Patents Represented by Attorney Bryant R. Gold
  • Patent number: 7212866
    Abstract: A repeater device allows a remote unit to control, program and/or monitor a medical implant device from a much further distance than has heretofore been possible. Such repeater device also facilitates transmitting other signals, i.e., other than control signals, to the medical implant device, such as, e.g., streaming audio, or other auxiliary input data. In one embodiment, the repeater device also allows status signals or sensed data originating within the medical implant device to be transmitted from the medical implant device through the repeater device to the remote unit, even though the remote unit may be located some distance, e.g., up to 200 feet, from the medical implant device. Such transmitted signals when received at the remote unit may be processed, analyzed, stored, monitored and/or displayed.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: May 1, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Glen A. Griffith
  • Patent number: 7209792
    Abstract: An RF-energy modulation system dynamically adjusts tuned receiving circuits within a plurality of slave devices, thereby regulating the level of power reception in each slave device. The slave devices receive power from a single master device, through coupling of a primary antenna in the master device with a secondary antenna in each slave device. The amount of the power received by each slave device is a function of the antenna separation distance, and is thus different at each slave device location. The RF-energy modulation system monitors the power requirements of the slave device within which the modulation system is included, and modulates the tuning of the secondary antenna to maintain the proper power reception level. Advantageously, such modulation controls the power reception by the slave device, versus dissipating energy already received by the slave device.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: April 24, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Jordi Parramon, Goran N. Marnfeldt
  • Patent number: 7206640
    Abstract: A multichannel cochlear implant system spatially spreads the excitation pattern in the target neural tissue by either: (1) rapid sequential stimulation of a small group of electrodes, or (2) simultaneously stimulating a small group of electrodes. Such multi-electrode stimulation stimulates a greater number of neurons in a synchronous manner, thereby increasing the amplitude of the extra-cellular voltage fluctuation and facilitating its recording. The electrical stimuli are applied simultaneously (or sequentially at a rapid rate) on selected small groups of electrodes while monitoring the evoked compound action potential (ECAP) on a nearby electrode. The presence of an observable ECAP not only validates operation of the implant device at a time when the patient may be unconscious or otherwise unable to provide subjective feedback, but also provides a way for the magnitude of the observed ECAP to be recorded as a function of the amplitude of the applied stimulus.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: April 17, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Edward H. Overstreet
  • Patent number: 7184836
    Abstract: An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: February 27, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Paul M Meadows, Carla Mann Woods, Joey Chen, Hisashi Tsukamoto
  • Patent number: 7177691
    Abstract: An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithiumion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: February 13, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Paul M Meadows, Carla Mann Woods, Hisashi Tsukamoto, Joey Chen
  • Patent number: 7167572
    Abstract: An In The Ear (ITE) microphone improves the acoustic response of a Behind The Ear (BTE) Implantable Cochlear Stimulation (ICS) system during telephone use. An acoustic seal provided by holding a telephone earpiece against the ear provides improved coupling of low frequency (up to about 1 KHz) sound waves, sufficient to overcome losses due to the near field acoustic characteristics common to telephones. In a preferred embodiment, the ITE microphone is connected to a removable ear hook of the BTE ICS system by a short bendable stalk.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: January 23, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: William Vanbrooks Harrison, Lee F Hartley, Philip A Segel, Scott Crawford, C. Geoffrey E Fernald
  • Patent number: 7167754
    Abstract: An alterphasic inverting stimulation strategy for use with a multichannel cochlear implant system consumes less power than similar strategies, yet provides better sound quality. The alterphasic inverting strategy is a strategy wherein stimulation pulses are strictly sequential, and wherein the timing and polarity of the channels is chosen such that positive and negative pulses are alternating in time in accordance with a defined pattern that staggers application of the pulses spatially across all the channels and inverts the polarity of pulses that are near each other either spatially or in time.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: January 23, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Stefaan Peeters, Filiep Vanpoucke
  • Patent number: 7162304
    Abstract: A neuro-stimulation system and method are provided which can monitor EKG signals and provide electrical stimulation. The system comprises a stimulation lead having at least one stimulating electrode on the lead and an IPG having a case and connectors. The connectors can mechanically and electrical connect to the lead and to the at least one stimulating electrode and an EKG electrode can be placed on the stimulating lead. The IPG case may be used variously as an EKG electrode, as well as an indifferent electrode. Alternatively or additionally, a separate, second lead having a second EKG electrode may be connected to the IPG. This second EKG electrode may also double in function as a stimulation electrode.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: January 9, 2007
    Assignee: Advanced Bionics Corporation
    Inventor: Kerry Bradley
  • Patent number: 7155289
    Abstract: Audio streaming is made available throughout the signal processing path of the speech processor of a cochlear implant or other audio signal processor. Audio streaming comprises the digitally phase locked playback of a real time n-bit digital audio stream, where n may be a large number, e.g., 8, 12, 16, 24 or 32, that emanates (unsolicited) from an operating speech processor. A number of sample points are made available long the processing chain of a digital signal processor (DSP) used within the speech processor of the cochlear implant. Audio streaming may occur at any sample point. The signal at a selected sample point may be selectively monitored in order to allow appropriate diagnostics to be performed. Audio streaming utilizes an auto-referencing mixed-mode phase locked loop. Such phase locked loop processes an asynchronous stream of digital audio samples that arrive at a designated location, e.g., a selected sample point, at a consistent, but unknown, average rate.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: December 26, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Lee F Hartley
  • Patent number: 7136706
    Abstract: An implantable neural stimulation system, such as a cochlear implant system, utilizes a Distributed Compression Amplitude Mapping (DCAM) system to distribute signal compression between a pre-bandpass linear mapping function, and a post-bandpass compressive mapping function. The pre-bandpass linear mapping function is implemented, in one embodiment, as a traditional fast audio compressor to prevent distortion that might result from a non-linear mapping. The post-bandpass compressive mapping function is implemented, in one embodiment, as a logarithmic transform to reflect natural hearing. As a result of the DCAM processing, the differences in amplitudes of components of the acoustic spectrum are maintained. By maintaining these differences, spectral smearing between channels is reduced and speech clues are preserved.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: November 14, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Andrew W. Voelkel
  • Patent number: 7130694
    Abstract: Improved skipping strategies for cochlear or other multi-channel neural stimulation implants selects N out of M channels for stimulation during a given stimulation frame. A microphone transduces acoustic energy into an electrical signal. The electrical signal is processed by a family of bandpass filters, or the equivalent, to produce a number of frequency channels. In a first embodiment, a probability based channel selection strategy computes a probably for each of the M channels based on the strength of each channel. N channels are probabilistically selected for stimulation based on their individual probability. The result is a randomized “stochastic” stimulus presentation to the patient. Such randomized stimulation reduces under representation of weaker channels for steady state input conditions such as vowels. In second, third and fourth embodiments, a variable threshold is adjusted to obtain the selection of N channels per frame.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: October 31, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Andrew W Voelkel
  • Patent number: 7117038
    Abstract: A method and system for fitting a multichannel cochlear implant system to a patient increases the percentage of patients for which stapedial reflexes can be obtained, and increases the accuracy of predicting the “live speech” comfort levels of the patient's fitting programs from the stapedial reflex. Electrical stimuli are applied on multiple electrodes at “live speech” pulse rates. The neural excitation patterns elicited from such stimulation more closely resemble that which occurs when the system is subjected to normal speech patterns. By progressively setting threshold levels in bands, e.g., groups of electrodes, either overlapping or non-overlapping, as well as with a final check by globally adjusting the band obtained contour to the stapedial reflex, such values more closely resemble actual “live speech” program levels than those obtained with traditional methods.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: October 3, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Edward H Overstreet
  • Patent number: 7110822
    Abstract: A hand-held remote unit functions as both a remote status device and a control device for a cochlear implant system. When placed near the headpiece of a cochlear implant system, the remote unit monitors the forward telemetry signal transmitted between an external speech processor, e.g., a behind-the-ear (BTE) speech processor, and an implanted unit, thereby providing the remote unit with the ability to output status information regarding the system. The remote unit may also generate a back telemetry signal that when properly received by the speech processor causes a forward telemetry signal to be generated that controls the implant unit.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: September 19, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Logan P Palmer
  • Patent number: 7110823
    Abstract: Communication between an implantable device(s), such as a neural stimulator, and an external remote device(s), e.g., a computer in a clinician's office, a computer in a patient's home, or a handheld patient remote control, is performed entirely via an RF link. In order to conserve power, the RF telemetry system of the implant is only activated periodically; with the period of activation being sufficiently short so as to allow a reasonably prompt response of the implant to a request for a communication session by the external device. In order to assure reliable communication, the RF information may be encoded, as appropriate, with error correction codes.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: September 19, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, Kelly H McClure, Salomo S Murtonen
  • Patent number: 7110821
    Abstract: A way of reducing channel interaction is provided in a multichannel neural implant that has the ability to stimulate multiple tissue or nerve sites simultaneously. Channel interaction is minimized through measuring or estimating what the channel interaction is or will likely be, and then using that measured or estimated channel interaction to adjust the intensity of the applied stimuli so that, with the channel interaction, the actual stimuli applied to the tissue or nerves is of a desired intensity level. In one embodiment, the measured or estimated channel interaction is collected or compiled and saved as a channel interaction matrix. The channel interaction matrix is created during a fitting procedure by stimulating one channel at a time while measuring the effects of the stimulation on the neighboring channels. The superposition principal is used, as needed, to determine all the terms of the channel interaction matrix.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: September 19, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Richard C. Ross
  • Patent number: 7107101
    Abstract: A method of programming a bionic ear cochlear implant provides access to the full functionality of the implant, while still providing a simple-to-administer, more reliable, and faster fitting experience for the patient and clinician. The method includes (a) conducting a pre-evaluation stage focused on sorting and identifying bad electrode contacts, reducing fitting time and improving patient performance; (b) conducting a programming stage wherein T and M levels are adjusted based on information derived during the pre-evaluation stage; and (c) conducting a post-evaluation stage wherein wired speech understanding tests are automatically run in order to provide an objective programming choice. The pre-evaluation stage automatically runs a set of objective tests, and then, based on the result of such tests, generates a template for the clinician to use during the programming stage. The objective tests, inter alia, identify and remove bad electrode contacts from the template.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: September 12, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Michael A. Faltys
  • Patent number: 7106873
    Abstract: An In The Ear (ITE) microphone improves the acoustic response of a Behind The Ear (BTE) Implantable Cochlear Stimulation (ICS) system during telephone use. An acoustic seal provided by holding a telephone earpiece against the ear provides improved coupling of low frequency (up to about 1 KHz) sound waves, sufficient to overcome losses due to the near field acoustic characteristics common to telephones. In a preferred embodiment, the ITE microphone is connected to a removable ear hook of the BTE ICS system by a short bendable stalk.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: September 12, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: William Vanbrooks Harrison, Lee F Hartley, Philip A Segel, Scott A Crawford, C. Geoffrey E Fernald
  • Patent number: 7103417
    Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken. However, should there be errors in the place-pitch ranking, which errors evidence perceptual place-confusions, then a search is undertaken for the spread of the perceptual confusion by separating the target channel and competing channel by one electrode contact at a time.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 5, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Philip A Segel, Tracey L Kruger
  • Patent number: 7097746
    Abstract: An anode protection device and method are provided. The method includes placing a sacrificial anode in proximity to the positive and negative contacts to shield or distort the field therebetween which provides preferential corrosion of the sacrificial anode, instead of the anode. The protection device is a sacrificial anode having various forms and placed in different configurations. In one form the sacrificial anode is a plate. In another form the sacrificial anode is a ring placed around either the positive contact or negative contact to provide a shield between the negative and positive contacts. In a further device embodiment, the sacrificial anodic plate can be welded to the aluminum case of a rechargeable battery of a behind-the-ear (BTE) hearing device.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: George Tziviskos, C. Geoffrey E Fernald
  • Patent number: 7099718
    Abstract: An implantable lead having at least one electrode contact at or near its distal end prevents undesirable movement of the electrode contact from its initial implant location. One embodiment relates to a spinal cord stimulation (SCS) lead. A balloon may be positioned on the electrode lead array. The balloon is filled with air, liquid or a compliant material. When inflated, the balloon stabilizes the lead with respect to the spinal cord and holds the lead in place. The pressure of the balloon is monitored or otherwise controlled during the filling process in order to determine at what point the filling process should be discontinued. An elastic aspect of the balloon serves as a contained relief valve to limit the pressure the balloon may place on the surrounding tissues when the epidural space is constrained.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: August 29, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: James R. Thacker, David K. L. Peterson, James P. McGivern, Michael S. Colvin