Patents Represented by Attorney, Agent or Law Firm David Denker
  • Patent number: 6380105
    Abstract: This invention has enabled a new, simple thin film nanoporous dielectric fabrication method. In general, this invention uses glycerol, or another low volatility compound, as a solvent. This new method allows thin film aerogels/low density xerogels to be made without supercritical drying, freeze drying, or a surface modification step before drying. Thus, this invention allows production of nanoporous dielectrics at room temperature and atmospheric pressure, without a separate surface modification step. Although this new method allows fabrication of aerogels without substantial pore collapse during drying, there may be some permanent shrinkage during aging and/or drying. This invention allows controlled porosity thin film nanoporous aerogels to be deposited, gelled, aged, and dried without atmospheric controls.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: April 30, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Richard A. Stoltz, Alok Maskara, Teresa Ramos, Shin-Puu Jeng, Bruce E. Gnade
  • Patent number: 6365451
    Abstract: A method of fabricating a semiconductor device and the device. The device is fabricated by providing a substrate having a region thereover of electrically conductive material, and a dielectric first sidewall spacer on the region of electrically conductive material. A second sidewall spacer is formed over the first sidewall spacer extending to the substrate from a material which is selectively removal relative to the first sidewall spacer. An electrically conductive region is formed contacting the second sidewall spacer and spaced from the substrate. The second sidewall spacer is selectively removable to form an opening between the substrate and the electrically conductive region. The opening is filled with electrically conductive material to electrically couple the electrically conductive material to the substrate.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: April 2, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Robert H. Havemann
  • Patent number: 6362499
    Abstract: A ferroelectric structure on an integrated circuit and methods of making and using the same are disclosed, which may be used, for instance, in a high-speed, non-volatile, non-destructive readout random-access memory device. Generally, the ferroelectric structure combines a thin film ferroelectric variable resistor and a substrate (e.g. silicon) transistor, using a semiconducting film which is common to both. A field effect transistor 26 integrated into substrate 30 has a gate oxide 36 and a semiconducting gate electrode 38 with electrical connections at a first end 44 and a second end 46. Overlying gate electrode 38 is a ferroelectric thin film 40 and a conductive electrode 42. The polarization of ferroelectric thin film 40 is set by applying an appropriate voltage between gate electrode 38 and conductive electrode 42.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: March 26, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Scott R. Summerfelt
  • Patent number: 6335238
    Abstract: This invention pertains generally to the integration of dielectrics with integrated circuits, and more particularly to reaction barriers between high-k dielectrics and an underlying Group IV semiconductor layer. Applications for high permittivity memory cells and gate dielectrics are disclosed. This method has steps of providing a partially completed integrated circuit having a semiconductor layer substantially comprising silicon, where the layer has an exposed face. The method also includes forming an ultra-thin SiC reaction barrier at the exposed face, and depositing a high permittivity storage dielectric on the SiC reaction barrier. Typically, the SiC reaction barrier is less then 25 Å thick, preferably one or two monolayers of SiC.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: January 1, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Sunil V. Hanttangady, Robert M. Wallace, Bruce E. Gnade, Yasutoshi Okuno
  • Patent number: 6326210
    Abstract: A miniaturized integrated sensor (50) useful for indicating the presence of a sample analyte is disclosed. The sensor (50) has a platform (52) with an upper surface (53) and a detector (62), light source (60), waveguide (58), and reflective fixtures (60,62) embedded in the platform (52). The light source (60) is preferably a light emitting diode and sits in a cup-shaped dimple (68) that directs light from the light source (60) toward one of the reflective fixtures (64) to uniformly distribute light across the waveguide (58). The waveguide (58) is coupled to an upper surface (53) of the sensor platform (52) and is coated with a thin film of indicator chemistry (70) which interacts with the sample analyte to produce optic signal changes that are measurable by the detector (62). A lead frame (51) in the platform (52) has pins (54, 55, 56) which provide the interface to the outside world.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: December 4, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Carr, Jose L. Melendez, Kirk S. Laney
  • Patent number: 6323114
    Abstract: An embodiment of the instant invention is a method of fabricating an electronic device over a semiconductor substrate which includes a dielectric layer formed between a first structure and a second structure, the method comprising the steps of: growing an oxide-containing layer (layer 204 of FIGS. 2a-2d) on the first structure (substrate 202 of FIGS. 2a-2d); forming a silicon-containing layer (layer 206 of FIG. 2b) on the oxide-containing layer; oxidizing substantially all of the silicon-containing layer by subjecting it to an ambient comprised of oxygen and nitrogen with a substrate temperature around 700 to 800 C.; and forming the second structure (layer 214 of FIG. 2d) on the oxidized silicon-containing layer. Preferably, the step of oxidizing substantially all of the silicon-containing layer is performed by subjecting the silicon-containing layer to an ambient containing: N2O with a wafer temperature around 700 to 800 C.; or NO with a wafer temperature around 700 to 800 C.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: November 27, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Sunil V. Hattangady, Tad (Douglas) Grider, John W. Kuehne
  • Patent number: 6319852
    Abstract: This pertains generally to precursors and deposition methods suited to aerogel thin film fabrication of nanoporous dielectrics. An aerogel precursor sol is disclosed. This aerogel precursor sol contains a metal alkoxide (such as TEOS) and a solvent, but no gelation catalyst. By a method according to the present invention, such a precursor sol is applied as a nongelling thin film 14 to a semiconductor substrate 10. This substrate may contain patterned conductors 12, gaps 13, or other structures. An independent gelation catalyst (preferably, vapor phase ammonia) is added to promote rapid gelation of the thin film sol 14 at the desired time. One advantage is that it allows substantially independent control of gelation and pore fluid evaporation. This independent catalyst introduction allows additional processing steps to be performed between sol deposition and the onset of substantial gelation. One potential step is to evaporate a portion of the pore fluid solvent.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: November 20, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas M. Smith, Gregory P. Johnston, William C. Ackerman, Shin-Puu Jeng
  • Patent number: 6291867
    Abstract: A field effect semiconductor device comprising a high permittivity zirconium (or hafnium) silicon-oxynitride gate dielectric and a method of forming the same are disclosed herein. The device comprises a silicon substrate 20 having a semiconducting channel region 24 formed therein. A zirconium silicon-oxynitride gate dielectric layer 36 is formed over this substrate, followed by a conductive gate 38. Zirconium silicon-oxynitride gate dielectric layer 36 has a dielectric constant is significantly higher than the dielectric constant of silicon dioxide. However, the zirconium silicon-oxynitride gate dielectric may also be designed to have the advantages of silicon dioxide, e.g. high breakdown, low interface state density, and high stability.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: September 18, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Robert M. Wallace, Richard A. Stoltz, Glen D. Wilk
  • Patent number: 6291866
    Abstract: A field effect semiconductor device comprising a high permittivity zirconium (or hafnium) oxynitride gate dielectric and a method of forming the same are disclosed herein. The device comprises a silicon substrate 20 having a semiconducting channel region 24 formed therein. A zirconium oxynitride gate dielectric layer 36 is formed over this substrate, followed by a conductive gate 38. Zirconium oxynitride gate dielectric layer 36 has a dielectric constant is significantly higher than the dielectric constant of silicon dioxide.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: September 18, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Robert M. Wallace, Richard A. Stoltz, Glen D. Wilk
  • Patent number: 6287903
    Abstract: A structure for, and method of forming, a metal-insulator-semiconductor field-effect transistor in an integrated circuit is disclosed. The disclosed method comprises forming a germanium layer 52 on a semiconductor substrate (e.g. silicon 20), depositing a large-permittivity gate dielectric (e.g. tantalum pentoxide 56) on the germanium layer, and forming a gate electrode (e.g., titanium nitride 60) on the gate dielectric. The method may comprise forming source and drain regions 64 in the substrate on either side of the gate dielectric. The germanium layer, which is preferably epitaxially grown, generally prevents formation of a low dielectric constant layer between the gate dielectric and the semiconductor substrate. The disclosed structure comprises a germanium layer 52 disposed on a semiconductor substrate (e.g. silicon 20), a large-permittivity gate dielectric (e.g. tantalum pentoxide 56) disposed on the germanium layer, and a gate electrode (e.g., titanium nitride 60) disposed on the gate dielectric.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: September 11, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Yasutoshi Okuno, Scott R. Summerfelt
  • Patent number: 6274510
    Abstract: A method for forming a thermal silicon nitride on a semiconductor substrate is disclosed. This method allows formation of thermal silicon nitride that is thick enough for a FET gate dielectric, but has a low thermal budget.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: August 14, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Glen D. Wilk, John Mark Anthony, Yi Wei, Robert M. Wallace
  • Patent number: 6275621
    Abstract: A method and system of measuring misalignment between two levels wherein there is provided a first grating pattern (19, 21, 23, 25, 3, 5, 7, 9) on a first layer (1) and a second grating pattern (19′, 21′, 23′, 25′, 3′, 5′, 7′, 9′) on a second layer (41) capable of providing Moire fringes when disposed over the first grating pattern and which is disposed over the first grating pattern whereby the first and second grating patterns are capable of providing Moire fringes. Misalignment of the first layer relative to the second layer is measured from the position of the Moire fringe provided by the first and second grating patterns either visually or by optical instrumentation. The second layer is preferably transparent.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: August 14, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: Roger M. Terry
  • Patent number: 6271577
    Abstract: A method of fabricating a semiconductor device and the device. The device is fabricated by providing a substrate having a region thereover of electrically conductive material, and a dielectric first sidewall spacer on the region of electrically conductive material. A second sidewall spacer is formed over the first sidewall spacer extending to the substrate from a material which is selectively removal relative to the first sidewall spacer. An electrically conductive region is formed contacting the second sidewall spacer and spaced from the substrate. The second sidewall spacer is selectively removable to form an opening between the substrate and the electrically conductive region. The opening is filled with electrically conductive material to electrically couple the electrically conductive material to the substrate.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: August 7, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: Robert H. Havemann
  • Patent number: 6258637
    Abstract: A method of preparing a surface for and forming a thin film on a single-crystal silicon substrate is disclosed. One embodiment of his method comprises forming an oxidized silicon layer (which may be a native oxide) on at least one region of the substrate, and thermally annealing the substrate in a vacuum while supplying a silicon-containing flux to the oxide surface, thus removing the oxidized silicon layer. Preferably, the thin film is formed immediately after removal of the oxidized silicon layer. The silicon-containing flux is preferably insufficient to deposit a silicon-containing layer on top of the oxidized silicon layer, and yet sufficient to substantially inhibit an SiO-forming reaction between the silicon substrate and the oxidized silicon layer. The method of the invention allows for growth or deposition of films which have exceptionally smooth interfaces (less than 0.1 nm rms roughness) with the underlying silicon substrate at temperatures less than 800° C.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 10, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Glen D. Wilk, Yi Wei, Robert M. Wallace
  • Patent number: 6245606
    Abstract: This invention pertains generally to forming thin aluminum oxides at low temperatures, and more particularly to forming uniformly thick, aluminum gate oxides. We disclose a low temperature method for forming a thin, uniform aluminum gate oxide 16 on a silicon surface 12. This method includes providing a partially completed integrated circuit on a semiconductor substrate 10 with a clean, hydrogen terminated or atomically flat, silicon surface 12; forming a uniformly thick aluminum layer 13; and stabilizing the substrate at a first temperature. The method further includes exposing the aluminum layer to an atmosphere 14 including ozone, while maintaining the substrate 10 at the first temperature. In this method, the exposing step creates a uniformly thick, aluminum oxide film 16. This method is suitable for room temperature processing.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: June 12, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Glen D. Wilk, Robert M. Wallace
  • Patent number: 6236773
    Abstract: A grating (18) couples the waveguide region (36) of a semiconductor laser (11) to a dielectric waveguide (26). The waveguide region of the laser includes a mirror (15) at one end thereof and an absorber (19) at the other end thereof. The dielectric waveguide includes a reflector (24) therein to reflect a portion of the light coupled from the laser to the dielectric waveguide back into the laser waveguide region.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: May 22, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Jerome K. Butler, Lily Y. Pang, Gary A. Evans
  • Patent number: 6228741
    Abstract: A method is given for removing excess oxide from active areas after shallow trench isolation, without the use of chemical-mechanical polishing. A nitride mask protects active areas during the etch of isolation trenches. The trenches are filled with oxide, using high density plasma deposition, which simultaneously etches, providing a sloping contour around the isolation trenches. A further layer of nitride is used to provide a cap over the trench which seals to the underlying layer of nitride. The cap layer of nitride receives a patterned etch to remove the cap only over the active areas. This allows a selective etch to remove the excess oxide, which can be followed by a selective etch to remove the nitride layers.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: May 8, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Shawn T. Walsh, John E. Campbell, James B. Friedmann, Thomas M. Parrill, Der'E Jan, Joshua J. Robbins, Byron T. Ahlburn, Sue Ellen Crank
  • Patent number: 6225655
    Abstract: A ferroelectric structure on an integrated circuit is disclosed, which may be used, for instance, in a high-speed, non-volatile, non-destructive readout random-access memory device. Generally, the ferroelectric structure combines a thin film ferroelectric variable resistor and a substrate (e.g. silicon) transistor, using a semiconducting film which is common to both. A field effect transistor 26 integrated into substrate 30 has a gate oxide 36 and a semiconducting gate electrode 38 with electrical connections at a first end 44 and a second end 46. Overlying gate electrode 38 is a ferroelectric thin film 40 and a conductive electrode 42. The polarization of ferroelectric thin film 40 is set by applying an appropriate voltage between gate electrode 38 and conductive electrode 42.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: May 1, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Scott R. Summerfelt
  • Patent number: 6214710
    Abstract: A method of forming a semiconductor device includes separating a semiconductor gate body from the outer surface of the substrate by a gate insulator layer, forming a conductive drain region in the outer surface of the substrate and spaced apart from the gate conductor body, and forming a conductive source region in the outer surface of the substrate and spaced apart from the gate conductor body opposite the conductive drain region to define a channel region in the substrate disposed inwardly from the gate body and the gate insulator layer. The method also includes depositing a metal buffer layer over the conductive source region and conductive drain region, depositing a metal layer over the metal buffer layer, and reacting the metal layer and metal buffer layer with the conductive source region and conductive drain region to form respective first and second silicide regions.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: April 10, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Kyung-Ho Park, Chih-Chen Cho, Ming Jang Hwang
  • Patent number: 6191847
    Abstract: A fixed optic sensor system (200) comprising a sensor system (210), and electronic sub-system (205) and a communications means (215). The system can be used for detecting the presence of various sample (236) properties and in that regard has widespread application by leveraging off various miniaturized sensor configurations including surface plasmon resonance (50), fluorescence (80), light transmission (125) and others (150). In one embodiment, the communications means (215) is a wireless transmitter/receiver. In another embodiment, a hand held instrument (358) can be used on-site and communicates with the sensor (350) to receive sample (352) related data and transmit it to a remote processing system (370) for further analysis. In yet another embodiment, a hand held instrument (403) has a plurality of cardiac marker binding ligands (400) deposited on the sensor/sample interface providing a medical diagnosis and point-of-care device (403).
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: February 20, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Patrick Paul Smith, Dwight U. Bartholomew, John H. Berlien, Jr., Frederick F. Geyer, Paul S. Breedlove