Patents Represented by Attorney Kim-Marie Vo
  • Patent number: 7583542
    Abstract: A method for operating a memory device includes selecting a cell comprising an array of word lines, selecting a word line within said array and applying an operating voltage to said selected word line. A shielding voltage is also applied to the closest adjacent facing word line of said selected word line. This may prevent unintended, program, read, or erase of said unselected word line. The remainder of unselected word lines can be floated.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: September 1, 2009
    Assignee: Freescale Semiconductor Inc.
    Inventor: Horacio P. Gasquet
  • Patent number: 7579243
    Abstract: Split gate memory cell formation includes forming a sacrificial layer over a substrate. The sacrificial layer is patterned to form a sacrificial structure with a first sidewall and a second sidewall. A layer of nanocrystals is formed over the substrate. A first layer of polysilicon is deposited over the substrate. An anisotropic etch on the first polysilicon layer forms a first polysilicon sidewall spacer adjacent the first sidewall and a second polysilicon sidewall spacer adjacent the second sidewall. Removal of the sacrificial structure leaves the first sidewall spacer and the second sidewall spacer. A second layer of polysilicon is deposited over the first and second sidewall spacers and the substrate. An anisotropic etch on the second layer of polysilicon forms a third sidewall spacer adjacent to a first side of the first sidewall spacer and a fourth sidewall spacer adjacent to a first side of the second sidewall spacer.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 25, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Rode R. Mora, Robert F. Steimle
  • Patent number: 7579279
    Abstract: A method for processing semiconductor wafers is disclosed. A solution is applied to a semiconductor wafer to prevent dendrites and electrolytic reactions at the surface of metal interconnects. The solution can be applied during a CMP process or during a post CMP cleaning process. The solution may include a surfactant and a corrosion inhibitor. In one embodiment, the concentration of the surfactant in the solution is less than approximately one percent by weight and the concentration of the corrosion inhibitor in the solution is less than approximately one percent by weight. The solution may also include a solvent and a cosolvent. In an alternate embodiment, the solution includes a solvent and a cosolvent without the surfactant and corrosion inhibitor. In one embodiment, the CMP process and post CMP cleaning process can be performed in the presence of light having a wavelength of less than approximately one micron.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 25, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John C. Flake, Kevin E. Cooper, Saifi Usmani
  • Patent number: 7544595
    Abstract: A method for forming a semiconductor device includes forming a gate dielectric over a substrate, forming a metal electrode over the gate dielectric, forming a first sacrificial layer which includes polysilicon or a metal over the metal electrode, removing the first sacrificial layer, and forming a gate electrode contact over and coupled to the metal electrode.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: June 9, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: William J. Taylor, Jr.
  • Patent number: 7535078
    Abstract: A fuse (43) is formed overlying a passivation layer (35) and under a packaging material (55, 70). In one embodiment, a fuse (43) is blown before the packaging material (55, 70) is formed. In some embodiments, the fuse (43) may be formed of metal (47), a metal nitride (42) or a combination thereof.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: May 19, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thomas S. Kobayashi, Stephen G. Sheck, Scott K. Pozder
  • Patent number: 7521317
    Abstract: A method for forming a semiconductor device includes providing a semiconductor substrate comprising silicon, forming a layer of dielectric on the surface of the semiconductor substrate, forming a gate electrode comprising silicon over the layer of dielectric, recessing the layer of dielectric under the gate electrode, filling the recess with a discrete charge storage material, oxidizing a portion of the gate electrode, and oxidizing a portion of the semiconductor substrate.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: April 21, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chi Nan Brian Li, Ko-Min Chang, Cheong M. Hong
  • Patent number: 7517741
    Abstract: A semiconductor fabrication method includes forming a semiconductor structure including source/drain regions disposed on either side of a channel body wherein the source/drain regions include a first semiconductor material and wherein the channel body includes a migration barrier of a second semiconductor material. A gate dielectric overlies the semiconductor structure and a gate module overlies the gate dielectric. An offset in the majority carrier potential energy level between the first and second semiconductor materials creates a potential well for majority carriers in the channel body. The migration barrier may be a layer of the second semiconductor material over a first layer of the first semiconductor material and under a capping layer of the first semiconductor material. In a one dimensional migration barrier, the migration barrier extends laterally through the source/drain regions while, in a two dimensional barrier, the barrier terminates laterally at boundaries defined by the gate module.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 14, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, James D. Burnett
  • Patent number: 7494856
    Abstract: A semiconductor fabrication process includes forming an etch stop layer (ESL) overlying a buried oxide (BOX) layer and an active semiconductor layer overlying the ESL. A gate electrode is formed overlying the active semiconductor layer. Source/drain regions of the active semiconductor layer are etched to expose the ESL. Source/drain stressors are formed on the ESL where the source/drain stressors strain the transistor channel. Forming the ESL may include epitaxially growing a silicon germanium ESL having a thickness of approximately 30 nm or less. Preferably a ratio of the active semiconductor layer etch rate to the ESL etch rate exceeds 10:1. A wet etch using a solution of NH4OH:H2O heated to a temperature of approximately 75° C. may be used to etch the source/drain regions. The ESL may be silicon germanium having a first percentage of germanium.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: February 24, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7476563
    Abstract: A method is for packaging a first device having a first major surface and a second major surface. An encapsulant is formed over a second major surface of the first device and around sides of the first device. This leaves the first major surface of the first device exposed. A first dielectric layer is formed over the first major surface of the first device. a side contact interface is formed having at least a portion over the first dielectric layer. The encapsulant is cut to form a plurality of sides of encapsulant. A portion of the encapsulant is removed along a first side of the plurality of sides to expose a portion of the side contact interface along the first side of the plurality of sides.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: January 13, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marc A. Mangrum, Kenneth R. Burch
  • Patent number: 7468313
    Abstract: A semiconductor fabrication process preferably used with a semiconductor on insulator (SOI) wafer. The wafer's active layer is biaxially strained and has first and second regions. The second region is amorphized to alter its strain component(s). The wafer is annealed to re-crystallize the amorphous semiconductor. First and second types of transistors are fabricated in the first region and the second region respectively. Third and possibly fourth regions of the active layer may be processed to alter their strain characteristics. A sacrificial strain structure may be formed overlying the third region. The strain structure may be a compressive. When annealing the wafer with the strain structure in place, its strain characteristics may be mirrored in the third active layer region. The fourth active layer region may be amorphized in stripes that run parallel to a width direction of the transistor strain to produce uniaxial stress in the width direction.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: December 23, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Victor H. Vartanian, Brian A. Winstead
  • Patent number: 7445976
    Abstract: A stack located over a substrate. The stack includes a layer between a dielectric layer and a metal layer. The layer includes a halogen and a metal. In one embodiment, the halogen is fluorine. In one embodiment, the stack is a control electrode stack for a transistor. In one example the control electrode stack is a gate stack for a MOSFET. In one example, the layer includes aluminum fluoride.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, Rama I. Hegde, Srikanth B. Samavedam
  • Patent number: 7423416
    Abstract: A voltage regulator includes first and second MOS transistors and a bipolar transistor. The first MOS transistor has a first conductivity type and has a drain coupled to a first power supply voltage terminal, a gate for receiving a first bias voltage, and a source. The second MOS transistor has a second conductivity type and has a source coupled to the first power supply voltage terminal, a drain coupled to the source of the first MOS transistor, and a gate for receiving a second bias voltage. The bipolar transistor has a collector coupled to the source of the first MOS transistor, a base for receiving a third bias voltage, and an emitter for providing an output voltage. The first MOS transistor and the second MOS transistor control a voltage level at the collector of the bipolar transistor in response to a varying power supply voltage provided to the first power supply voltage terminal.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: September 9, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bryan Quinones, William E. Edwards, Randall C. Gray
  • Patent number: 7387970
    Abstract: A method for processing semiconductor wafers is disclosed. A semiconductor wafer is provided to a semiconductor processing stage where a block copolymer surfactant (BCS) is applied to the wafer surface. In one embodiment, the BCS includes a hydrophobic portion and a hydrophilic portion. Alternatively, the BCS may be a silicone-containing BCS. In one embodiment, the BCS is within an aqueous solution where the concentration of the BCS within the aqueous solution is less than one percent by weight. Also disclosed is an aqueous solution including abrasive particles and a BCS having a hydrophobic portion and a hydrophilic portion. The abrasive particles may include silica, alumina, or ceria.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: June 17, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kevin E. Cooper, John C. Flake, Johannes Groschopf, Yuri E. Solomentsev
  • Patent number: 7341914
    Abstract: A method for forming a semiconductor device includes forming a first gate electrode over a semiconductor substrate, wherein the first gate electrode comprises silicon and forming a second gate electrode over the semiconductor substrate and adjacent the first gate electrode, wherein the second gate electrode comprises silicon. Nanoclusters are present in the first gate electrode. A peripheral transistor area is formed devoid of nanoclusters.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 11, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Ko-Min Chang, Robert F. Steimle
  • Patent number: 7322014
    Abstract: A method for identifying areas of low overburden which degrade (increase) metal polish nonuniformity is discussed. Also described is a method for modifying these areas to increase their overburden, thus slowing down the metal polish rate and improving overall polish uniformity. The resulting structure forms slots in groups of functional lines, such as bus lines, when the functional lines have a density prior to forming the slots that exceeds a predetermined amount. In one embodiment, an area of the wafer has a maximum width of 1.5 microns in an area that has a feature density greater than approximately 50 percent. The methods and resulting structures create a higher feature density, thereby increasing polishing uniformity.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: January 22, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edward O. Travis, Nathan A. Aldrich, Ruiqi Tian
  • Patent number: 7282426
    Abstract: A method for forming a semiconductor device including forming a semiconductor substrate; forming a gate electrode over the semiconductor substrate having a first side and a second side, and forming a gate dielectric under the gate electrode. The gate dielectric has a first area under the gate electrode and adjacent the first side of the gate electrode, a second area under the gate electrode and adjacent the second side of the gate electrode, and a third area under the gate electrode that is between the first area and the second area, wherein the first area is thinner than the second area, and the third area is thinner than the first area and is thinner than the second area.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 16, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Venkat R. Kolagunta, David C. Sing
  • Patent number: 7256077
    Abstract: A method of forming a semiconductor device includes forming a first layer over a semiconductor substrate and forming a second layer over the first layer. The second layer includes silicon and has an etch selectivity to the second layer that is greater than approximately 1,000. In one embodiment, the second layer is a porous material, such as porous silicon, porous silicon germanium, porous silicon carbide, and porous silicon carbon alloy. A gate insulator is formed over the second layer and a control electrode is formed over the gate insulator. The first layer is selectively removed with respect to the second layer and the semiconductor substrate.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: August 14, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Marius K. Orlowski
  • Patent number: 7238579
    Abstract: A semiconductor device that has a common border between P and N wells is susceptible to photovoltaic current that is believed to be primarily generated from photons that strike this common border. Photons that strike the border are believed to create electron/hole pairs that separate when created at the PN junction of the border. The photovoltaic current can have a sufficient current density to be destructive to the metal connections to a well if the area of these metal connections to the well is small relative to the length of the border. This photovoltaic current can be reduced below destructive levels by covering the common border sufficiently to reduce the number of photons hitting the common border. The surface area of the connections can also be increased to alleviate the problem.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: July 3, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bradley P. Smith, Edward O. Travis
  • Patent number: 7235471
    Abstract: A method for forming a semiconductor device includes providing a semiconductor substrate, forming an insulating layer over the semiconductor substrate, forming a conductive layer over the insulating layer, forming a first metal silicide layer over the conductive layer, patterning the conductive layer to form a patterned first layer, wherein the patterned first layer is a part of a control electrode, patterning the first metal silicide layer to form a patterned first metal silicide layer over the control electrode so that the patterned first metal silicide layer remains over the control electrode, and forming a second metal silicide over the patterned metal silicide layer, wherein the second metal silicide layer has a thickness greater than the thickness of first metal silicide layer.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: June 26, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, Tab A. Stephens
  • Patent number: 7235502
    Abstract: A gate dielectric structure (201) fabrication process includes forming a transitional dielectric film (205) overlying a silicon oxide film (204). A high dielectric constant film (206) is then formed overlying an upper surface of the transitional dielectric film (205). The composition of the transitional dielectric film (205) at the silicon oxide film (204) interface primarily comprises silicon and oxygen. The high K dielectric (206) and the composition of the transitional dielectric film (205) near the upper surface primarily comprise a metal element and oxygen. Forming the transitional dielectric film (205) may include forming a plurality of transitional dielectric layers (207) where the composition of each successive transitional dielectric layer (207) has a higher concentration of the metal element and a lower concentration of silicon.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 26, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sriram S. Kalpat, Voon-Yew Thean, Hsing H. Tseng, Olubunmi O. Adetutu