specifically, this electric field is crossed with the magnetic field in the passageway to confine low-mass particles in the passageway and to eject high-mass particles from the passageway.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: April 17, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6214223
    Abstract: A toroidal shaped plasma mass filter for separating heavy mass ions (M2) from light mass ions (M1) includes a platform having an annular shaped surface with a circular axis of rotation located midway between the inner and outer circumferences of the platform. An arched wall covers the platform to create a plasma chamber with the wall at least at a distance “a” from the axis of rotation. A plasma source is mounted on the platform in the chamber between the axis of rotation and the wall to generate a multi-species containing light mass particles (M1) and heavy mass particles (M2). In the chamber, the toroidal component, B&phgr;, of a helical magnetic field, B, is crossed with an electrical field, Er, having a positive potential Vctr along the axis of rotation.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: April 10, 2001
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6203710
    Abstract: A liquid decontamination system has a liquid treatment chamber having a liquid input and output and a gas input and output. A plurality of electrodes are positioned to place a voltage across the liquid treatment chamber and the liquid therein. A plurality of magnets are also positioned adjacent the electrodes for placing a magnetic field across the chamber and liquid therein. As the contaminated liquid is fed through the liquid treatment chamber, a predetermined gas, such as nitrogen, ozone, oxygen, or hydrogen peroxide, are fed into the contaminated liquid while simultaneously having the electric and magnetic fields applied to the liquid. The liquid leaving the treatment chamber is fed to a flush tank which removes contaminates and agglomerated solids therefrom.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: March 20, 2001
    Inventor: David D. Woodbridge
  • Patent number: 6194628
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to form excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: February 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Jr., Sebastien Raoux, Mark Fodor
  • Patent number: 6149713
    Abstract: The dust concentration of the flue gas leaving an electrostatic precipitator and introduced into an absorption tower of a desulfurizer is adjusted to a level of 100 to 500 mg/Nm.sup.3. At the same time, a dust slurry having a higher dust concentration is separated and withdrawn from the slurry within the aforesaid absorption tower, and then subjected to a solid-liquid separation treatment. Thus, solid matter containing dust at a high concentration is extracted and discharged out of the system of the desulfurizer.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: November 21, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Eiji Ochi, Takeo Shinoda, Toru Takashina, Susumu Okino
  • Patent number: 6096220
    Abstract: A plasma mass filter for separating low-mass particles from high-mass particles in a multi-species plasma includes a cylindrical shaped wall which surrounds a hollow chamber. A magnet is mounted on the wall to generate a magnetic field that is aligned substantially parallel to the longitudinal axis of the chamber. Also, an electric field is generated which is substantially perpendicular to the magnetic field and which, together with the magnetic field, creates crossed magnetic and electric fields in the chamber. Importantly, the electric field has a positive potential on the axis relative to the wall which is usually zero potential. When a multi-species plasma is injected into the chamber, the plasma interacts with the crossed magnetic and electric fields to eject high-mass particles into the wall surrounding the chamber. On the other hand, low-mass particles are confined in the chamber during their transit therethrough to separate the low-mass particles from the high-mass particles.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: August 1, 2000
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6086657
    Abstract: An exhaust emissions filtering system for filtering of particulate matter from a flow of exhaust. The exhaust emissions filtering system comprises an ultrasonic transducer unit, an ultraviolet light unit, a magnetic particle filter unit, and an electronic control unit. The exhaust emissions filtering system removes particulates from exhaust emissions by fracturing the particles with the ultrasonic transducer unit, further breaking down the fractured particles with a high-intensity ultraviolet light, and removing the particles with an electrostatic mesh that is located in the magnetic particle filter unit.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: July 11, 2000
    Inventor: Joseph P. Freije
  • Patent number: 5968231
    Abstract: A device and a method for purifying and decontaminating air uses an exchanger of the cyclone type and furthermore employs a combination of the action of cyclonic centrifugation and the action of at least one path enhancing field. A tranquilizing chamber, which is separated from the cyclone exchanger by a vent, maintains a volume of liquid into which particles and droplets are received from the peripheral wall. To this end, particulates are partially electrified before entering the enhancing field.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: October 19, 1999
    Assignee: Grignotage, (SARL)
    Inventors: Michel Parmentier, Jean-Charles Weber
  • Patent number: 5931986
    Abstract: The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap's ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a "gentle" environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: August 3, 1999
    Assignee: Battelle Memorial Institute
    Inventors: Anthony J. Peurrung, Stephan E. Barlow
  • Patent number: 5759239
    Abstract: An air purifier including a housing which has two air intake passages at two lateral sides and an induced-draft fan in an air accumulation chamber between the air intake passages, a plurality of air filters respectively mounted between the air accumulation chamber and the air intake passages, each air filter including two electrically insulative frames fastened together, and a plurality of metal wire gauze filters, and a high-voltage static electricity generator mounted inside the housing and connected to one metal wire gauze filter, the high-voltage static electricity generator providing high-voltage positive static electricity to one metal wire gauze filters, causing the other metal wire gauze filters to produce positive static electricity at one side and negative static electricity at an opposite side for catching dust from air passing through.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: June 2, 1998
    Inventor: Chi-Chin Yu
  • Patent number: 5711788
    Abstract: A dust neutralizing and flocculating system used in an air cleaning system for removing contaminants contained in indoor air including a radio frequency generating electrode and an ion generating electrode. Fine particles passing through a moderately efficient filter equipped in the air cleaning system sequentially pass through the radio frequency generating electrode and ion generating electrode. The fine particles are dipolarly magnetized while passing through the radio frequency generating electrode, thereby exhibiting an increased inter-particles attraction. The ion generating electrode adds cations and anions to the fine particles, thereby promoting the flocculation of the fine particles circulating in the room installed with the air cleaning system. By virtue of the promoted flocculations, the particle size of the particles circulating in the room increases. The particles with an increased size are secondarily removed by the filter.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: January 27, 1998
    Assignee: Cambridge Filter Korea, Ltd.
    Inventors: Yong Jin Kim, Won Suk Hong, Han Geel Yeom, Jae Ouk Lee, Yong Seung Moon, Won Huy Lee, Chan Yeol Lee, Jung Ho Kim
  • Patent number: 5492677
    Abstract: A contaminated air purifying apparatus capable of decreasing particles such as dust floating in air, soot produced by a combustion engine and the like and air pollutants such as nitrogen oxides (NOx) contained in exhaust gas. Particulates such as dust, soot and the like are electrostatically negatively charged and collected in a purifying filter section by coulombic force. NOx is converted into N.sub.2 and CO.sub.2 by an action of carbon fiber or carbon particles, resulting in decreased in concentration. The carbon fiber and carbon particles are preferably modified into an increased surface area of 200 to 2000 m.sup.2 /g.
    Type: Grant
    Filed: November 3, 1993
    Date of Patent: February 20, 1996
    Assignee: Ajiawasu Kabushiki Kaisha
    Inventor: Hideo Yoshikawa
  • Patent number: 5238547
    Abstract: A gas-liquid separation method for electroconductive gas-liquid two phase flow and the device therefor wherein electrodes are disposed in the vicinity of inlet and outlet portions of the gas-liquid separation region in the flow passage of electroconductive gas-liquid two phase flow so as to flow an electric current thereto. A magnet is disposed in the gas-liquid separation region of the flow passage so as to generate a magnetic field perpendicular to the current and to generate an electromagnetic force acting along the flow passage wall on the electroconductive liquid by taking advantage of the Flemming's left hand law, thereby separating the electroconductive gas-liquid two phase flow into gas phase and liquid phase. A hydrophobic porous material having water permeability is employed as the flow passage wall in the gas-liquid separation region; the gas-liquid separation region is disposed in a reduced pressure region; and the separated gas phase is effectively removed out of the flow passage.
    Type: Grant
    Filed: December 22, 1989
    Date of Patent: August 24, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Kuniyoshi Tsubouchi, Tsutomu Okusawa, Nobuo Hamano
  • Patent number: 4285859
    Abstract: Novel azo compounds and their preparation are provided. These compounds have the general formula ##STR1## wherein X is N or CR.sub.4 where R.sub.4 is a hydrogen atom or an optionally substituted alkyl or aryl group, Y is S.sup..sym., N.sup..sym. R.sub.5, O.sup..sym. or N where R.sub.5 is an optionally substituted alkyl or aryl group, R.sub.1 is an optionally substituted alkyl or aryl group, R.sub.1 is a substituted aromatic or heterocyclic group containing a ballasting group, R.sub.2 and R.sub.3 are each hydrogen or alkyl groups having 1 to 4 carbon atoms, or R.sub.2 and R.sub.3 together with the nitrogen atom complete a heterocyclic ring, or one of R.sub.2 or R.sub.3 can be hydrogen and the other of R.sub.2 or R.sub.3 can be aryl. There may be further substitution in either of the benz rings and these rings may be benzannelated. These azo compounds are useful in the photographic field especially in the photographic dye diffusion transfer process for the production of photographic images.
    Type: Grant
    Filed: February 23, 1979
    Date of Patent: August 25, 1981
    Assignee: Ciba-Geigy AG
    Inventors: Rainer Kitzing, Brian R. D. Whitear, William E. Long, David L. R. Reeves, Glenn P. Wood
  • Patent number: 4178182
    Abstract: In a color diffusion-transfer photographic element comprising a support carrying at least two color image forming units, each comprising a selectively sensitized silver halide emulsion layer and a color image-forming material contained in either said silver halide emulsion layer or a layer adjacent to said silver halide emulsion layer, there is provided an intermediate layer between two of said color image-forming units or protective overcoating layer comprising a polymer of at least one monoacrylate or monomethacrylate of an aliphatic polyhydric alcohol.
    Type: Grant
    Filed: August 23, 1974
    Date of Patent: December 11, 1979
    Assignees: Fuji Photo Film Co., Ltd, National Patent Development Corporation
    Inventors: Motohiko Tsubota, Shinji Sakaguchi, Nobuo Tsuji