Patents Represented by Law Firm Frelich Hornbaker Rosen & Fernandez
  • Patent number: 4857380
    Abstract: A surface-reinforced lightweight article is described, which includes a honeycomb structure whose sidewalls are reinforced by an expanded foam. The article can be manufactured by laying a fibrous third layer, such as several layers of dry tissue paper backed by a layer of dry fiberglass cloth, on the walls of a mold, laying a second layer of multi-cell honeycomb-like material against the third layer, and laying a finely porous first layer such as tissue paper over the second layer. Foamable plastic is poured in the mold over the three layers and the mold is closed. As the plastic foams and expands, it forces the three layers into a tight sandwich and permeates the layers to reinforce them. Specifically, expanded foam in the cells of multi-cell honeycomb-type material braces the honeycomb sidewalls against collapse, to greatly increase the strength and rigidness of the article.
    Type: Grant
    Filed: January 6, 1989
    Date of Patent: August 15, 1989
    Inventor: Sherwood Kent
  • Patent number: 4848677
    Abstract: A mill for comminution and separation of lump ore and subsequent recovery of relatively dense components of the ore, said mill including a stationary housing defining an ore reduction chamber therewithin, an impactor rotor drum rotatably mounted within said housing, said rotor drum supporting a plurality of circumferentially spaced ore breaker hammers and fixedly supporting a plurality of vanes for directing a high velocity air stream around said ore reduction chamber and defining a central feed region therewithin for receiving said lump ore, a plurality of transverse ore breaker plates fixedly supported within said housing and radially spaced from said rotor drum, an autogenous region in downstream communication with said ore reduction chamber, said autogenous region including a high velocity venturi region, a low velocity expansion region downstream of said venturi region and at least one collector plate arranged such that in use a particle laden air stream is directed through said venturi region and out in
    Type: Grant
    Filed: October 31, 1988
    Date of Patent: July 18, 1989
    Assignee: Illabo Mining Equipment Company
    Inventor: Martin Rayner
  • Patent number: 4846370
    Abstract: Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid.
    Type: Grant
    Filed: January 23, 1985
    Date of Patent: July 11, 1989
    Assignee: California Institute of Technology
    Inventors: Daniel D. Elleman, Taylor G. Wang
  • Patent number: 4846224
    Abstract: Fluidics flow control of a multiphase supply using a cylindrical chamber is achieved by introducing the supply flow radially into the chamber. The supply flow exits through a port in the center at the chamber. A control fluid is then introduced tangentially about 90.degree. upstream from the supply port. A second control fluid port may be added about 90.degree. upstream from the first control fluid port, but preferably two sets of supply and control ports are added with like ports diametrically opposite each other. The control fluid flows against the circular wall of the control chamber, which introduces a vortex in the flow of the supply flow that decays into a spiral path to the exit port in the center of the chamber. The control flow rate may thus be used to control the spiral path, and therefore the supply flow rate through the exit port.
    Type: Grant
    Filed: August 4, 1988
    Date of Patent: July 11, 1989
    Assignee: California Institute of Technology
    Inventors: Earl R. Collins, Jr., Wilbur J. Marner, Naresh K. Rohatgi