Abstract: A transistor and a method of making a transistor are disclosed, where a tunnel diode is formed to make connection between the source of the transistor and the body node underlying the gate. For the example of an n-channel transistor, a p+ region is formed by implant and diffusion under the n+ source region, the p+ region in contact on one end with the relatively lightly doped p-type body node. The relatively high dopant concentration of both the p+ region and the n+ source region creates a tunnel diode. The tunnel diode conducts with very low forward voltages, which causes the body node region to be substantially biased to the potential of the source region. Methods for forming the transistor are also disclosed, including the use of a source/drain anneal prior to p-type implant, or alternatively a second sidewall oxide filament, to preclude the boron from counterdoping the LDD extension at the source side. Both silicon-on-insulator and bulk embodiments are disclosed.
Abstract: Photocapacitive detectors with varying bandgap Hg.sub.1-x Cd.sub.x Te (604) for two color detection and one color detection with increased potential well capacity. Preferred embodiments include a transparent insulated gate (608) on a top layer (632) of Hg.sub.0.8 Cd.sub.0.2 Te over a lower layer (634) of Hg.sub.0.83 Cd.sub.0.27 Te for detection of two infrared colors by varying gate potential to either confine the potential well to the top layer or to extend the potential well to both layers. Also, methods of compositionally grading the Hg.sub.1-x Cd.sub.x Te by fluid transport plus diffusion.
Abstract: A Schottky diode includes a metal layer (62) on an epitaxial region (24). The metal layer (62) is covered with a dielectric layer (64). An area (90) on the metal is exposed by opening a via (68) in the dielectric. The exposed area (90) is spaced from a buried perimeter (92) of the metal layer (62). A conductive lead (86) is formed in the Schottky via (68). A poly emitter terminal (46) connects a small sized emitter (50) formed in an epitaxial region (24) to the exterior. Poly emitter (46) presents a large area (76) to the exterior for alignment with a via (66) through a passivating dielectric layer (64), thus alleviating alignment problems.
Abstract: This invention relates to a mud, or, as it is commonly known in the West, "adobe", construction. The present invention relates to a method of constructing such a wall with interior wire reinforcements which are adapted to tie the foundation, the wall and a roof member, such as a roof truss, into an integral assembly. It includes a series of formed wire "trusses", or tie members, arranged in spaced relationship along the wall extending from a point within the foundation form to a height to include at least one member of the roof truss. Cooperating with the trusses are a pair of laterally spaced, longitudinally extending wire mesh members, the trusses and wire mesh being suitably tied together to form an integral structure. The wall is constructed either by pouring adobe mud into a form, or by plastering a thick adobe mud onto the wire mesh, which will extend through that material and lock itself into it in courses of about twelve inches high.