Patents Represented by Attorney Law Office of Jeffrey R. Ramberg
  • Patent number: 8133127
    Abstract: The various embodiments of the present invention include, but are not limited to, sports training devices that are beneficial for training in activities requiring swinging motions (e.g., the game of golf). The device may be used without hindering any portions of a natural swing. The invention also contemplates continuous tactile feedback to the user, and is both foldable and transportable, while also being economical.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: March 13, 2012
    Inventor: Terrance W. Synder
  • Patent number: 8128861
    Abstract: Current top performing SAPI systems are B4C-containing (hot pressed B4C or reaction bonded B4C). These systems will not function well versus future WC/Co threats due to the inability of B4C to withstand high pressure impacts. New approaches will be needed for next generation SAPI ceramics. Three related concepts are disclosed herein, each of which will lead to improved reaction bonded ceramics for next generation SAPI applications. The first concept aims to reactively heat treat reaction bonded B4C, causing. SiC and SiB6 to form at the expense of B4C. The second approach will add Ti to the system, thus allowing TiC and TiB2 to form at the expense of B4C. Finally, the third concept will evaluate the use of finer particle sizes, thus improving the static properties of the ceramics (with the aim of enhancing multi-hit performance). In all cases, preliminary work has been conducted to demonstrate the viability of the concepts. This will lead to a new family of advanced armor ceramics.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: March 6, 2012
    Assignee: M Cubed Technologies, Inc.
    Inventors: Michael K. Aghajanian, Allyn L. McCormick
  • Patent number: 7534249
    Abstract: A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: May 19, 2009
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher, Charles W. Dodson, Jr.
  • Patent number: 7378144
    Abstract: A device is formed by the process into a bone screw or fastener, wherein the head has a degree of polymer alignment and strength, and wherein the shank has a higher degree of polymer alignment and strength. In practice of the present invention, the polymer slug is pressed into the die cavity by the actuation of ram press, causing the slug to conform to the die cavity. Through this process, the polymer molecular orientation is aligned to different degrees, in different zones of the device.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: May 27, 2008
    Assignee: Kensey Nash Corporation
    Inventors: Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Patent number: 7332221
    Abstract: A composite body produced by a reactive infiltration process that possesses high mechanical strength, high hardness and high stiffness has applications in such diverse industries as precision equipment and ballistic armor. Specifically, the composite material features a boron carbide filler or reinforcement phase, and a silicon component with a porous mass having a carbonaceous component. Potential deleterious reaction of the boron carbide with silicon during infiltration is suppressed by alloying or dissolving boron into the silicon prior to contact of the silicon infiltrant with the boron carbide. In a preferred embodiment of the invention related specifically to armor, good ballistic performance can be advanced by loading the porous mass or preform to be infiltrated to a high degree with one or more hard fillers such as boron carbide, and by limiting the size of the largest particles making up the mass.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: February 19, 2008
    Assignee: M Cubed Technologies, Inc.
    Inventors: Michael K. Aghajanian, Allyn L. McCormick, Bradley N. Morgan, Anthony F. Liszkiewicz, Jr.
  • Patent number: 7293734
    Abstract: An apparatus for storing and dispensing pliable, elongated articles such as electrical cords or cables. The apparatus features a reel, an axle and a bucket, with the axle being co-axial with the reel and with the bucket. The reel is mounted on the axle in the bucket with minimal wobble, which makes for essentially no contact to the interior wall(s) of the bucket. The mounting also utilizes a low friction bearing, such as a line or near-line contact. The result is very little friction, which is especially significant when pulling the cord out of the bucket, as it helps prevent tipping or sliding of the apparatus when the apparatus has to provide its own stability. The apparatus may also feature one or more anti-tipping or anti-skidding devices.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: November 13, 2007
    Inventor: Robert C Kantner
  • Patent number: 7270885
    Abstract: Ceramic-containing bodies can be bonded to other ceramic-containing bodies, or to metals or metal-containing bodies, by way of an aluminum-silicon brazing alloy. Such alloys feature high thermal conductivity and a melting range intermediate to Cu—Sil and Au—Si. By metallizing the surface of an aluminum- or silicon-containing ceramic body, for example, with silicon or aluminum, the formation of deleterious intermetallic phases at the brazing interface is avoided. This technique is particularly useful for joining reaction-bonded silicon carbide (RBSC) composite bodies, and particularly such composite bodies that contain appreciable amounts of aluminum as a metallurgical modification of the residual silicon phase. Interestingly, when the RBSC body contains minor amounts of the aluminum alloying constituent, or none, the metallization layer is not required. The resulting bonded structures have utility as mirrors, as packaging for electronics, and in semiconductor lithography equipment, e.g.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: September 18, 2007
    Inventors: Prashant G. Karandikar, Marlene Rossing, legal representative, Barry R. Rossing, deceased
  • Patent number: 7264624
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: September 4, 2007
    Assignee: Kensey Nash Corporation
    Inventors: John E Nash, Douglas G Evans, David M Hoganson
  • Patent number: 7244034
    Abstract: A mirror having low density, low CTE, high thermal conductivity, high elastic modulus, and a reflective, polishable surface. The instant mirror features a silicon-based metal coating as the reflective surface, and a composite body as a support or substrate for the reflecting surface. The composite body features carbon fibers reinforcing a matrix containing silicon metal and optionally some silicon carbide. The metal coating can be elemental silicon metal, possibly in amorphous form, and can be applied by a vapor deposition process such as chemical vapor deposition (e.g., plasma enhanced CVD) or physical vapor deposition such as evaporation or electron beam PVD.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: July 17, 2007
    Assignee: M Cubed Technologies, Inc.
    Inventors: Prashant G. Karandikar, Jai R. Singh, Clarence A. Andersson
  • Patent number: 7241316
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant comprising collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 10, 2007
    Inventors: Douglas G Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7235107
    Abstract: An implantable material for deployment in select locations or select tissue for tissue regeneration is disclosed. The implant comprises collagen, ceramics, and or other bio-resorbable materials or additives, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: June 26, 2007
    Inventors: Douglas G. Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7197972
    Abstract: A composite body produced by a reactive infiltration process that possesses high mechanical strength, high hardness and high stiffness has applications in such diverse industries as precision equipment and ballistic armor. Specifically, the composite material features a boron carbide filler or reinforcement phase, and a silicon carbide matrix produced by the reactive infiltration of an infiltrant having a silicon component with a porous mass having a carbonaceous component. Potential deleterious reaction of the boron carbide with silicon during infiltration is suppressed by alloying or dissolving boron into the silicon prior to contact of the silicon infiltrant with the boron carbide. In a preferred embodiment of the invention related specifically to armor, good ballistic performance can be advanced by loading the porous mass or preform to be infiltrated to a high degree with one or more hard fillers such as boron carbide, and by limiting the size of the largest particles making up the mass.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: April 3, 2007
    Inventors: Michael K Aghajanian, Allyn L McCormick, Bradley N Morgan, Anthony F Liszkiewicz, Jr.
  • Patent number: 7169465
    Abstract: A low CTE metal-ceramic composite material featuring carbon fibers reinforcing a matrix featuring silicon metal or silicon alloy. The fibers have a low coefficient of thermal expansion (CTE) in the axial direction, and preferably negative. The principles of making Si/SiC composites can be adapted to produce the instant Si matrix composites. The CTE of the composite body depends not only upon the relative CTE's of the fibers and matrix, and their relative amounts (e.g., loadings), but also upon the relative elastic moduli of the fibers and matrix. Thus, Si/SiC matrices produced by a reaction-bonding process inherently possess low CTE, but the instant inventors prefer to make such composites having relatively large fractions of unreacted silicon, thereby driving composite CTE lower still. Here, the carbon fibers are protected from reaction with the silicon infiltrant with one or more materials disposed between the fibers and the infiltrant.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: January 30, 2007
    Inventors: Prashant G. Karandikar, Jai R. Singh, Clarence A. Andersson
  • Patent number: 7166133
    Abstract: An implant for deployment in select locations or select tissue for regeneration of tissue is disclosed. The implant comprising collagen and or other bio-resorbable materials, where the implant may also be used for therapy delivery. Additionally, the implant may be “matched” to provide the implant with similar physical and/or chemical properties as the host tissue.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: January 23, 2007
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Scott M. Goldman, Russell T. Kronengold
  • Patent number: 7104177
    Abstract: Silicon infiltration technology, e.g., siliconizing or reaction-bonding, is used to produce ceramic-rich composite bodies having utility as ballistic armor. In the main embodiment of the invention, the ballistic armor includes a reaction-bonded silicon carbide body (RBSC). Good ballistic performance can be advanced by loading the porous mass or preform to be infiltrated to a high degree with one or more hard fillers, and by limiting the size of the morphological features making up the composite body. This control of “grain size” can be accomplished by controlling the size of the largest particles making up the porous mass to be infiltrated, but also of importance is controlling the processing conditions, particularly by controlling the factors that cause grain growth, coarsening of microstructure, and/or grain coalescence.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: September 12, 2006
    Inventors: Michael K. Aghajanian, Allyn L. McCormick
  • Patent number: 6863759
    Abstract: Techniques to bond two or more smaller bodies or subunits to produce a unitary SiC composite structure extend the capabilities of reaction-bonded silicon carbide, for example, by making possible the fabrication of complex shapes. In a first aspect of the present invention, two or more preforms are bonded together with a binder material that imparts at least strength sufficient for handling during subsequent thermal processing. In a second aspect of the present invention, instead of providing the subunits to be bonded in the form of preforms, the subunits may be dense, SiC composite bodies, e.g., RBSC bodies. In each of the above embodiments, a preferable means for bonding two or more subunits combines aspects of adhesive and mechanical locking characteristics. One way to accomplish this objective is to incorporate a mechanical locking feature to the joining means, e.g., a “keyway” feature.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: March 8, 2005
    Assignee: M Cubed Technologies, Inc.
    Inventors: Michael A. Richmond, Michael K. Aghajanian, Allyn L. McCormick, W. Michael Waggoner, Brian E. Schultz
  • Patent number: 6841615
    Abstract: A composite adhesive featuring a matrix phase that includes a cyanate ester and a filler or reinforcement phase that includes a plurality of bodies of at least one material comprising a high shear strength and/or high modulus material. Preferably, the filler also possesses at least one of high thermal conductivity and low coefficient of thermal expansion. Unlike certain commercially available cyanate esters, those of the instant invention substantially maintain or even increase in strength upon addition of the filler to the system. The instant composite adhesives may also display reduced coefficients of moisture expansion relative to the unfilled or “neat” resin. Such a composite adhesive is extremely useful for joining articles where high strength and minimal swelling in moist environments are required, such as in the precision equipment industry.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: January 11, 2005
    Assignee: M Cubed Technologies, Inc.
    Inventors: Clarence A. Andersson, Philip J. Roach
  • Patent number: 6805034
    Abstract: Silicon infiltration technology is used to produce ceramic bodies having utility as ballistic armor. In a first aspect of the invention, the ballistic armor includes a reaction-bonded silicon carbide body (RBSC). Good ballistic performance can be advanced by loading the permeable mass or preform to be infiltrated to a high degree with one or more hard fillers, and by limiting the size of the largest particles making up the mass. In a second aspect, the silicon infiltration technology, e.g., siliconizing or reaction-bonding, is used to bond silicon carbide fibers to at least the back surface of a ceramic armor body, thereby enhancing ballistic stopping power. A third aspect of the invention pertains to the ability to engineer RBSC bodies such that there is little dimensional change during processing, thereby permitting high dimensional reproducibility in large-scale production.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: October 19, 2004
    Assignee: M Cubed Technologies, Inc.
    Inventors: Allyn L. McCormick, Michael K. Aghajanian